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Spin dynamics of cold exciton condensates
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We analyze theoretically the dynamics of degenerate four-component condensates of cold indirect excitons.
We account for both linear spin-dependent terms arising from spin-orbit interaction of Rashba and Dresselhaus
types and nonlinear terms coming from the exciton-exciton interactions. We show that both terms should affect
the dynamics of cold exciton droplets in real space and time and lead to the formation of a four-leaf polarization
pattern as well as dips in the bright exciton density profile.
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I. INTRODUCTION

Collective phenomena are at the root of many remarkable
effects in physics. One of their famous manifestations is
Bose-Einstein condensation,1 which occurs if a system of
Bose particles is cooled down beyond the critical temperature
Tc, which strongly depends on the properties of the individual
particles, in particular their effective mass. For systems of cold
atoms, where condensing particles are very heavy, Tc lies in
the nano-Kelvin regime, which rules out any possibility of the
practical implementation of this phenomenon.

On the other hand, in the field of condensed matter physics
various candidates were proposed for the realization of BEC
with critical temperatures that are orders of magnitude higher
than those of cold atoms.2 The formation of exciton con-
densates in bulk semiconductors was theoretically predicted
more than 40 years ago,3 but it appeared to be difficult to
realize experimentally. Since then, other solid-state candidates
have been proposed for achieving high-temperature BEC,
including quantum Hall bilayers,4 magnons,5 cavity exciton
polaritons,6–8 and indirect excitons.9,10 The latter system is the
focus of the present paper.

A spatially indirect exciton is a bound state of an electron
and a hole localized in coupled parallel two-dimensional (2D)
layers (Fig. 1). Electron and hole wave functions show a
very small overlap, and consequently indirect excitons have
a long lifetime compared to ordinary excitons. They behave
like metastable particles, which enables them to cool beyond
the temperature of quantum degeneracy.11,12

Indirect excitons have been widely studied both ex-
perimentally and theoretically in recent years. Superfluid
behavior of a system of indirect excitons was predicted
by Lozovik and Yudson more than 30 years ago,13 and
subsequent theoretical14–16 and experimental17–19 studies have
suggested that this should be manifested in a series of
remarkable effects, including persistent currents, Josephson-
related phenomena, and spontaneous pattern formation in real
space.

Surprisingly, most of the works dedicated to indirect
excitons have neglected their spin structure. On the other
hand, it became clear in recent years that taking into account
the spinor nature of the condensing bosons can lead to the
emergence of novel effects. For cavity polaritons, accounting
for the spin led to the appearance of spinoptronics, an optical

analog of spintronics.20,21 It was also shown that the spin
dependence of polariton-polariton interactions can lead to the
appearance of intriguing nonlinear polarization phenomena
in polariton condensates, such as polarization multistability,22

full paramagnetic screening (also known as the spin Meissner
effect),23 and spin-dependent condensate velocities in the
hybrid Bose-Fermi systems.24 One can assume that the
spinor structure of indirect excitons also plays an important
role for the ground state and dynamic properties of the
system.25,26

Recently, the spin textures of indirect exciton gas
with a long spontaneous coherence length were studied
experimentally.26,37 Crosses in the linear polarization and
four-leaf patterns in the circular polarization were observed.
This peculiar behavior demonstrates the presence of spin-
conversion terms acting on the four possible spin projections
of the indirect exciton. In this article, we present a theory of
the cold exciton condensate in which both linear spin orbit
interaction terms and the nonlinear exchange interaction term
are taken into account. It allows us to describe various spin
textures and to show the qualitative influence of the different
terms.

II. THE MODEL

The spin of an indirect exciton is inherited from spins of
the individual electron and heavy hole forming it. The possible
spin projections of the electron’s spin on the structure growth
axis (z axis) are ±1/2, while possible spin projections of the
heavy hole’s spin are ±3/2. The exciton thus can have four
possible spin projections: Sz = ±1, ±2 [Fig. 2(a)]. The bright
states with Sz = ±1 can be created by external right or left
circular polarized light, while optical creation of the states with
Sz = ±2 is prohibited by selection rules. However, these states,
known as dark states, cannot be excluded from consideration,
as they can appear due to the presence of spin-orbit interaction
(SOI) of Rashba or Dresselhaus type, or they can be created
as a result of a collision of two bright excitons with opposite
circular polarizations, as will be discussed below. For direct
excitons, the energies of bright and dark states are split off by
electron-hole exchange interaction with a characteristic value
of tens of microelectronvolts.27 However, for indirect excitons,
where the overlap between the wave functions of the electrons
and holes is very small, this splitting can be neglected and
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FIG. 1. (Color online) Sketch of the system. (a) Double quantum
well heterostructure with applied voltage supports the pairing of an
electron in the right QW with a hole in the left QW. (b) Electron-hole
bilayer with a schematic picture of a spatially indirect exciton.

bright and dark excitons can be considered to have the same
energy.

Below the temperature of the quantum degeneracy, a
system of cold indirect excitons can be thus described
by a four-component macroscopic wave function �(r,t) =
(�+2(r,t),�+1(r,t),�−1(r,t),�−2(r,t)), where the subscripts
correspond to the z projection of the spin. Its dynamics can be
obtained from the following equation:

ih̄∂t�σ = δH

δ�∗
σ

, (1)

where H represents the Hamiltonian density of the system
accounting for free propagation of particles, SOI, and exciton-
exciton interactions, and it can be represented as a sum of
single-particle and interaction parts, H = H0 + Hint. Let us
consider the terms H0 and Hint separately.

The term H0 can be calculated as

H0 = �†(r,t)T̂�(r,t), (2)

where the 4 × 4 matrix T̂ contains terms corresponding to
the kinetic energy and interactions with effective magnetic
fields of various types. The latter can be divided into three
categories. First, there is SOI acting on the spin of the
heavy hole. It scales as a cube of the kinetic momentum28

and we neglect it in further consideration. As for the SOI
acting on electron spin, it can be represented as a sum of
the Dresselhaus term HD = β(σxk̂x − σyk̂y) arising from the
lack of inversion symmetry for the crystalline lattices of most
common semiconductor materials (GaAs, CdTe, etc.), and
the Rashba term HR = α(σxk̂y − σyk̂x) appearing due to the
structural asymmetry of the QW in the z direction.29 The
coefficients α and β are constants which depend on the material
and geometry of the structure, and σx,y are Pauli matrices. For
indirect excitons, both Rashba and Dresselhaus terms lead
to the transitions ±1 → ±2 mixing bright and dark exciton
states, and the matrix T̂ thus reads

