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Magnetic field dependence of Pauli spin blockade: A window into the sources
of spin relaxation in silicon quantum dots
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We investigate spin relaxation in a silicon double quantum dot via leakage current through Pauli blockade as
a function of interdot detuning and magnetic field. A dip in leakage current as a function of magnetic field on an
∼40 mT field scale is attributed to spin-orbit mediated spin relaxation. On a larger (∼400 mT) field scale, a peak
in leakage current is seen in some, but not all, Pauli-blocked transitions, and is attributed to spin-flip cotunneling.
Both dip and peak structure show good agreement between theory and experiment.
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I. INTRODUCTION

Electron spins confined in semiconductor quantum dots
(QDs) are attractive candidates for quantum information
processing.1 Coherent manipulation of individual and coupled
electron spin states has been mainly investigated in GaAs-
based double QD (DQD) devices.2–4 However, nuclear spins
of the host material cause decoherence of the electron spin
via strong hyperfine coupling.5 To reduce this effect, group IV
materials, such as carbon, silicon (Si), and silicon-germanium
(SiGe), have been investigated6–10 because their most abundant
isotopes have zero nuclear spin. Silicon systems, in particular,
have an advantage for future integration because of their com-
patibility with conventional Si metal-oxide-semiconductor
devices.

Toward spin qubits in Si systems, it is necessary to
understand the spin relaxation mechanism. Pauli spin blockade
(PSB)11,12 is a valuable tool for investigating spin relaxation
in confined systems. In DQDs of several materials, the spin
relaxation mechanism has been characterized by analyzing
the leakage current in the PSB regime,13–16 where hyper-
fine interaction and/or spin-orbit interaction dominate the
spin relaxation. For Si systems, a PSB has been reported
for a DQD in metal-semiconductor-oxide structures and an
electrostatically formed DQD in Si/SiGe heterostructures.17,18

However, the relaxation mechanism in Si DQDs has not yet
been experimentally clarified. More recently, magnetic field
dependences of the leakage current in a PSB regime have been
demonstrated in a pure Si DQD,19 where a current peak was
explained by field-dependent cotunneling.

In this work, we investigate leakage current in a PSB
regime using a lithographically defined Si DQD. By changing
magnetic field, we observed a dip of the leakage current at zero
magnetic field, presumably the result of spin-orbit-mediated
spin relaxation. In addition, magnetic field dependences at a
different charge triple point exhibit a leakage current peak at
zero magnetic field. This peak can be understood as a signature
of spin-flip cotunneling processes.

FIG. 1. (Color online) (a) Schematic of the silicon double
quantum dot (Si DQD). (b) Scanning electron microscope image of
the Si DQD before the top gate formation. The two side gates located
next to side gate C are grounded. (c) Charge stability diagram of the
Si DQD as a function of VL and VR at zero magnetic field, where
Vds = −2 mV, VTG = 0.90 V, and VC = −1.72 V. The white dotted
lines are boundaries of the stable charge states. The charge numbers
in the left and right QDs are NL and NR, respectively.

II. DEVICE AND MEASUREMENT SCHEME

Figure 1(a) shows a schematic of a Si DQD. Three constric-
tions between the source (S) and drain (D), and five side gates
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were patterned by electron beam lithography on a 60-nm-thick
(100) Si-on-insulator (SOI) layer, where the thickness of the
buried oxide was 400 nm. Reactive ion etching was used to
transfer the resist pattern onto the SOI, followed by formation
of the gate oxide via thermal oxidation for 30 min at 1000 ◦C
and low-pressure chemical vapor deposition (LPCVD). Then,
a wide poly-Si top gate (TG) formed by LPCVD was used as
an ion implantation mask for the formation of the n-type S
and D regions. Finally, 300-nm-thick aluminum contact pads
were formed by electron beam evaporation. Figure 1(b) shows
a scanning electron microscope image of the device, where
the DQD is defined by tunnel barriers at the three constricted
regions.20

Electrons were attracted to the Si (100) surface by applying
a positive TG voltage, VTG. Electrochemical potentials of the
left and right QDs were modulated by applying voltages VL

and VR to side gates L and R. The tunnel coupling between the
two QDs was controlled by voltage VC applied to side gate C.
All measurements were carried out in a 3He refrigerator with
a base temperature of 250 mK.

