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Geometrical impact on the optical polarization of droplet epitaxial quantum dots
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We report on experimental and theoretical investigations of the optical anisotropy of GaAs/AlGaAs quantum
dots grown by droplet epitaxy. With in situ annealing in the growth, the shape of quantum dots is systematically
controlled from a tall and laterally symmetric shape to a flat and laterally elongated one. Photoluminescence
spectroscopy demonstrates an uncommon observation: the more elongated the quantum dots, the lower the degree
of linear polarization. Theoretical analysis based on a four-band k · p theory reveals a substantial impact of vertical
confinement on the valence heavy-hole and light-hole mixing, which leads to the enhancement of polarization
anisotropy for taller quantum dots. The influence of Coulomb interactions on polarization anisotropy is studied
by using the partial configuration interaction method, and is shown to reduce the polarization anisotropy through
the mixing of single-particle configurations with different symmetries.
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I. INTRODUCTION

The polarization state of photons serves as an elementary
unit in the quantum communication protocol.1–3 The photon
polarization and the spin state of carriers is in one-to-one
correspondence. This fact governs various proposals for
manipulating and reading out a single spin confined in a
semiconductor quantum dot (QD).4 Although ideal QDs are
expected to show isotropic optical response, any source
of symmetry reduction in real QD systems leads to the
presence of optical anisotropy, which appears in the anisotropic
fine-structure split of neutral excitons,5–7 as well as linearly
polarized (or elliptically polarized) photon emission reflecting
the valence-band mixing.8–12 Such an optical anisotropy is
regarded as a core issue for practical applications such
as entangled photon generation, exploiting biexciton-exciton
recombination cascades,13–15 and spin initialization schemes
with extremely high fidelity.16,17

So far, most studies on polarization anisotropies of QDs
have been devoted to strained QD systems prepared by the
Stranski-Krastanov approach.8–12,18–20 However, symmetry re-
duction in these QDs results from a complex interplay between
shape asymmetry, nonuniform strain, and composition distri-
butions. Such complexity makes it difficult to find out the true
dominant origin of the symmetry breaking in strained QDs.

Theoretically, Sheng and Xu have investigated the effects of
shape asymmetry on the linear polarization of InGaAs/GaAs
QDs using a tight-binding method.18 Their study quantitatively
predicts the dependencies of the degree of polarization (DOP)
on the lateral and vertical aspect ratios of dots, and confirmed
composition randomness as a minor effect. The dependencies
of DOP on dot shape, however, cannot reflect the pure
geometric effect because the strain distribution depends on
the shape as well. Very recently, Singh and Bester revealed the
spontaneous composition ordering in ternary compounds, such
as InGaAs/GaAs self-assembled QDs, as a significant source
of DOP besides the shape and strain effects, using empirical
pseudopotential computations.20 Their finding indicates the
existence of more uncertainties in the determination of

the main physical origins of DOPs in InGaAs/GaAs self-
assembled QDs.

The motivation for using GaAs/AlGaAs heterosystems lies
in the removal of strain, which enables us to focus on the effects
of geometry on optical properties.21,22 The self-assembly of
lattice-matched GaAs/AlGaAs QDs was realized using droplet
epitaxy.23,24 Note that GaAs QDs have been also grown
using other techniques.25,26 Negligible atomic diffusion at the
GaAs-AlGaAs interface assures the absence of composition
randomness,27 which has been demonstrated by the cross-
sectional tunneling electron microscope analysis.28 The fine-
structure splitting in strain-free GaAs/AlGaAs QDs has been
observed previously.29–31 Significant linear polarizability has
been confirmed in the single QD photoluminescence (PL)
signals of trions and neutral excitons.32 They exhibit, however,
a broad distribution of the degree of polarization, which thus
depends on the microscopic structure of QD that varies from
dot to dot. To fully clarify the geometrical effects on optical
anisotropy, a more careful experimental setup as well as
quantitative theoretical analysis are needed.

This study presents experimental and theoretical in-
vestigations of the polarization anisotropy of strain-free
GaAs/AlGaAs QDs grown by droplet epitaxy. We focus on
a series of QDs with systematically varying lateral elongation
and height, achieved by in situ annealing in the growth.33 The
anisotropic flow of adsorbed atoms on the (001) surface allows
the QD shape to be transformed from a laterally symmetric
shape to a laterally elongated one, fabricating unstrained GaAs
QDs with controlled shapes over wide ranges of lateral and
vertical aspect ratios. Polarized PL spectroscopy reveals that
the lateral elongation is not the sole dominant cause of optical
anisotropy, as commonly thought.18 The simplicity of the
unstrained GaAs QDs makes an analysis of DOP possible
and meaningful, which can be formulated in transparent
forms with only a small number of variables and useful for
gaining deep physical insight. Theoretical simulations based
on the four-band k · p theory confirms the essential role of
vertical confinement in the observed optical anisotropies.
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Using the configuration interaction (CI) method, the effects
of Coulombic interactions are studied and shown to diminish
the optical anisotropies through the mixing of single-particle
configurations with different symmetries.

II. EXPERIMENT

A. Sample preparation and characterization

GaAs QDs studied in this work were grown on the
GaAs(001) substrate by droplet epitaxy. The details of this
growth are described in our previous work33 and only briefly
summarized herein. Initial deposition of 1.5 monolayers of
gallium led to the formation of Ga droplets. Next, an As4

flux was supplied to crystallize Ga droplets into GaAs QDs.
These QDs were then annealed at different temperatures for
10 min under a weak As4 flux. Finally, they were capped
with Al0.35Ga0.65As followed by postgrowth rapid annealing
at 800 ◦C. This sequence is characterized by in situ annealing
before capping, in which QDs are laterally expanded as their
height is reduced. Furthermore, the surface anisotropy of the
(001) plane causes the QDs to be elongated in the [11̄0]
direction. The magnitude of lateral elongation depends on the
annealing temperature. In this work, we study four samples
annealed at 400 ◦C (QD-A), 450 ◦C (QD-B), 475 ◦C (QD-C),
and 500 ◦C (QD-D).