T̂ =
(

T̂12 0

0 T̂12

)
, (3)

where 2 × 2 blocks T̂12 can be written in momentum space
representation as

T̂K
12 =

(
h̄2K2/2M ŜK

Ŝ∗
K h̄2K2/2M

)
(4)

with the operator ŜK = χ [β(K̂X + iK̂Y ) + α(K̂Y + iK̂X)].
Here K denotes the center-of-mass momentum of the indirect
exciton and χ = me/M is the ratio of effective electron to
exciton masses. Regarding the real space representation, one
can use the explicit expressions for momentum operators,
K̂X = −i∂X,K̂Y = −i∂Y . Note that, strictly speaking, when
one considers the problem of a single exciton accounting
for the effects of the SOI, the latter will affect not only
center of mass motion but relative motion as well, producing
the slight change of the binding energy of the exciton. This
can be accounted for using perturbation theory, and the first
nonvanishing correction is of second order (see Appendix A
for details of the derivation). We neglect this effect in our
further consideration.

Now let us consider the term accounting for exciton-exciton
interactions. As indirect excitons are composite bosons,30,31

they can be divided into four categories, namely the terms
corresponding to the direct Coulomb repulsion, exchange of
electrons, exchange of holes, and simultaneous exchange of
electron and hole (exciton exchange). These processes can be
visualized using the interaction diagrams shown in Fig. 2(b).

The corresponding interaction Hamiltonian thus reads

Hint = Vdir + VX + Ve + Vh

2

∑
σ=±1±2

|�σ |4

+ (Vdir + VX)(|�+1|2|�−1|2 + |�+2|2|�−2|2)

+ (Vdir + VX + Ve + Vh)(|�+1|2|�+2|2
+ |�−1|2|�−2|2 + |�+1|2|�−2|2 + |�−1|2|�+2|2)

+ (Ve + Vh)(�∗
+1�

∗
−1�+2�−2 + �∗

+2�
∗
−2�+1�−1),

(5)

where Vdir, VX, Ve, and Vh denote direct dipole-dipole
repulsion, whole exciton exchange, electron exchange, and
hole exchange Coulomb interaction, respectively. Since we are
interested in the behavior of a weakly depleted Bose-Einstein
condensate of indirect excitons, the main contribution comes
from the processes with zero transferred momentum, and all
values of the matrix elements in the above expression are
taken for q = 0. It is well known that, contrary to the case of
conventional excitons, the spin-independent direct interaction
of indirect excitons does not vanish for zero exchanged
momenta due to the strong dipole-dipole repulsion.10,25,32 In
addition, the processes of electron and hole exchange also
have an influence on the dynamics of the system, making it
spin-dependent.

The first term of Hint corresponds to the first line of
interactions in Fig. 2(b) and describes all possible interactions
between indirect excitons of the same spin configuration.
The second term corresponds to the processes of the direct
Coulomb interaction and exciton exchange shown at the
second line. The third and fourth lines of interaction diagrams
can be combined in the third term of Hint. Finally, the fifth line
in Fig. 2(b) corresponds to the fourth term of Hint and leads
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FIG. 2. (Color online) (a) Spin structure of indirect excitons. (b) Feynman diagrams showing different types of possible interactions between
two excitons.

to the transition between pairs of bright and dark indirect
excitons.

The interaction constants corresponding to all four types
of interaction can be estimated in the same fashion as for
direct excitons using a narrow QW approximation (see the
derivation in Appendix B). The direct Coulomb interaction
between indirect excitons is given by

Vdir = e2L

εε0
, (6)

where L is the distance between centers of QWs. The esti-
mation of the electron and hole exchange interaction constant
is more cumbersome and requires numerical calculation of an

exchange integral (B17) given in the Appendix B (see also
Ref. 33).

For indirect excitons in the long wavelength limit (q → 0),
direct and exciton exchange interactions coincide (Vdir =
VX) as well as electron and hole exchange (Ve = Vh).
It should be noted that the electron and hole exchange
interaction depends strongly on the distance between the
centers of the QWs and changes sign for certain separation,
as is shown in Fig. 3. This fact is important for further
consideration.

The set of spinor Gross-Pitaevskii equations describing the
dynamics of the system and accounting for both linear terms
coming from H0 and nonlinear terms provided by particle-
particle interactions of various types can be obtained using
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Eqs. (1) and (5) and reads

ih̄
∂�+1

∂t
= Ê�+1 − Ŝ∗

12�+2 + V0�+1|�+1|2 + (V0 − W )�+1|�−1|2 + V0�+1(|�−2|2 + |�+2|2) + W�∗
−1�+2�−2, (7)

ih̄
∂�−1

∂t
= Ê�−1 + Ŝ12�−2 + V0�−1|�−1|2 + (V0 − W )�−1|�+1|2 + V0�−1(|�+2|2 + |�−2|2) + W�∗

+1�+2�−2, (8)

ih̄
∂�+2

∂t
= Ê�+2 + Ŝ12�+1 + V0�+2|�+2|2 + (V0 − W )�+2|�−2|2 + V0�+2(|�−1|2 + |�+1|2) + W�∗

−2�+1�−1, (9)

ih̄
∂�−2

∂t
= Ê�−2 − Ŝ∗

12�−1 + V0�−2|�−2|2 + (V0 − W )�−2|�+2|2 + V0�−2(|�+1|2 + |�−1|2) + W�∗
+2�+1�−1, (10)

where V0 = Vdir + VX + Ve + Vh, W = Ve + Vh, and we de-
fined the kinetic energy operator Ê = −h̄2∇2/2M . The real
space SOI operator reads Ŝ12 = χ [β(∂̂Y − i∂̂X) + α(∂̂X −
i∂̂Y )]. Due to the symmetry between electron and hole
exchange at q = 0, the set of the equations we consider
contains only two independent interaction parameters: V0,W .
This differs from the case considered in Ref. 25, where this
symmetry was not accounted for, and five parameters were
used for a description of the interactions in the system. In a re-
alistic system, not all of these parameters will be independent.