III. RESULTS AND DISCUSSION

A. Transport measurements

The honeycomb charge stability [Fig. 1(c)] reflects the
formation of a DQD.21 Charging energies of the left and right
QDs were estimated to be 10.7 and 11.0 meV, respectively,
from the spacings of the Coulomb peaks, implying that the QDs
have almost the same size. In addition, from the distribution of
the current peaks due to resonant tunneling at triple point A in
Fig. 1(c), the quantum level spacing, �E, of the left and right
QD was estimated to be 310 and 260 μeV, respectively [for
example, see Fig. 4(b) for the right QD]. In confirmation, �E

can be approximated as �E = h2/8πm∗A, where m∗ gives
effective mass here, h is Planck’s constant, and A is the area
of the QD,22 with spin and valley degeneracies included. This
equation determines �E to be between 260 and 380 μeV for
our device geometry, in good agreement with the experimental
estimation. We conclude that the QD is formed between the
two constricted regions indicated by the ovals in Fig. 1(b).

Current rectification in DQDs due to a PSB appears at a
triple point with only one bias polarity.12 We observed such
current rectification with a negative bias voltage at triple point
B in Fig. 1(c), as indicated by the trapezoid in Fig. 2(a),
whereas no current rectification appeared with positive bias
as shown in Fig. 2(b). In addition, the current rectification is
lifted along the outer edge of the PSB regime indicated by
the circle in Fig. 2(a) because of electron exchanges between
the DQD and the right lead, comparable to PSB seen in GaAs
DQDs.12

Since Si DQDs normally have doubly degenerate valleys
due to confinement in the direction perpendicular to the Si
surface, the valley degeneracy could lift a PSB. However, the
fact that a PSB is observed indicates either a lifting of valley
degeneracy or weak tunneling between valleys.23 In the former
case, once two spins occupy the (1, 1) triplet state as shown
in Fig. 2(c), the current flow is suppressed due to the PSB
until relaxation from (1, 1) triplet to (1, 1) singlet occurs. In
the latter case, even if degenerate valleys exist as shown in

FIG. 2. (Color online) (a) Triple point B shown in Fig. 1(c) with
negative bias, where Vds = −2 mV, VTG = 0.97 V, and VC = −1.76 V.
The PSB appears only for this polarity. Here ε is the detuning axis.
(b) The same triple point as in (a) under a positive bias (Vds = 2 mV).
(c) Energy diagrams of a Si DQD at the circle marked in (a) (the left
diagram) and at the blue cross marked in (b) (the right diagram), where
the valley degeneracy is assumed to be lifted. (d) The same diagram
as (c) without an assumption that lifting of the valley degeneracy is
small. Intradot and interdot tunnelings between different valleys are
assumed to be weak so that the PSB is not lifted.

Fig. 2(d), the PSB is not lifted because intradot and interdot
tunnelings between valleys are weak.

PSB features were observed at adjacent triple points,
marked B, C, and D in Fig. 1(c). This is not expected for simple
spin- 1

2 PSB. Since the DQD has many electrons, spin- 3
2 ground

states can exist, leading to scenarios for consecutive PSB.12

Blockade where valley degeneracy plays a role can also lead
to consecutive PSB-like features. Even when a spin doublet
is formed in DQDs, the current flow could be suppressed
because of weak tunneling between valleys discussed above
(see Appendix A).