The atomic force microscope images of QD-A and QD-B
are shown in Figs. 1(a) and 1(b), respectively. They reveal
the geometrical variation with annealing temperature. With
annealing at 400 ◦C, the QDs are almost circular in the lateral
shape. Annealing at 500 ◦C, however, considerably lengthens
the QDs in the [11̄0] direction.

The cross-sectional profiles parallel to the [11̄0] and [110]
axes are also plotted by Figs. 1(c) and 1(d), respectively. A

FIG. 1. (Color online) Atomic force microscope images of GaAs
QDs annealed at (a) 400 ◦C and (b) 500 ◦C before capping. Their
vertical cross sections are plotted by solid red lines in (c) and (d),
together with Gaussian fits in dotted blue lines.

TABLE I. Geometrical parameters for GaAs QDs annealed at
different temperatures. Base length along [11̄0] ([110]) is given by
2σx (2σy), which is determined with the Gaussian fit.

Temperature Base [11̄0] Base [110] Height
( ◦C) (nm) (nm) (nm)

QD-A 400 68.3 ± 4.8 52.7 ± 6.1 11.1 ± 2.1
QD-B 450 89.1 ± 6.3 57.7 ± 4.5 7.5 ± 1.1
QD-C 475 118 ± 13 55.4 ± 4.7 4.6 ± 1.7
QD-D 500 220 ± 39 64.5 ± 7.9 1.5 ± 0.6

two-dimensional Gaussian function,

z = H exp{−(x/σx)2 − (y/σy)2}, (1)

is adopted as a model to describe quantitatively the dot geome-
tries, where x ‖ [11̄0] and y ‖ [110]. As shown in Figs. 1(c)
and 1(d), the Gaussian model reproduces the observed profile
fairly well. Table I lists the geometrical parameters determined
by this fit. As the annealing temperature increases from 400 ◦C
to 500 ◦C, the base length along [11̄0] increases by a factor
of 3, while that along [110] remains almost unchanged. In
parallel, the height decreases by a factor of 8.

To characterize the geometrical anisotropy, we define the
lateral aspect ratio η

geom
‖ and the vertical aspect ratio η

geom
⊥ by

η
geom
‖ = σx/σy, η

geom
⊥ = H/σy (2)

for the QDs of the Gaussian-like shape. Their dependence on
the annealing temperature is plotted in Fig. 3(b).

B. Optical measurement

Low-temperature photoluminescence (PL) signals were
observed for the ensemble of GaAs QDs after continuous-wave
excitation at a wavelength of 532 nm. Photoinjection within
this condition was made into the G0.35Al0.65As barrier contin-
uum. Excitation density was kept as low as ∼0.1 W cm−2,
allowing us to measure PL from the ground-state
recombination.34 Excitation polarization was set to linear
to avoid the nuclear effects.35 In addition, the polarization
axis was tilted by ∼45◦ from both of the [110] and [11̄0]
crystallographic axis, so as to prevent preferential pumping
into the fine-structure split levels.29 We also confirmed that
the PL property was independent of the direction of excitation
polarization. The anisotropic transition strengths were there-
fore assumed to determine the emission polarization.

PL signals emitted normal to the sample surface were
fed into a polychromator of 20 cm focal length, followed
by a charge-coupled device detector, providing a spectral
resolution of 4 meV. A calcite Glan prism and a zeroth-order
half-wave plate were adopted as the polarization analyzer. PL
spectra were recorded as a function of the rotation angle of the
half-wave plate. Then, the degree of linear polarization was
calculated by sinusoidal fitting to the intensity modulation
with a precision better than 2%. All experiments were
performed at 8 K.

Figure 2 shows the PL spectra of GaAs QDs studied in
this work. The QD sample annealed at 400 ◦C (QD-A) shows
an inhomogeneously broadened PL peak with a center energy
of 1.54 eV. The sample annealed at 450 ◦C (QD-B) exhibits
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FIG. 2. (Color online) Photoluminescence spectra of GaAs QDs
annealed at 400 ◦C (QD-A), 450 ◦C (QD-B), 475 ◦C (QD-C), and
500 ◦C (QD-D), from top to bottom. A peak at 1.49 eV present
in all samples is due to the band-edge luminescence of the GaAs
substrate. A peak at 1.93 eV present in QD-B and QD-C is from
the wetting layer of 1.5 monolayers on average. The latter peak
transforms into multiplets in QD-D, suggesting the formation of
the monolayer terraced structure. PL signals are integrated over the
shaded area for the polarization analysis shown in Fig. 3.

a broadened peak, with a center energy of 1.72 eV, which is
higher than that of QD-A. The blue shift in the PL spectrum
reflects the height reduction of QDs by thermal treatment.
The sample annealed at 475 ◦C (QD-C) yields a PL peak at
1.78 eV. The narrower spectrum in QD-C than in QD-B is
ascribed to the narrowing of height distribution. Finally, the
sample annealed at 500 ◦C (QD-D) exhibits a further blue shift,
and the QD PL band becomes in contact with multiple peaks,
which originate from wetting layers with different monolayer
thicknesses.

The inset of Fig. 3(a) shows the dependence of PL intensity
on the rotating angle of a half-wave plate, where PL signals
are integrated over the shading area of each spectrum in Fig. 2.
Sinusoidal dependence with a period of 90◦ demonstrates
partial linear polarization in the light field. Throughout this
study, we measure the DOP of QDs, which is defined
by

DOP = I[11̄0] − I[110]

I[11̄0] + I[110]
, (3)

where I[11̄0] (I[110]) is the polarized intensity component, whose
polarization axis is parallel to the [11̄0] ([110]) in-plane axis.
Note that a positive value of DOP appears when I[11̄0] > I[110].
PL in this case is polarized in the direction of lateral elongation
of QDs.