III. SPECTRUM OF ELEMENTARY EXCITATIONS

The calculation of the spectrum of elementary excitations in
the system can be done using the linearization of spinor Gross-
Pitaevskii equations (7)–(10) with respect to small perturbation
around the ground state. The spin configuration of the ground
state of the condensate can be found by minimization of its
free energy,

F (�+1,�−1,�+2,�−2,μ) = H − μf (�+1,�−1,�+2,�−2),

(11)

where μ denotes the chemical potential of the con-
densate and f (�+1,�−1,�+2,�−2) = |�+1|2 + |�−1|2 +
|�+2|2 + |�−2|2. The condition f (�+1,�−1,�+2,�−2) = n,
where n is a total concentration, gives an additional equation
for the determination of μ.
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FIG. 3. (Color online) Electron direct (blue dashed line) and
exchange (green solid line) interaction for indirect excitons as a
function of separation distance between quantum wells L. The sign of
the exchange matrix element changes at a certain separation distance.
We consider the case of the GaAs/AlGaAs/GaAs heterostructure in
the narrow QW limit.

Let us investigate the generic Hamiltonian H = H0 + Hint

more precisely. Its first part H0 consists of kinetic energy
and spin-orbit coupling terms. Both of them depend on
the velocity of the particles and can usually be disregarded
when considering the ground state, where the interaction
Hamiltonian (5) plays a major role. Nevertheless, we will later
show that accounting for SOI leads to qualitative changes of
the ground state.

The symmetry of Hint with respect to the interactions
between components results in a nontrivial ground state
solution. Let us consider four particular cases of homogeneous
condensates:

(i) |�0
+1| = √

n, �0
−1,±2 = 0 or |�0

−1| = √
n, �0

+1,±2 = 0
or |�0

+2| = √
n, �0

−2,±1 = 0 or |�0
−2| = √

n, �0
+2,±1 = 0 (one-

component condensate);
(ii) |�0

+1,−1| = √
n/2, �0

±2 = 0 or |�0
+2,−2| = √

n/2,
�0

±1 = 0 (“ii” two-component condensate);
(iii) |�0

+1,−2| = √
n/2, �0

−1,+2 = 0 or |�0
−1,+2| = √

n/2,
�0

+1,−2 = 0 (“ij” two-component condensate);
(iv) |�0

±1,±2| = √
n/4 (four-component condensate);

where we defined the ground state wave function �0
i for each

component. For instance, the first case implies the situation
where only one spin component is present in the condensate
with total density n, while the last case implies an equal
distribution of the density between the four spin components.

Looking at the interaction Hamiltonian (5), one can note
that the last spin-flip term is important. While all other terms
do not depend explicitly on the phase of the condensate wave
function, it does. Moreover, it is always possible to make the
term �∗

+1�
∗
−1�+2�−2 negative by adjusting the relative phases

of all four condensates, and thus it always lowers the
energy of the ground state independently of the sign of the
electron exchange term W . However, the sign of W will still
affect the ground state properties since it enters into the V0

matrix element. Thus, one should consider separately two
different situations with negative and positive electron and
hole exchange interactions.

For negative W = Ve + Vh < 0 (large QWs separations),
the free energy of the four condensate states considered above
is given by

H (1) = (Vdir + VX + Ve + Vh)
n2

2
= V0n

2

2
, (12)

H
(2)
ii =

(
Vdir+VX+Ve + Vh

2

)
n2

2
=

(
V0 − W

2

)
n2

2
, (13)
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H
(2)
ij = (Vdir + VX + Ve + Vh)

n2

2
= V0n

2

2
, (14)

H (4) = (Vdir + VX + Ve + Vh)
n2

2
= V0n

2

2
, (15)

where we denoted by H (1), H (2)
ii , H (2)

ij , and H (4) the free energy
of one-component, “ii” two-component, “ij” two-component,
and four-component condensates, respectively. One can see
that the ground state is seven times degenerate, and configura-
tions of one-component, two-component, and four-component
condensates are possible. The chemical potential in this case is
equal to μ< = (Vdir + VX + Ve + Vh)n = V0n. Therefore, the
ground state of the system will be chosen by a spontaneous
symmetry breaking mechanism. The high level of the degener-
acy of the ground states means that the system can demonstrate
a large variety of topological excitations (solitons, vortices,
and skyrmions). Moreover, in the system one can, in principle,
observe the fragmentation of the condensate into domains
with different spin structure. The analysis of these interesting
effects, however, lies beyond the scope of the present paper.

For positive W = Ve + Vh > 0 exchange interaction (small
QW separations), the free energy of the system for different
types of the condensates yields

H (1) = (Vdir + VX + Ve + Vh)
n2

2
= V0n

2

2
, (16)

H
(2)
ii =

(
Vdir+VX+Ve+Vh

2

)
n2

2
=

(
V0−W

2

)
n2

2
, (17)

H
(2)
ij = (Vdir + VX + Ve + Vh)

n2

2
= V0n

2

2
, (18)

H (4) =
(

Vdir+VX+Ve+Vh

2

)
n2

2
=

(
V0 − W

2

)
n2

2
. (19)

In this situation, the ground state is three times degenerate,
and either a four-component or a two-component condensate
in +1,−1 or +2,−2 configurations is preferable.

The spectrum of elementary excitations in the system can
be calculated using the standard method of linearization of
the Gross-Pitaevskii equations (7)–(10) with respect to small
perturbation taken in form of a plane wave. For instance, in the
four-component condensate case with an equal fraction of each
spin state, it is taken in the form �0

i = √
n/4 + Aie

i(kr−ωt) +
B∗

i e−i(kr−ωt).34 The solution of the system of linear algebraic
equations for small amplitudes Ai and Bi gives the dispersion
relations of the quasiparticles in the condensate.

First, we consider the case when spin-orbit interaction
is absent. For large separation between quantum wells, the
exchange interaction is attractive and the chemical potential
of the ground state is defined as μ< = V0n. The corre-
sponding spectrum of excitations for interaction constants
Vdir = 19.9 μeV μm2 and Ve = −1.78 μeV μm2 is plotted
in Fig. 4(a). It contains a linear Bogoliubov mode, a gapped
quadratic mode, and a double degenerate gapless quadratic
mode given by relations

h̄ω<
1 =

√
Ek(Ek + 2μ<), (20)

h̄ω<
2 = Ek + n|W |, (21)

h̄ω<
3,4 = Ek, (22)
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FIG. 4. (Color online) Quasiparticle modes of a spinor conden-
sate formed by indirect excitons for negative (a),(b) and positive
(c),(d) exchange interaction between excitons. The solid lines in the
plots (a) and (c) correspond to the dispersions of the quasiparticles
without accounting for the spin-orbit interaction, and the numbers in-
dicate the bare modes described by the formulas (20)–(24). Account-
ing for SOI removes the spin degeneracy and increases the number
of modes. Concentration of the particles is taken as n = 109 cm−2.
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where Ek = h̄2k2/2M . For the case of small separation
between QWs, the exchange matrix element Ve changes sign
and becomes repulsive (see Fig. 3). The chemical potential
of the ground state is thus defined as μ> = (V0 − W/2)n.
We plot the spectrum of elementary excitations for L = 6 nm
separation between wells, where Vdir = 9.95 μeV μm2 and
Ve = 1.24 μeV μm2 [Fig. 4(c), solid lines]. The dispersion
relations have the form

h̄ω>
1,3,4 =

√
Ek[Ek + 2μ>], (23)

h̄ω>
2 =

√
Ek(Ek + nW ), (24)

where the modes h̄ω1,3,4 are now three times degenerate. The
obtained spectrum coincides qualitatively with the general
dispersion relations given in Ref. 25.

Taking into account the spin-orbit interaction requires
including the Rashba and Dresselhaus terms in the Gross-
Pitaevskii equations. For the general case of multicomponent
gas of cold bosons with spin-orbit coupling, this leads to the un-
conventional BEC state.35 One can expect that SOI removes the
spin degeneracy and results in the splitting of the modes. More-
over, due to the spin-orbital interaction, a one-component con-
densate ground state is no longer preferable since the lowest en-
ergy state requires the presence of either (+1,+2) or (−1,−2)
components. Here we present the numerical calculation of the
quasiparticle spectrum, accounting for the isotropic spin-orbit
interaction of Rashba type. For the noninteracting case, the dis-
persion minimum moves to the k0 = ±Mα

h̄2 points, which corre-
sponds to the nonzero condensate phase velocity in the ground
state (note that group velocity defined as vg = h̄−1dE/dk

remains equal to zero and the condensate is not moving). The
ground state of the condensate in this case acquires the total
nonzero phase eik0r, where the orientation of the k0 vector is
defined by the spontaneous symmetry breaking process.

The corresponding renormalization of quasiparticle disper-
sion now occurs in the vicinity of k0 points showing a linear
spectrum [Figs. 4(b) and 4(d)]. This situation is reminiscent
of the renormalization of the bogolon dispersions in the

exciton-polariton condensate, where the role of spin-orbital
interaction is played by longitudinal-transverse splitting.36

For negative exchange interaction, accounting for Rashba
SOI leads to the splitting of degenerate bogolon modes h̄ω1,3,4,
which are linear in the k = k0 region and behave like bare SOI
modes far from the k0 point [Fig. 4(b), red dashed lines].
The gapped mode h̄ω2 [Fig. 4(a), red dashed lines] is only
slightly renormalized by spin-orbit interaction. One should
note that accounting for SOI leads to the ground state formed
by an “ij” two-component condensate or a four-component
condensate, and rules out the possibility of the formation of a
single-component condensate, as was mentioned above.

In the case of positive exchange interaction, both modes
h̄ω1,3,4 and h̄ω2 are renormalized in the k = k0 point, while
for large values of k they approach the usual Rashba-like
dispersion for the upper and lower modes ε± = Ek ± αk

[Fig. 4(d)]. The ground state in this case corresponds to a
four-component condensate only.

A similar situation occurs if only the Dresselhaus inter-
action term is present in the Hamiltonian. However, if both
Rashba and Dresselhaus terms are present, the dispersions of
non-renormalized modes are anisotropic. Consequently, states
with minimal energy correspond not to a circle, but to two
isolated points in the reciprocal space. We leave this case to
be a subject for future research.

IV. REAL SPACE AND TIME DYNAMICS

The dynamics of the cold exciton droplet can be studied us-
ing the set of four Gross-Pitaevskii equations (7)–(10) formu-
lated in the previous section. In the present article, we consider
a GaAs/AlGaAs/GaAs structure with 8 nm/4 nm/8 nm QWs
recently studied in Refs. 26 and 37. However, while the only
peculiar parameter that affects the behavior of the system is the
distance between centers of quantum wells, the qualitative de-
scription of spin-conversion terms is general and is applicable
for other structures as well, in particular for the case of direct
excitons. The initial distribution of the excitons in a droplet
is modeled by a 2 μm diameter Gaussian wave packet with
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FIG. 5. (Color online) (a) The bright exciton stationary density profile for the linearly polarized two-component (+1 and −1) condensate
with Dresselhaus SOI present. The spin-orbit interaction constants are taken as β = 3 μeV μm (red solid line) and β = 1.5 μeV μm (red
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(dashed line) and without accounting for the exchange interaction (solid line). The exchange matrix element is equal to Ve = −Vdir/5, which
corresponds to the large separation between QWs.

maximal concentration of the order n = 109 cm−2. When
thermalized and being far from the hot center, the droplets
reveal the physics of a cold boson gas, while an additional
indirect exciton supply is provided in the central region by
external current through the structure.37 In the present paper,
we account for the finite lifetime of the particles (τ = 2 ns)
and study the dynamics of the droplets in stationary and
nonstationary regimes.

Let us assume that the external optical pump is linearly
polarized and both +1 and −1 bright exciton states are created.
The kinetic terms in the Gross-Pitaevskii equations for �+1

and �−1 cause the diffusion of the particles from the center
of the spot. The strong dipole-dipole interactions lead to the
repulsion of particles from the high concentration regions,
and this leads to the formation of concentric propagating
rings. While the aforementioned terms are present in the case
of exciton polariton condensates and they have been widely
studied, the additional terms leading to the transitions between
bright and dark states are of great importance for the case of
indirect excitons. In the following consideration, we describe
the effects coming from all terms of this kind separately.

First, if only one type of SOI (Rashba or Dresselhaus)
is present, for the cylindrically symmetric pumping spot the
distribution of the intensity of the photoluminescence in real
space governed by the concentration of bright states remains
cylindrically symmetric. The processes of SOI lead to the

conversion of bright states into dark, which can be observed
in the bright exciton density plots (Fig. 5). One can note
from the form of the SOI operator Ŝ12 that the most efficient
conversion of bright states into dark occurs at the points where
the density gradient is largest [blue arrows in Fig. 5(a)]. This
yields the “mexican hat” profile in the near field distribution
of photoluminescence, which depends on SOI strength (solid
and dashed lines).