Figure 3(a) shows the measured polarization degree for
QDs annealed at different temperatures. Figure 3(b) shows
the variation of lateral aspect (elongation) ratio η

geom
‖ and

vertical aspect ratio η
geom
⊥ with annealing temperature. The

QDs annealed at 400 ◦C show a positive DOP of as high as
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FIG. 3. (Color online) (a) The degree of linear polarization in the
PL signals of GaAs QDs annealed at different temperatures. The sign
of DOP is defined as positive when I[11̄0] > I[110]. Two sets of data
are measured at different positions on the grown sample. The inset
shows the dependence of PL intensities on the angle of a half-wave
plate (HWP) used in the polarization analyzer. (b) The lateral aspect
ratio η

geom
‖ and the vertical aspect ratio η

geom
⊥ of GaAs QDs studied in

the experiment as a function of annealing temperature.

11 (±2)%, though lateral elongation is fairly small (ηgeom
‖ �

1.2). For QDs annealed at 450 ◦C, DOP drops to 8 (±0.05)%,
while the lateral elongation is significant (ηgeom

‖ = 1.5). Until
the temperature increases to 475 ◦C (ηgeom

‖ � 2.1), DOP
remains roughly constant. Further increase in the temperature
to 500 ◦C results in a decrease in DOP to 6 (±0.05)% and
elongation of as high as η

geom
‖ = 3.4. Note that DOP is

lower for higher lateral elongation. This trend contradicts the
ordinary effect of anisotropy-induced polarization, which has
been confirmed in a wide range of quantum confined systems,
such as quantum wires. Our observation indicates that lateral
anisotropy does not dominate transverse optical polarization
in unstrained QDs. Rather, vertical confinement greatly affects
DOP, as will be clarified by the theoretical analysis made
below.

III. THEORETICAL FRAMEWORK

To account for the experimental findings, the optical
polarizations of excitons in three-dimensional (3D) confining
QDs are theoretically studied using the partial CI method. The
Hamiltonian for an interacting electron-hole pair (an exciton)
in a QD is written in second quantization as

HX =
∑
ie ;σ

Ee
ie
c+
ieσ

cieσ +
∑
ih;χ

Eh
ih
h+

ihχ
hihχ

−
∑

ie,jh,kh,le

V eh
ie,jh,kh,le

c+
ieσ

h+
jhχ

hkhχcleσ , (4)
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where Ee
ie

(Eh
ih

) is the kinetic energy of an electron (hole)
on the orbital that is labeled by ie (ih), and h+

ih
and hih (c+

ie
and cie ) are the particle creation and annihilation operators,
respectively, σ (χ ) denotes the spin of the conduction electron
(angular momentum of the valence hole), and V eh

ie,jh,kh,le
is the

matrix element of the electron-hole e-h Coulomb interactions
that are defined by

V eh
ie,jh,kh,le

=
∫∫

dredrhψ
e∗
ie

(re)ψh∗
jh

(rh)

× e2

4πε0εb|re − rh|ψ
h
kh

(rh)ψe
le

(re) , (5)

where ψe (ψh) is the wave function of a single electron (hole)
in the dot.

In the presence of Coulomb interactions, an interacting
exciton state can be written as a linear combination of coupled
electron-hole pair configurations,

|�X〉 =
∑

ihχ ;ieσ

Cihχ ;ieσ h+
ihχ

c+
ieσ

|0〉. (6)

The energy spectrum of an exciton in a QD is obtained by
solving the Schrödinger equation

HX�X
n = EX

n �X
n (7)

using the partial configuration interaction method, as described
in more detail later in Sec. IV B.36–38

As the first step in the CI calculation, the single-particle
spectra in a QD are calculated using the single-band effective
mass model for a conduction electron, and the four-band
Luttinger-Kohn k · p theory for a valence hole.39 The separate
treatment of a conduction electron and a valence hole is
physically acceptable for a wide-energy-gap material like
GaAs studied here.

The electron wave function within the single-band model is
written as ψe

ie,σ
(r) = ge

ie
(r)ue

sz
(r), where ge

ie
(r) is the envelope

function, ue
sz

(r) is the microscopic Bloch function of the
conduction band, and sz = + 1

2 (− 1
2 ) is the z component

of the electron spin σ =↑ (↓). In the effective mass ap-
proximation, the envelope function satisfies the Schrödinger

equation [
p2

e

2m∗
e

+ V e
QD(re)

]
ge

ie
(re) = Ee

ie
ge

ie
(re) , (8)

where V e
QD is the confining potential and m∗

e is the effective
mass of an electron (m∗

e = 0.067 m0 for GaAs).40

For the general application of the theory, we adopt the 3D
parabolic model to describe the anisotropic confining potential
of an elongated dot,

V e
QD(re) =

∑
α=x,y,z

1

2
m∗

eω
2
e,αα2, (9)

where ωe,α are the characteristic frequencies to specify the
degree of confinement along the α direction (α = x, y, and
z),41–44 and le,α ≡ (h̄/m∗

eωe,α)1/2 denotes the characteristic
extent of the wave function. In this model, the single-electron
energy spectrum is explicitly given by

Ee
ne,xne,yne,z

= h̄2

me

[
ne,x + 1/2

(le,x)2
+ ne,y + 1/2

(le,y)2
+ ne,z + 1/2

(le,z)2

]
,

(10)

where each electron orbital is labeled by the quantum num-
bers of a 3D harmonic oscillator, ie = (ne,x,ne,y,ne,z) with
ne,α = 0, 1, 2, . . . . By convention, the Fock-Darwin orbitals of
(nx,ny,nz) = (0,0,0),(1,0,0),(0,1,0),(2,0,0), . . . are denoted
by S, Px, Py,Dx, . . . , respectively. Note that the wave func-
tion of the lowest energy orbital has a Gaussian form,

ge
000(r) =

√
1

π3/2le,x le,y le,z
exp

[
− 1

2

{(
x

le,x

)2

+
(

y

le,y

)2

+
(

z

le,z

)2}]
. (11)

Unlike a conduction electron, a single hole that is confined
in a QD inherently mixes the heavy-hole (HH) and light-hole
(LH) components with the z component of spin, jz = ± 3