Recently, the appearance of a dip in the center of the pho-
toluminescence (PL) profile was revealed in experiments with
indirect excitons in a trap created by strain.38 Moreover, for
high strain, a reappearance of the PL peak in the trap center and
the corresponding “mexican hat” profile was observed. The
corresponding effects were modeled by accounting for light-
hole and heavy-hole (lh-hh) mixing due to strain, which leads
to changes in the recombination lifetime of excitons. However,
while lh-hh mixing undoubtedly has a strong influence on
indirect exciton photoluminescence, one can expect that for
high strain, the spin-orbit interaction becomes important when
the strain-induced SOI of Rashba and Dresselhaus type appear.
Therefore, the effective conversion of bright excitons into dark
ones leads to the formation of dips in the PL profile without
the change of exciton lifetime. Finally, we can conclude
that the interplay of both lh-hh mixing and SOI interaction
terms could explain the experimentally observed phenomena
in Ref. 38, while an elaborate analysis considering the strain
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FIG. 7. (Color online) The steady state of a cold exciton droplet with both Rashba and Dresselhaus interactions present (β = 3 μeV μm,
α = 0.9β). The set of density plots shows the bright exciton (a) and dark exciton (b) density, and the bright circular polarization degree
determined as ℘ = (|�+1|2 − |�−1|2)/(|�+1|2 + |�−1|2) (c).

115324-7



O. KYRIIENKO, E. B. MAGNUSSON, AND I. A. SHELYKH PHYSICAL REVIEW B 86, 115324 (2012)

-8 -4 0 4 8

-8

-4

0

4

8

-8 -4 0 4 8

-8

-4

0

4

8

-8 -4 0 4 8

-8

-4

0

4

8

-8 -4 0 4 8

-8

-4

0

4

8

-8 -4 0 4 8

-8

-4

0

4

8

-8 -4 0 4 8

-8

-4

0

4

8

y 
(μ

m
)

y 
(μ

m
)

x (μm) x (μm) x (μm)

(a)

(b)

t1 t2 t3

0.4

0.3

0.6

0.7

0.5

0.2

0.1

0.08

0.06

0.12

0.14

0.1

0.04

0.02

0.08

0.16

0.2

0.12

0.04

0.03

0.05

0.06

0.04

0.02

0.01

0.03

0.05

0.06

0.04

0.02

0.01

4

6

7

5

3

2

1

x 10
−3

FIG. 8. (Color online) Dynamics of bright (a) and dark (b) components under the circularly polarized initial conditions. The evolution of
exciton density reveals the rotation in time of the velocity field for both species, which can be described as resulting from the appearance of
the effective magnetic field provided by the interplay between SOI and interactions in the system. The characteristic times for the system are
defined by the lifetime of an exciton, τ = 2 ns, and are chosen as t1 = 1 ns, t2 = 2 ns, and t3 = 4 ns.

trap and its effect on lh-hh states is required for a quantitative
comparison.

In addition to SOI, another mechanism can lead to bright to
dark exciton conversion. This is the electron or hole exchange
interaction term leading to the transitions {+1,−1} ←→
{+2,−2}. It is described by the last term in the Gross-Pitaevskii
equations (7)–(10) with the interaction constant given by W =
Ve + Vh. In the considered structure, the exchange interaction
constant is equal to Ve = Vh = −1.3 μeV μm2. One can see
that the most efficient dark exciton creation process takes place
for the highest bright exciton density regions. Together with
repulsive interaction dynamics, this leads to the appearance of
density modulations in the radial direction connected to the
rings of bright exciton concentration. Figure 6(a) shows the
difference in the bright exciton density between the case in
which the exchange term is present, (ne

bright), and the case in
which it is zero, (n0

bright).
One can see that the exchange term leads to the formation

of several dips in the bright exciton density and causes an
overall flattening of the density profile. For the high density
of trapped indirect excitons, bright-to-dark conversion could
play an important role, causing the gap in the center of the
photoluminescence profile.38 However, in the typically studied
structures with indirect excitons where exchange interaction
is an order of magnitude smaller than the direct interaction,
the density modulation is weak and can be expected to be
concealed by other factors.

Next, we study the situation in which both Rashba and
Dresselhaus SOI terms are present in the Gross-Pitaevskii
equations. In this case, the dispersions of noninteracting
particles are anisotropic in k space,

ε±(k) = h̄2k2

2m
± k

√
α2 + β2 + 2αβ sin(2θk), (25)

where θk denotes the angle between the wave vector k and the
x axis. This can lead to the breaking of cylindrical symmetry in

the system, as is illustrated in Fig. 7. Here we present the steady
state plots of the exciton density and polarization, taking into
account the finite lifetime of the particles, which are usually
measured in the experiments. The density profile in these plots
is governed by the interplay of Rashba and Dresselhaus terms,
which makes it nonsymmetric in the radial direction. The
corresponding evolution of the circular polarization degree
shows a four-leaf pattern formation [Fig. 7(c)]. A similar
phenomenon was observed experimentally for spots of cold
exciton condensates.37 One can note that in the case of equal
strength of Rashba and Dresselhaus SOI, the integrated circular
polarization is constantly zero. The spin-orbital interaction
depends strongly on the material and geometry of the sample.
For the particular 8 nm/4 nm/8 nm GaAs/AlGaAs heterostruc-
ture, the constant of Dresselhaus SOI can be estimated as β =
3 μeV μm, while the Rashba constant can be tuned in a wide
range by the external gate voltage Vg .29,39,40

Finally, we consider the case of a circularly polarized
condensate where only one component is pumped. In this case,
the symmetry between +1 → +2 and −1 → −2 conversion
is removed, and this leads to the appearance of an effective
magnetic field in the z direction acting on bright and dark
components and arising from spin-dependent exciton-exciton
interactions. Its interplay with SOI of Rashba and Dresslhaus
types leads to the rotation of the densities of bright and dark
components in real space and time, as is shown in Fig. 8.
However, going to the stationary regime, the density profile
coincides with the situation for a linear pump (t3 in Fig. 8).