2 and
jz = ± 1

2 , respectively. Within the Kohn-Luttinger four-band
k · p model, the wave function of a hole is given by ψh

ih
(rh) =∑

jz=±3/2,±1/2 gh
ih,jz

(rh)uh
jz

(rh) and satisfies41,45,46

⎛
⎜⎜⎜⎝

P + Q + V h
QD −S R 0

−S+ P − Q + V h
QD 0 R

R+ 0 P − Q + V h
QD S

0 R+ S+ P + Q + V h
QD

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

gh

ih,+ 3
2

gh

ih,+ 1
2

gh

ih,− 1
2

gh

ih,− 3
2

⎞
⎟⎟⎟⎟⎠ = Eh

ih

⎛
⎜⎜⎜⎜⎝

gh

ih,+ 3
2

gh

ih,+ 1
2

gh

ih,− 1
2

gh

ih,− 3
2

⎞
⎟⎟⎟⎟⎠ , (12)

where

P = h̄2γ1

2m0

(
k̂2
x + k̂2

y + k̂2
z

)
, Q = h̄2γ2

2m0

(
k̂2
x + k̂2

y − 2k̂2
z

)
,

R = h̄2

2m0

[−√
3γ3

(
k̂2
x − k̂2

y

) + i2
√

3γ2k̂x k̂y

]
,

S = h̄2γ3

2m0

√
3(k̂x − ik̂y)k̂z,

and

k̂α = −i
∂

∂α
(α = x,y,z).

Here, the Cartesian coordinate system with x̂ ‖ [11̄0], ŷ ‖
[110], and ẑ ‖ [001] is adopted such that the elongation of
QDs is along the x axis. For GaAs, the k · p parameters,
γ1 = 6.85, γ2 = 2.1, and γ3 = 2.9, are used.40,47 Although
the single-particle states of conduction electron and valence
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hole are obtained from the different effective Hamiltonians,
Eqs. (8) and (12), they are surely orthogonal to each other
because the atomistic basis of their effective Hamiltonians are
orthogonal, i.e., 〈ue

sz
|uh

jz
〉 = 0. For simplicity we assume the

same confining potentials for HH and LH, which are expressed
as

V h
QD(rh) =

∑
α=x,y,z

1

2
m∗

HH,αω2
HH,αα2

=
∑

α=x,y,z

1

2
m∗

LH,αω2
LH,αα2, (13)

where the anisotropic effective masses are written as

m∗
HH,x(y) = 1

γ1 + γ2
m0, m∗

HH,z = 1

γ1 − 2γ2
m0, (14)

m∗
LH,x(y) = 1

γ1 − γ2
m0, m∗

LH,z = 1

γ1 + 2γ2
m0. (15)

Again, the extent of the HH (LH) wave function
is specified as the characteristic length lHH (LH),α =
(h̄/m∗

HH (LH)ωHH (LH),α)1/2. Throughout this work, we assume
that le,α = lHH,α ≡ lα , yielding constant ratios between lLH,α

and lHH,α , i.e.,

r‖ ≡ lLH, x(y)

lHH, x(y)
=

(
m∗

HH,x(y)

m∗
LH,x(y)

)1/4

=
(

γ1 − γ2

γ1 + γ2

)1/4

,

(16)

r⊥ ≡ lLH, z

lHH, z

=
(

m∗
HH,z

m∗
LH,z

)1/4

=
(

γ1 + 2γ2

γ1 − 2γ2

)1/4

.

To parametrize the asymmetry of wave functions confined
in an elongated QD, the lateral aspect ratio η‖ and the vertical
aspect ratio η⊥ are defined as

η‖ ≡ lx/ ly, η⊥ ≡ lz/ ly. (17)

Note that the above aspect ratios of wave functions reflect but
are not the same as the geometrical aspect ratios, η

geom
‖ and

η
geom
⊥ , which are experimentally defined by Eq. (2).48

As will be shown later, the 3D parabolic model allows
us, after straightforward algebra, to derive general formalisms
in terms of a small number of geometric parameters for
describing the polarization properties. The model has been
successfully applied to interpret the optical spectra of self-
assembled QDs.49 The analysis carried out in this work is
further supported by fully numerical calculations whenever it
is possible.

The scope of the model application is discussed as follows.
Since this model assumes infinite potential, it is well suitable
for describing low-lying excitons but not high-energy ones
with the transition energies close to the band gap of the host
material. In this study, the sample QD-D is possibly beyond
the scope of application because the emission energy was
∼51.85 eV, close to that of the host material ∼1.9 eV, as
shown in Fig. 2. Another concern of the use of the model is
that the geometric parameters lx,y,z are not always proportional
to the real dot size with a fixed proportionality constant.48

Nevertheless, the defined aspect ratios of η‖ and η⊥ should

reflect the real lateral and vertical aspect ratios of dot shape
as long as the exciton wave functions are well confined in
the QD. For the purpose of grasping the main physics in the
measured data of the dot ensembles where individual dots are
statistically varied, the model analysis is sufficiently valid for
providing qualitatively useful interpretations.

Even within the parabolic model, the energy spectrum of
a hole can be calculated only numerically. In this study, the
Schrödinger equation of Eq. (12) for a hole in a QD is solved
numerically using the 3D finite difference method.42 From now
on, we adopt the quantum numbers of the main HH component,
ih = (nh,x,nh,y,nh,z)′, to label an HH-LH–mixed orbital and
attach a prime superscript to indicate the nature of the HH-LH
mixture.

The polarized emission spectrum from an exciton state
|�X

n 〉 of a QD is calculated using Fermi’s golden rule,50

In(e; ω) ∝ ∣∣〈0|P −
e

∣∣�X
n

〉∣∣2
δ
(
EX

n − h̄ω
)
, (18)

where P −
e = ∑

ih,ie
Dih,ie (e)hihcie is the polarization operator,

which is given in terms of the dipole matrix elements for
various interband optical transitions,

Dih,ie (e) ≡ 〈
ψh

ih

∣∣e · p
∣∣ψe

ie

〉 =
∑
jz

〈
gh

jh;jz

∣∣ge
ie ;sz

〉 〈
uh

jz

∣∣e · p
∣∣ue

sz

〉
,

(19)

where e = (cos φ sin θ, sin φ sin θ, cos θ ) is the unit vec-
tor along the direction of polarization of light, and p =
(−i∂/∂x, − i∂/∂y, − i∂/∂z). Here, the spin of the initial
conduction electron state is considered to be fixed to sz = 1

2
or sz = − 1

2 . The explicit expressions for the dipole matrix
element 〈uh

jz
|e · p|ue

sz
〉 as functions of θ and φ can be found in

Refs. 41 and 10.
Without HH-LH coupling (as the off-diagonal elements

S and R are artificially disabled), a bright exciton with
Mz = sz + jz = −1 (Mz = +1) is composed of an electron
with sz = + 1

2 (sz = − 1
2 ) and a pure heavy hole with well-

defined spin jz = − 3
2 (jz = + 3

2 ), and generates a circularly
σ− (σ+) polarized photon via spontaneous e-h recombination.
However, the emission polarization usually deviates from
circular and becomes somewhat elliptical or even linear (with
DOP �= 0) owing to the HH-LH mixings that arise from the
reduced symmetry of the dot structure. Following the definition
of DOP in Eq. (3), here the DOP for an exciton in the nth state
of a QD can be rewritten as

DOP = In(x̂) − In(ŷ)

In(x̂) + In(ŷ)
, (20)

where In(ê) ≡ In(ê; ω = EX
n /h̄) represents the intensity of the

ê-polarized photon emitted from the nth exciton state of a QD.

IV. NUMERICAL RESULTS AND ANALYSIS

A. Optical polarization of a noninteracting e-h pair

First, we discuss the recombination of a noninteracting e-h
pair while ignoring Coulomb interactions. In this case, the
bright exciton in the ground state is simply written as the
product of the single-particle electron and hole wave functions,
i.e., |�X

↑⇓〉 ≈ h+
(000)′⇓′c

+
(000)↑|0〉 or |�X

↓⇑〉 ≈ h+
(000)′⇑′c

+
(000)↓|0〉.
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FIG. 4. (Color online) The numerically calculated degrees of polarization (DOPs) as a function of (a) the lateral aspect ratio η‖ ≡ lx/ ly and
(b) the vertical aspect ratio η⊥ ≡ lz/ ly of elongated quantum dots with fixed ly = 8 nm in the asymmetric parabolic model. In the upper panel
(a), the dotted black (dashed magenta) lines are the data obtained from the formula Eq. (A7) for tall QDs with η⊥ = 0.44 (for flat QDs with
η⊥ = 0.19). In the lower panel (b), the dotted black (dashed magenta) lines are the data obtained from the formula Eq. (A7) for more elongated
QDs with η⊥ = 3 (for less elongated QDs with η⊥ = 1.25).

Figure 4(a) plots the numerically calculated DOPs versus
the lateral aspect ratio η‖ = lx/ ly of the lowest exciton states
|�X

↑⇓〉 and |�X
↓⇑〉 with several magnitudes of η⊥. In this plot, we

fix the wave-function extension parameter along the y direction
to ly = 8 nm, which is determined by the comparison between
the analytic wave functions for the parabolic model [Eq. (11)]
and the numerically calculated electron wave functions for
the real dot shapes. Figure 4(a) shows that DOPs increase but
eventually saturate with increasing lateral aspect ratio η‖.

Figure 4(b) shows the calculated DOPs versus the vertical
aspect ratio η⊥ = lz/ ly with a fixed length of ly = 8 nm, and
with several magnitudes of lateral elongation η‖. By contrast
to the weak η‖ dependence shown in Fig. 4(a), a sensitive
dependence on η⊥ is observed in Fig. 4(b).

As revealed in the AppendixA, the DOP of emitted light
is determined by how much the mixture of LH components is
in the exciton state. By treating the weak HH-LH mixtures as
perturbations for the cases of lz � lx,ly , the yielded analytical
form shows that their DOPs are directly proportional to the
magnitude of ρHL/�HL [see Eq. (A6)], where ρHL is the
mean value of the off-diagonal element, and �HL the energy
separation of HH and LH levels. Equations (A2) and (A3) show
that ρHL ∝ (1 − η−2

‖ ) and �HL ∝ η−2
⊥ ∝ l−2

z , respectively. The
geometric dependence of DOP is therefore written as

DOP ∝ η2
⊥(1 − η−2

‖ ). (21)

This shows a quadratic power dependence on the vertical
aspect ratio and a relatively weak dependence on the lateral
aspect ratio. This fact explains why the less elongated but
tall dots in QD-A ensemble have the highest DOP among the
annealed dot samples.

The analytic forms of DOP [Eq. (A7)] are also plotted by
the dotted line and the broken line in Figs. 4(a) and 4(b).
They reproduce numerical results fairly well, except the
deviation appearing at large values of η⊥ (�0.3), which is
beyond the validity limit of the perturbation analysis. These
results demonstrate how the vertical aspect ratio (height) of

a QD crucially determines DOP, which has been, however,
overlooked by most previous studies.

In the experiment we investigated a series of QDs which
exhibit a systematic change in the lateral and vertical size with
keeping their volume roughly unchanged. Thus, numerical
simulations are so made as to follow the experimental
shape variation and consider the QDs with a fixed value of
characteristic volume �l ≡ lx ly lz and a fixed length of ly , but
with a variation of lx and lz. Figures 5(a) and 5(b) show the
calculated DOPs and the PL energies of the lowest-energy,
noninteracting e-h pairs as a function of the lateral aspect
ratio η‖ for several magnitudes of �l and ly of the dots,
respectively.

A monotonic decrease in DOP with increasing lateral
elongation is observed. Based on the simulation, the char-
acteristic length parameter of ly = 8 nm matches best the
experimental data. Note that ly = 8 nm was also predicted
by the wave-function analysis, as mentioned before. It was
also found that the experimental DOPs for small η‖ agreed
with simulations for large �l , and those for large η‖ agreed
with simulations for small �l . Such tendency is consistent with
the experimental shape variation, which presented a significant
volume reduction for QDs annealed at high temperatures, as
was mentioned in Sec. II A.