V. CONCLUSIONS

In conclusion, we analyzed the ground state properties and
spin dynamics in the system of cold indirect excitons, ac-
counting for Rashba and Dresselhaus SOI and spin-dependent
exciton-exciton interactions. We demonstrated that the ground
state of cold exciton gas is highly degenerate, and we
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calculated the dispersions of the Bogoliubov excitations in
the system. It was shown that accounting for spin structure
qualitatively changes the dynamics of the exciton droplets
in real space and can lead to the formation of rings and
“mexican hat” structures in spatial distribution of near field
photoluminescence provided by bright excitons. For the case of
both the present Rashba and Dresselhaus terms, we have shown
four-leave pattern formation for the distribution of circular
polarization in real space.
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APPENDIX A: SPIN-ORBIT INTERACTION
FOR INDIRECT EXCITON

We consider the indirect exciton–composite boson con-
sisting of an electron and a hole in separated QWs which
are bounded with attractive Coulomb interaction. The generic
Hamiltonian of an indirect exciton taking into account SOI for
the electron (for instance of Rashba type) can be written as

Ĥ = Ĥ0 + Vint, (A1)

where Vint = −e2/4πεε0

√
L2 + |re − rh|2 denotes the inter-

action between an electron and a hole. The kinetic part of the
Hamiltonian now includes the SOI term for an electron and
can be represented as a 4 × 4 matrix,

T̂ =
(

T̂0 0
0 T̂0

)
, (A2)

where 2 × 2 blocks T̂0 read

T̂0 =
⎛⎝− h̄2

2me
∇2

e − h̄2

2mh
∇2

h α
(−∂e

x + i∂e
y

)
α
(
∂e
x + i∂e

y

) − h̄2

2me
∇2

e − h̄2

2mh
∇2

h

⎞⎠ , (A3)

with me and mh being electron and hole mass, respectively,
and we denoted the operators acting on the electron and the
hole by the indices e and h. The operator T̂ acts on the spinor
wave function � = (�++,�−+,�+−,�−−), where indices for
each component �ii describe the sign of spin projection on
the z axis for an electron and a hole. Therefore, nondiagonal
terms of matrix T̂0 couple �++ and �−+ components and
are responsible for the spin-flip transitions between bright and
dark excitonic states ±1 → ±2. For the exciton, this results
in bright-to-dark state conversion. The operator T̂0 can be
rewritten in an exciton center-of-mass coordinate frame using
transformations,

R = χre + (1 − χ )rh, r = re − rh,

where χ = me/(me + mh) is the electron to exciton mass ratio.
Thus, the expression (A3) reads

T̂0 =
( − h̄2

2M
∇2

R − h̄2

2μ
∇2

r α(−χ∂X − ∂x + iχ∂Y + i∂y)

α(χ∂X + ∂x + iχ∂Y + i∂y) − h̄2

2M
∇2

R − h̄2

2μ
∇2

r

)
, (A4)

with M = me + mh being the exciton mass and μ = memh/M being the reduced mass. For simplicity, let us account only for
the first matrix T̂0 acting on the first pair of states �++ and �−+. Direct multiplication yields

− h̄2

2M
∇2

R�++(R,r) + χα(−∂X + i∂Y )�−+(R,r) +
[
− h̄2

2μ
∇2

r + V (r)

]
�++(R,r) + α(−∂x + i∂y)�−+(R,r) = E�++(R,r),

− h̄2

2M
∇2

R�−+(R,r) + χα(∂X + i∂Y )�++(R,r) +
[
− h̄2

2μ
∇2

r + V (r)

]
�−+(R,r) + α(∂x + i∂y)�++(R,r) = E�−+(R,r).

Substituting the wave functions in the plane wave form �++(R,r) = eiKRφ++(r) and �−+(R,r) = eiKRφ−+(r), one can see that
the Rashba SOI affects the center-of-mass motion of the indirect exciton. Thereby, taking into account the spin-orbit interaction
for an electron leads to the appearance of SOI acting on the indirect exciton reduced by a factor χ = me/M , denoting the
electron-exciton mass ratio. The influence of SOI on relative electron-hole motion can be studied within perturbation theory, and
one can show that for the 1s state of an exciton, the first-order correction is zero. Therefore, in the first-order approximation, one
can neglect relative motion terms. This allows one to rewrite Eq. (A4) in the form used in the article given by Eq. (4).

In addition to the influence on the single exciton properties, the spin orbit interaction affects the interexciton Coulomb
interaction. While in the case of a direct exciton the treatment becomes trickier, for indirect excitons the main contribution comes
from dipole-dipole interaction. This allows one to neglect SOI effects for interaction terms of excitons.

APPENDIX B: INTERACTION MATRIX ELEMENTS FOR INDIRECT EXCITONS

The problem of calculating the indirect exciton interaction constant is reminiscent of the same problem for direct excitons.
However, one should consider the fact that in the former case, electron and hole layers are separated by a certain distance, and
the wave functions of the indirect exciton are modified. The indirect exciton interaction matrix elements were calculated
in Ref. 32. However, in the following calculations, we will follow the approach used in Ref. 41 for direct excitons to
write integrals in a similar form. As was stated before, spin-dependent exciton interactions are based on four types of
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Feynman diagrams: direct interaction, exciton exchange, electron exchange, and hole exchange. These interactions can
be written in the general form

Vdir(Q,Q′,q) =
∫

d2red
2rhd

2re′d2rh′�∗
Q(re,rh)�∗

Q′(re′ ,rh′ )VI (re,rh,re′ ,rh′ )�Q+q(re,rh)�Q′−q(re′ ,rh′ ), (B1)

V exch
X (Q,Q′,q) =

∫
d2red

2rhd
2re′d2rh′�∗

Q(re,rh)�∗
Q′(re′ ,rh′ )VI (re,rh,re′ ,rh′ )�Q+q(re′ ,rh′ )�Q′−q(re,rh), (B2)

V exch
e (Q,Q′,q) = −

∫
d2red

2rhd
2re′d2rh′�∗

Q(re,rh)�∗
Q′(re′ ,rh′ )VI (re,rh,re′ ,rh′)�Q+q(re′ ,rh)�Q′−q(re,rh′ ), (B3)

V exch
h (Q,Q′,q) = −

∫
d2red

2rhd
2re′d2rh′�∗

Q(re,rh)�∗
Q′(re′ ,rh′ )VI (re,rh,re′ ,rh′)�Q+q(re,rh′ )�Q′−q(re′ ,rh), (B4)

where the Coulomb interaction between the electrons and holes of different excitons is

VI (re,rh,re′ ,rh′ ) = V (|re − re′ |) + V (|rh − rh′ |) − V (|re − rh′ |) − V (|re′ − rh|),
where the minus sign for the last two terms indicates an attractive interaction between an electron and a hole.

The Coulomb interaction for indirect excitons can be written as

VI (re,rh,re′ ,rh′ ) = e2

4πεε0

[
1

|re − re′ | + 1

|rh − rh′ | − 1√
(re − rh′)2 + L2

− 1√
(rh − re′ )2 + L2

]
,

where L is a separation distance between centers of coupled QWs, and we used a narrow QW approximation. In the main text
of the article, we omit superscript indices “exch” for the sake of brevity.

There are several possible ways to construct the wave function of an indirect exciton. As in the usual case of direct excitons,
we consider the 2D motion of a bounded electron-hole pair but with fixed separation in the z direction equal to L. In this case, it
is convenient to separate the exciton center of mass motion and the relative motion. The general form of the wave function is

f (r‖,R‖) = eiK‖R‖
√

A
φ(r‖),

where new coordinates are r‖ = re
‖ − rh

‖ describing relative motion and R‖ = βere
‖ + βhrh

‖ for exciton center-of-mass motion.
Here βe = me/(me + mh), βh = mh/(me + mh), and A denotes the area of the sample. While the center of mass motion is
described by the plane wave function, the relative motion part of the wave function φ(r‖) can be represented in several different
forms,33

φ1(r‖) =
√

2

π

1

aB

exp

(
−|r‖|

aB

)
, (B5)

φ2(r‖) = 1√
2πb(b + r0)

exp

(
−

√
r2
‖ + r2

0 − r0

2b

)
, (B6)

where aB and 2b are quantities associated with indirect exciton Bohr radii obtained by the variational procedure, and r0 is a
variational parameter reminiscent of the separation distance between QWs.

1. Direct and exciton exchange interaction of indirect excitons

To calculate the direct dipole-dipole interaction of two indirect excitons, we choose the second representation of the wave
function with φ(r‖) = φ2(r‖). In the following derivation, we will omit the sign ‖ meaning 2D motion everywhere. Thus, the
integral can be written as

Vdir(Q,Q′,q) = e2

4πεε0A2

exp(2r0/b)

[2πb(b + r0)]2

∫
d2red

2rhd
2re′d2rh′ exp

(
−

√
(re − rh)2 + r2

0

b

)
exp

(
−

√
(re′ − rh′)2 + r2

0

b

)

× exp[−iQ(βere + βhrh)] exp[−iQ′(βere′ + βhrh′)]

[
1

|re − re′ | + 1

|rh − rh′ | − 1√
(re − rh′)2 + L2

− 1√
(rh − re′ )2 + L2

]
exp[i(Q + q)(βere + βhrh)] exp[i(Q′ − q)(βere′ + βhrh′)]. (B7)
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This integral can be simplified if one introduces center-of-motion coordinates for both indirect excitons: R = βere + βhrh,
R′ = βere′ + βhrh′ , ρ = re − rh, and ρ ′ = re′ − rh′ . Then Eq. (B7) yields

Vdir(q) = e2

4πεε0A2

exp(2r0/b)

[2πb(b + r0)]2

∫
d2ρ d2ρ ′d2R d2R′ exp

(
−

√
ρ2 + r2

0

b

)
exp

(
−

√
ρ ′2 + r2

0

b

)
exp[iq(R − R′)]

×
[

1

|βh(ρ − ρ ′) + R − R′| + 1

| − βe(ρ − ρ ′) + R − R′| − 1√
(βhρ + βeρ ′ + R − R′)2 + L2

− 1√
(−βeρ − βhρ ′ + R − R′)2 + L2

]
, (B8)

where one can note that complex exponents with Q and Q′ cancel each other. It is convenient to use the next substitutions
ξ = R − R′, σ = (R + R′)/2. The integral (B8) rewritten with new variables reads

Vdir(q) = e2

4πεε0A

exp(2r0/b)

[2πb(b + r0)]2

∫
d2ρ d2ρ ′d2ξ exp

(
−

√
ρ2 + r2

0

b

)
exp

(
−

√
ρ ′2 + r2

0

b

)
exp[iqξ ]

×
[

1

|βh(ρ − ρ ′) + ξ | + 1

| − βe(ρ − ρ ′) + ξ | − 1√
(βhρ + βeρ ′ + ξ )2 + L2

− 1√
(−βeρ − βhρ ′ + ξ )2 + L2

]
, (B9)

where the two-dimensional integral over variable σ gives the area A. The expression (B9) represents a sum of four integrals for
electron-electron, hole-hole, and electron-hole mixed interaction,

Vdir = [Iee′ + Ihh′ − Ieh′ − Ihe′]. (B10)

Let us calculate all integrals separately. The first integral Iee′ yields

Iee′ (q) = C

∫
d2ρ d2ρ ′d2ξ exp

(
−

√
ρ2 + r2

0

b

)
exp

(
−

√
ρ ′2 + r2

0

b

)
exp[iqξ ]

⎡⎣ 1√
β2

h(ρ − ρ ′)2 + ξ 2

⎤⎦

= C

∫
d2ρ d2ρ ′ exp

(
−

√
ρ2 + r2

0

b

)
exp

(
−

√
ρ ′2 + r2

0

b

) ∫ +∞

0

ξdξ√
a2 + ξ 2

∫ 2π

0
dφ exp(iqξ cos φ)

= 2πC

∫
d2ρ d2ρ ′ exp

(
−

√
ρ2 + r2

0

b

)
exp

(
−

√
ρ ′2 + r2

0

b

)∫ +∞

0
dξ

ξJ0(qξ )√
a2 + ξ 2

= 2π

q
C

∫
d2ρ d2ρ ′ exp

(
−

√
ρ2 + r2

0

b

)
exp

(
−

√
ρ ′2 + r2

0

b

)
exp[−βhqρ] exp[βhqρ ′], (B11)

where we defined the constant C = e2

4πεε0A

exp(2r0/b)
[2πb(b+r0)]2 and made the substitution a2 = β2

h(ρ − ρ ′)2. The integrals on ρ and ρ ′ are

identical and can be factorized into Iee′ (q) = CI2
ρ(q), where

Iρ(q) =
∫

dρρ exp

(
−

√
ρ2 + r2

0

b

) ∫ 2π

0
e−βhqρ cos φdφ = 2π

∫
dρρ exp

(
−

√
ρ2 + r2

0

b

)
J0(βhqρ). (B12)

It is not possible to calculate integral (B12) analytically in the general case, but we are interested in the q = 0 limit. Then we can
change the variable to x2 = ρ2 + r2

0 and integrate by parts,

Iρ(q → 0) = 2π

∫ +∞

0
dρ ρ exp

(
−

√
ρ2 + r2

0

b

)
= 2π

∫ +∞

r0

dx xe−x/b = 2πe−r0/bb(b + r0).

Finally, the integral Iee′ reads

Iq→0
ee′ = e2

4πεε0A

exp(2r0/b)

[2πb(b + r0)]2

2π

q
[2πe−r0/bb(b + r0)]2 = e2

2πεε0Aq
.
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One can see that the expression for the integral Ihh′ coincides with Iee′ with the substitution βh → βe. Therefore, in
the q → 0 limit they are equal to Ihh′ = e2/2πεε0Aq.