Analytically, the close form of DOP for fixed �l [Eq. (A8)]
can be reformulated as

DOP ∝ η2
‖ − 1

η4
‖

(22)

∝ η−2
‖ (η‖ � 1). (23)

which also explicitly shows a monotonic decrease in DOP with
increasing η‖. This phenomenon follows from the fact that
when the dot volume is kept constant, an increase in lateral
elongation leads to a decrease in the dot height, thus leading
to a reduction in the HH-LH mixture in the hole state.
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FIG. 5. (Color online) (a) The calculated DOPs and (b) calculated PL energies as functions of the lateral aspect ratio η‖ for the lowest
noninteracting e-h combinations of the quantum dots with fixed characteristic length ly = 8 nm and volumes �l ≡ lx ly lz = 235 nm3, 285 nm3,
and 335 nm3. Open red circles are experimental data. The error bars present the size/shape distribution of the experimental quantities.

B. Partial configuration interaction calculations:
Effects of e-h Coulomb interaction

Since the size of GaAs QDs studied in this work is
comparable to the effective Bohr radius of bulk excitons
(∼12 nm for GaAs),51 interparticle Coulomb interactions in
a QD should crucially affect the physical properties. The
effect of e-h Coulomb interactions on optical anisotropy is
investigated below using the CI method.

Within this theoretical framework, first a certain number of
relevant single-electron and hole orbitals are selected and used
to construct a set of electron-hole pair configurations, which
are then used as the basis for expanding the wave functions
of the undetermined interacting exciton states. The energy
spectrum of single-electron orbitals within the parabolic model
are explicitly given by Eq. (10). The evolution of the low-lying
energy spectra with respect to the lateral aspect ratio of QD
η‖ = lx/ ly is shown in Fig. 6(a), in which ly = 8 nm and
�l = 285 nm3 are adopted. The energy spectrum of a single
hole in the QD is obtained by solving Eq. (12) numerically
using the finite-difference method.42 Their spectral evolution
with respect to η‖ is shown in Fig. 6(b), which exhibits a
complicated feature due to the HH-LH mixing.

Note that a standard implementation of the CI method
often utilizes the three- or six-lowest e and h orbitals to
build up the exciton configurations.19,38 The principle is
based on the fact that the degeneracy of the orbital shell
follows g = 1,2,3, . . . for a quasi-2D and nearly round-shaped
QD. This is however not the case for the highly elongated
QDs studied here, where the shell degeneracies are absent
in most cases. Thus, the numerical convergence can be
obtained simply by increasing the number of selected orbitals
one by one until satisfactory convergence is achieved. The
exceptions are the dots with special values of the aspect
ratios where shell degeneracies are recovered but composed of
different orbitals. As a representative case in the measured
dot ensemble, the dots with η‖ = 2 (QD-C) have the de-
generacies g = 1,1,1,1,2, . . . , corresponding to the orbitals
(000),(100),(200),(300),{(010),(400)}, . . ..

In this study, we thus select the six low-lying orbitals listed
above and use them to build up the exciton configuration. In
principle, there should be (6 × 2) × (6 × 2) = 144 configu-

rations that can be constructed from the six spin-degenerate
electron and hole orbitals. Among these configurations, we
utilize the ones with significant oscillator strengths as the
basis set. As a result, a bright exciton state |�X

σχ 〉 is
expanded by the six bright configurations, h+

000′χc+
000σ |0〉,

FIG. 6. (Color online) (a) The calculated single-electron energy
spectra and (b) the single-hole energy spectra as functions of the
lateral aspect ratio η‖ of the quantum dots with fixed characteristic
length ly = 8 nm and volume �l = 285 nm3. The six lowest levels are
labeled by the quantum numbers of the parabolic model. Inset: The
pure HH (solid lines) and LH (dotted lines) energy levels of the QD
as functions of η‖, which are yielded from Eq. (12) with the vanishing
off-diagonal terms, S = 0 and R = 0.
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FIG. 7. (Color online) Blue circles: The calculated DOPs as
functions of the lateral aspect ratio η‖ of the exciton ground states
of the quantum dots with fixed characteristic length ly = 8 nm and
volume �l = 285 nm3 by using the PCI method. Filled gray triangles:
The calculated DOPs for the recombinations of noninteracting e-h
pairs. Dashed gray line: The DOPs for the recombinations of
noninteracting e-h pairs yielded by the analytic formalism Eq. (A8).
Open red circles: Experimental data.

h+
100′χc+

100σ |0〉, h+
010′χc+

010σ |0〉, h+
200′χc+

200σ |0〉, h+
300′χc+

300σ |0〉,
and h+

400′χc+
400σ |0〉, which are marked in Figs. 6(a) and 6(b).

Thus, the number of the chosen configurations is less than
that of all possible ones used for a full CI calculation. Such a
simplified way to implement a CI calculation with reduced
numerical cost is referred to as the partial configuration
interaction (PCI) method in this work. Throughout this work,
we consider only the bright neutral excitons with spins {σ,χ} =
{↑ , ⇓′} or {σ,χ} = {↓ , ⇑′}. Thus, for brevity we will omit the
indices {σ,χ} hereafter.

In the reduced basis of exciton configuration, a 6 × 6
matrix of the Hamiltonian is created, with the Coulomb matrix
elements numerically calculated using the integration method
used in Ref. 42. The numerical integrations of the Coulomb
matrix elements are speeded up significantly by employ-

ing a GPU (graphics processing unit) parallel-computation
technique.52 The energy spectrum and wave functions of
the exciton states are obtained by directly diagonalizing
the exciton-Hamiltonian matrix using ARPACK eigensolver.53

Finally, the DOPs of the exciton states of GaAs QDs are
calculated using Fermi’s golden rule, Eq. (18).

Figure 7 presents the DOPs of the ground-state exciton as a
function of the lateral aspect ratio η‖, with ly = 8 nm and �l =
285 nm3. To highlight the effect of Coulomb interactions, the
DOPs (DOPie→ih) of the noninteracting e-h pair configurations
c+
ie
h+

ih
|0〉 are also shown for comparison. Both of the simulation

results show a qualitative agreement with experimental data but
the feature is unusual: the less laterally elongated (but taller)
the QDs, the higher the DOPs. The DOPs for the interacting
case are qualitatively similar with but generally lower than
those for the noninteracting case. The suppression of DOP
by the e-h Coulomb interactions is even stronger for a less
laterally elongated but taller QD.

The analytic formalism of DOP given by the perturbation
method [Eq. (A8)] is also plotted in Fig. 7. It is, again, lower
than the noninteracting results. This is because the LH compo-
nents in an exciton state are underestimated by the perturbation
method, which is valid only for the weak HH-LH mixing.
The results yielded by the two different methods, analytic
formalism Eq. (A8) and the PCI calculation, look incidentally
similar, but different mechanisms are naturally involved.

The lowering of DOP through the Coulomb interactions
is explained as follows. Within the framework of the PCI
method, the resulting DOP of an interacting exciton state is
averaged by those of each of the configuration components
DOPie→ih weighted by the configuration amplitudes |Cieih |2.
Figure 8(a) shows the calculated |Cieih |2 of the six main
configurations in the exciton ground states of QDs as a
function of η‖. Apparently, the lowest energy configuration
h+

000′c
+
000|0〉 dominates the exciton ground states over the

whole range of geometrical parameters. Nevertheless, the
second-lowest configuration h+

100′c
+
100|0〉 also contributes to the

exciton ground state in significant manner, and its component
increases with η‖. The increase of the excited configuration
component results from the decrease of the energy separation

3

 8 nm

 285 nm

y

l

l

FIG. 8. (Color online) (a) The components |Cieih |2 as functions of the lateral aspect ratio η‖ of the four main single-particle configurations
in the ground state of excitons in the QDs with fixed ly = 8 nm and �l = 285 nm3 that are calculated using the PCI method. The index
ie = (nxnynz) [ih = (nxnynz)′] indicates the filled conduction (valence) orbital by an electron (a valence hole) of the exciton configuration. The
schematics in the insets indicate the two dominant configurations in the interacting exciton states. (b) The calculated DOPs for each exciton
configuration as functions of η‖. The black solid line (red broken line) represents the result yielded by the analytic formula [Eqs. (A8) and
(A10)].

115323-8



GEOMETRICAL IMPACT ON THE OPTICAL . . . PHYSICAL REVIEW B 86, 115323 (2012)

between (000) and (100) with η‖, as shown in Figs. 6(a)
and 6(b).

Figure 8(b) shows the DOPs of the main e-h pair configu-
ration components. The DOPs of the lowest-energy configura-
tion h+

000′c
+
000|0〉 decreases with η‖, as discussed in Sec. IV A.

For the x-elongated dots, the second lowest configuration is
h+

100′c
+
100|0〉, which comprises a Px-like conduction orbital

filled by an electron and a Px-like valence orbital filled by
a hole. Their DOPs are generally lower than those of the
lowest-energy configuration, and even become negative as η‖
is sufficiently small. As presented by Eq. (A10) at the end of
the Appendix, the analytic form for the DOP of the excited
configuration h+

100′c
+
100|0〉 explicitly shows the same tendency

and predicts the sign reversal of DOP at η‖ = √
3, which

agrees with numerical simulations. Thus, with the mixture
of the excited Px configurations caused by configuration
couplings (often referred to as Coulomb correlations), the
DOP of an interacting exciton in the ground state is further
decreased. In spite of the smaller component amplitude of the
Px configurations for small η‖, the DOPs are further decreased
as η‖ �

√
3 because of the rapidly increasing magnitude of the

negative DOP of the Px configurations.
The model analysis conducted above is valid to physically

account for our observations. However, a main restriction
of the employed four-band k · p model for a more precise
simulation lies in the poor treatment of the conduction- and
valence-band coupling, which is supposedly a weak effect for
wide-band-gap semiconductors such as GaAs studied here.
Nevertheless, that issue could be essential in the excitonic fine
structures of QDs, which are typically at the energy scale of
only ∼10–100 μeV. The magnitude of fine-structure splitting
is obviously much smaller than that of the energy broadening
of the measured emission lines from the dot ensembles studied
in this work, and is not regarded as within the scope of this
study. It is certainly worth extending our currently used model
to provide a better quantitative description for optical and
fine-structure properties of the unstrained GaAs QDs as a
future work, especially as the data of single-dot spectroscopy
for the geometry-controlled GaAs QDs become available.

V. SUMMARY

In summary, a systematic, theoretical, and experimental
investigation of the optical polarization of shape-controlled
GaAs/AlGaAs QDs grown by droplet epitaxy is demonstrated,
to a great extent, in this work. The shapes of the quantum dots
are varied using the technique of in situ thermal treatment
during the droplet growth, from a tall and laterally symmetric
shape to a flat and elongated one with increasing the annealing
temperature. Polarized PL spectroscopy of the QDs reveals
an unusual geometry dependence of the optical polarization.
Not as commonly known, the less laterally elongated the
quantum dots, the higher the degree of linear polarization.
Theoretical analysis based on a four-band k · p theory shows
that the lateral elongation is not the sole dominant cause of
optical polarization. Instead, the vertical confinement of a QD
crucially determines the valence heavy- and light-hole mixing
and the resulting significant optical polarization anisotropy.
Therefore, the less elongated but tall QDs show the large

DOPs. The influence of Coulomb interactions on the optical
anisotropy is further studied by using the partial configuration
interaction method, and is shown to diminish the linear
polarization through the mixing of the e-h configurations with
different symmetries.
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APPENDIX: ANALYTIC EXPRESSION OF DOP UNDER
THE PERTURBATION TREATMENT

This Appendix presents the derivation of the analytic forms
of the DOP of an HH-LH mixed exciton in a QD under the
perturbation treatment. The derived formulation of DOP as
a function of the geometric parameters of QD is helpful for
gaining physical insight into fully numerical results calculated
using the finite-difference method.