Now let us calculate the second type of integrals responsible for the electron-hole attractive interaction,

Ieh′(q) = C

∫
d2ρd2ρ ′d2ξ exp

(
−

√
ρ2 + r2

0

b

)
exp

(
−

√
ρ ′2 + r2

0

b

)
exp[iqξ ]

[
1√

(βhρ + βeρ ′ + ξ )2 + L2

]
,

and performing the substitution χ = βhρ + βeρ
′ + ξ , we can write

Ieh′(q) = C

∫
d2ρ d2ρ ′d2χ exp

(
−

√
ρ2 + r2

0

b

)
exp

(
−

√
ρ ′2 + r2

0

b

)
exp[−iqχ ] exp[−iβhqρ] exp[−iβeqρ ′]

[
1√

χ2 + L2

]

= C

∫
d2ρd2ρ ′ exp

(
−

√
ρ2+r2

0

b

)
exp

(
−

√
ρ ′2+r2

0

b

)
exp[−iβhqρ] exp[−iβeqρ ′]

∫ +∞

0
dχ

χ√
χ2+L2

∫ 2π

0
dφeiqχ cos φ

= C
2πe−qL

q

∫
d2ρ d2ρ ′ exp

(
−

√
ρ2 + r2

0

b

)
exp

(
−

√
ρ ′2 + r2

0

b

)
exp[−iβhqρ] exp[−iβeqρ ′]. (B13)

The same factorization can be done as in the integral (B11), and expression (B13) yields

Ieh′(q → 0) = e2

2πεε0A

e−qL

q
. (B14)

One can check that the same expression is valid for Ihe′(q → 0). Finally, the sum of four integrals yields

V
q→0

dir = lim
q→0

e2

εε0A

(1 − e−qL)

q
= e2

εε0A
L. (B15)

A similar result was obtained using another approach by the authors of Ref. 32.
The exciton exchange interaction V exch

X can be written in the same way as direct interaction from the general form (B2),

V exch
X (Q,Q′,q) = e2

4πεε0A2

exp(2r0/b)

[2πb(b + r0)]2

∫
d2red

2rhd
2re′d2rh′ exp

(
−

√
(re − rh)2 + r2

0

b

)
exp

(
−

√
(re′ − rh′)2 + r2

0

b

)

× exp[−iQ(βere + βhrh)] exp[−iQ′(βere′ + βhrh′)]

[
1

|re − re′ | + 1

|rh − rh′ | − 1√
(re − rh′)2 + L2

− 1√
(rh − re′ )2 + L2

]
exp[i(Q + q)(βere′ + βhrh′)] exp[i(Q′ − q)(βere + βhrh)]

= e2

4πεε0A2

exp(2r0/b)

[2πb(b+r0)]2

∫
d2ρd2ρ ′d2Rd2R′ exp

(
−

√
ρ2+r2

0

b

)
exp

(
−

√
ρ ′2+r2

0

b

)
exp[−i�Q(R − R′)]

× exp[−iq(R − R′)]
[

1

|βh(ρ − ρ ′) + R − R′| + 1

| − βe(ρ − ρ ′) + R − R′|
− 1√

(βhρ + βeρ ′ + R − R′)2 + L2
− 1√

(−βeρ − βhρ ′ + R − R′)2 + L2

]
,

where we defined exchanged momentum between electrons as �Q = Q − Q′. One can see that for small exchanged momentum
between the excitons, which is true for weakly interacting exciton gas, the expression for V exch

X coincides with Vdir for q → 0.
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2. Electron and hole exchange interaction of indirect excitons

The general form of electron exchange interaction for indirect excitons is given by Eq. (B3). For the calculations, it is more
convenient to choose the indirect exciton wave function in the form (B5). Thus the exchange interaction matrix element yields

V exch
e (Q,Q′,q) = − e2

4πεε0A2

4

π2a4
B

∫
d2red

2rhd
2re′d2rh′ exp

(
−

√
(re − rh)2 + L2

aB

)
exp

(
−

√
(re′ − rh′)2 + L2

aB

)
× exp

(
−

√
(re′−rh)2 + L2

aB

)
exp

(
−

√
(re−rh′)2+L2

aB

)
exp[−iQ(βere+βhrh)] exp[−iQ′(βere′ + βhrh′)]

× exp[i(Q + q)(βere + βhrh)] exp[i(Q′ − q)(βere′ + βhrh′ )]

×
[

1

|re − re′ | + 1

|rh − rh′ | − 1√
(re − rh′)2 + L2

− 1√
(rh − re′ )2 + L2

]
.

The exact calculation of the exchange integral is straightforward but tedious. Using the same steps as for direct interaction
calculation and performing in the end substitutions y1 = (ξ − βeρ − βhρ

′)/aB , y2 = (ξ + βhρ + βeρ
′)/aB , x = ρ/aB , and

L̃ = L/aB , one gets the final expression of electron exchange interaction,

V exch
e = − e2

4πεε0A

(
2

π

)2

aBIexch
e (�Q,q,�,βe), (B16)

where the exchange integral is given by

Iexch
e (�Q,q,�,βe) =

∫ ∞

0
dx

∫ 2π

0
d�x

∫ ∞

0
dy1

∫ 2π

0
d�1

∫ ∞

0
dy2

∫ 2π

0
d�2xy1y2 cos[�QaB[βex cos(� − �x)

+βey1 cos(� − �1)] + qaB [−x cos �x − βey1 cos �1 + (1 − βey2 cos �2)]]

× exp(−
√

x2 + L̃2) exp
(−√

y2
1 + L̃2

)
exp

(−√
y2

2 + L̃2
)

× exp[−
√

(y2 cos �2 − y1 cos �1 − x cos �x)2 + (y2 sin �2 − y1 sin �1 − x sin �x)2 + L̃2
]

×
[

1√
y2

1 + x2 + 2y1x cos(�1 − �x)

1√
y2

2 + x2 + 2y2x cos(�2 − �x)
− 1√

y2
1 + L̃2

− 1√
y2

2 + L̃2

]
,

(B17)

with � being the angle between �Q and q. We are interested in the case when �Q = 0 and q = 0. The calculation of the
exchange integral thus requires numerical integration with a multidimensional Monte Carlo algorithm. Moreover, it is obvious
that, similar to the case of direct excitons, electron and hole exchange interactions have the same value for q → 0.
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Grundy, R. Butté, G. Christmann, D. D. Solnyshkov, G. Malpuech,
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