We consider the pure HH and LH eigenstates {φHH/LH
nxnynz

} to
form a suitable basis set for expanding the HH-like states.
Note that the pure HH/LH states are obtained from the
four-band Hamiltonian matrix with vanishing off-diagonal
terms, S = 0 and R = 0. If the HH-LH mixture is small,
only the leading term φ

HH/LH
000 in the series of the HH- or

LH-envelope function expansion is needed for a qualitative
analysis. Thus, in the lowest-order approximation, an effec-
tive Hamiltonian is given by a 4 × 4 matrix in the basis
of {|φHH

000u
h

+ 3
2
〉,|φLH

000u
h

+ 1
2
〉,|φLH

000u
h

− 1
2
〉,|φHH

000u
h

− 3
2
〉} for a HH-LH-

mixed hole in a QD:10–12

⎛
⎜⎜⎜⎝

EHH 0 ρHL 0

0 EHH + �HL 0 ρHL

ρ
†
HL 0 EHH + �HL 0

0 ρ
†
HL 0 EHH

⎞
⎟⎟⎟⎠ , (A1)

where EHH = 〈φHH
000|P + Q + V h

QD|φHH
000〉 is the kinetic energy

of pure HH, �HL ≈ −〈φHH
000|Q|φHH

000〉 − 〈φLH
000|Q|φLH

000〉 is the
energy separation between the decoupled HH and LH lev-
els, and ρHL ≡ 〈φHH

000|R|φLH
000〉 is the matrix element of the

HH-LH coupling. Another off-diagonal term 〈φHH
000|S|φLH

000〉 ∝
〈φHH

000|kxkz − ikykz|φLH
000〉 vanishes since the basis function φ000

has the mirror symmetries in the x, y, and z directions. The
model Hamiltonian of Eq. (A1) has been employed in the
previous studies of Refs. 10 and 11.

Furthermore, the matrix elements in Eq. (A1) can be
explicitly expressed as functions of the geometric parameters
lα and η‖ of QD in the 3D parabolic model,

ρHL ≈ 4r‖
(1 + r2

‖ )2

√
3h̄2γ3

4m0
× 1

l2
y

(
1 − 1

η2
‖

)
(A2)
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and

�HL = h̄2γ2

m0
×

(
1 + r2

⊥
r2
⊥l2

z

− 1 + r2
‖

2r2
‖ l2

x

− 1 + r2
‖

2r2
‖ l2

y

)

≈
(

1 + r2
⊥

r2
⊥

)
h̄2γ2

m0
× 1

l2
z

(lx,ly � lz), (A3)

where the parameters r‖/⊥ defined in Eq. (16) are used to
characterize the anisotropy of the HH and LH masses.

Treating the HH-LH coupling terms in Eq. (A1) as
perturbations (|ρHL/�HL| � 1) yields the ground state of a
single hole,

ψh
(000)′ (rh) ∝ φHH

000(rh)uh

± 3
2
(rh) − ρHL

�HL
φLH

000(rh)uh

∓ 1
2
(rh) + · · · .

(A4)

Equation (A4) reveals that the HH-LH mixtures of the hole
state directly depend on the quantity (ρHL/�HL). Accordingly,
more HH-LH mixtures in the hole state could result from
either a higher value of ρHL or a lower value of �HL, each
of which, however, follow different dependencies on the
geometry of QD, as given by Eqs. (A2) and (A3), respectively.
ρHL ∝ (1 − η−2

‖ ) is governed by the lateral elongation of QDs,
and it becomes higher for higher elongation. �HL ∝ l−2

z is,
on the other hand, governed by the vertical height of QDs,
and it becomes higher for taller QDs. Compared with the
weak dependence of ρHL on η‖, the �HL follows a stronger
quadratic dependence of the power on the height of the dot.
Therefore, the height or the vertical aspect ratio of a planar QD
crucially determines the HH-LH mixing and, as shown below,
the optical anisotropies of an exciton in a QD as well.

Taking into account the HH-LH mixture given by Eq. (A4)
in the hole states, the degree of transverse polarization [with the
substitution of e = (cos φ, sin φ,0) into Eq. (18)] for the non-
interacting e-h pairs, ≈h+

(000)′⇓′c
+
(000)↑|0〉 and h+

(000)′⇑′c
+
(000)↓|0〉,

is derived as10,11

DOP(000)→(000)′ ≈ 2|ρHL|/√3�HL

1 + (|ρHL|/√3�HL)2
. (A5)

For a weak HH-LH mixture (|ρHL|/�HL � 1), the formula
for the DOP of a QD can be further simplified and written in
terms of the geometric parameters of QD as

DOP(000)→(000)′ ≈ 2|ρHL|√
3�HL

(A6)

= F × γ3η
2
⊥

2γ2

(
η‖2 − 1

η‖2

)
(A7)

= F × γ3�
2
l

2γ2l6
y

(
η‖2 − 1

η‖4

)
, (A8)

where the factor F ≡ 8r‖r2
⊥/(1 + r2

‖ )2(1 + r2
⊥) �= 1 as the HH

and LH wave functions is not symmetric (lHH,x(y) �= lLH,x(y)).
The above expressions clearly elucidate the effects of the
geometry and size of a dot on optical polarization.

The same derivation procedure can be used to derive the
DOPs for higher-energy transitions between a single-electron
level ie = (nxnynz) and single-hole level ih = (nxnynz)′,

DOP(nx,ny ,nz)→(nx,ny ,nz)′

∝ γ3�
2
l

(2nz + 1)γ2l6
y

{
(2ny + 1)η‖2 − (2nx + 1)

η‖4

}
. (A9)

The above expressions explicitly show that the DOP is always
positive if η‖ > 1 and nx < ny . For the optical transitions that
involve the orbitals with nx > ny , the DOP is positive only
if η‖ is large enough, and becomes negative for high lateral
elongation along x. For instance, the DOP that involves the
first excited electron and hole orbital (nx = 1, ny = 0, nz = 0)
of a QD is explicitly given by

DOP(100)→(100)′ = 16r2
‖ r2

⊥
(1 + r2

‖ )3(1 + r2
⊥)

× γ3η
2
⊥

2γ2

(
η‖2 − 3

η‖2

)
.

(A10)

The geometric dependence in Eq. (A10) is plotted in Fig. 8(a)
together with the numerical result. It shows that DOP changes
from positive to negative with decreasing η‖ at the critical
lateral aspect ratio estimated to be η‖ = √

3, consistent with
the numerical result in Fig. 8(a).
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