B. Magnetic field dependence: Current dip

Figure 3(a) shows the leakage current in the PSB regime
at triple point C in Fig. 1(c) as a function of magnetic field B

applied normally to the DQD with a detuning, ε, corresponding
to the arrow shown in the inset. A strong current dip was
observed at B = 0, whereas the current with opposite bias does
not change as a function of magnetic fields (see Appendix B).
Similar current dips have been observed for DQDs in InAs
nanowires14,24 and carbon nanotubes15 and can be attributed
to spin-orbit induced relaxation,25 which is suppressed at
B = 0 due to a Van Vleck cancellation.14,26 A Lorentzian line
shape, Ifit = Imax{1 − 8B2

C/9(B2 + B2
C)} with characteristic

width BC, is predicted theoretically.25 The squares in Fig. 3(b)
correspond to the absolute values of the leakage current in
the PSB regime along the dashed line in Fig. 3(a). Fits to
the Lorentzian form [the blue curve in Fig. 3(b)] yield good
agreement between theory and experiment. Furthermore, as
the interdot tunneling between the two QDs is enhanced
by changing VC, the value of BC extracted from the fit
increases, as plotted in Fig. 3(c). This result is also consistent
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FIG. 3. (Color online) (a) Leakage current in the PSB regime as
a function of magnetic field applied perpendicularly to the DQD and
detuning, where Vds = −2 mV, VTG = 0.97 V, and VC = −1.99 V.
Inset: magnified plot of triple point C in Fig. 1(c), where the arrow
corresponds to the detuning axis in the main figure. (b) Current along
the dashed line in (a) denoted by the squares, and the fit to the data
indicated by the blue line. (c) Values of BC extracted from the fit
as a function of VC. Large VC corresponds to a large interdot tunnel
coupling t .

with the theory, which predicts BC proportional to interdot
tunnel coupling.25 These results suggest that spin-orbit effects
dominate spin relaxation in these devices although spin-orbit
interaction is usually weak in Si (see Appendix C).

Another possible mechanism leading to a dip in current
leakage around B = 0 is spin-valley blockade with short-range
disorder,27 where the current dip as a function of magnetic-
field-induced valley splitting is predicted. However, we have
no independent evidence that the required B-dependent valley
splitting exists. The physics of the valley in Si DQDs deserves
further experimental and theoretical study.

C. Magnetic field dependence: Current peak

For some triple points, we observe a peak, rather than dip,
in PSB leakage current on a larger field scale. As an example,
the field dependence of the leakage current at triple point A in
Fig. 1(c) is shown in Fig. 4(a). The arrow in the magnified plot
of triple point A shown in Fig. 4(b) corresponds to the detuning
axis in Fig. 4(a). Among the 15 triple points that show PSB
[Fig. 1(c)], nine show a zero-field current dip and two show a
peak. We also observed current peaks outside a current dip in
some cases.

In GaAs DQDs, zero-field peaks in leakage current were
attributed to hyperfine-induced spin relaxation.13,28 However,
the contribution of the hyperfine interaction should be small
in Si systems, because the dominant 28Si atoms have zero
nuclear spin. Using 4.7% natural abundance of 29Si and
lithographic device dimensions gives an expected number
N of nuclear spins in a Si DQD to be (2–3) × 104, corre-
sponding to a fluctuating Overhauser field magnitude Bnuc =
|A|/gμB

√
N ∼ 10–15 μT, where μB is the Bohr magneton,

the hyperfine coupling constant |A| ∼ 0.2 μeV from NMR

FIG. 4. (Color online) (a) Leakage current in the PSB regime as a
function of magnetic field applied perpendicularly to the DQD and the
detuning, where Vds = 2 mV, VTG = 0.968 V, and VC = −1.925 V.
(b) Magnified plot of triple point A in Fig. 1(c), where the arrow
corresponds to the detuning axis in (a). (c) Current along the dashed
line in (a) denoted by the circles, and the fit to the data indicated by
the blue line.

measurements29,30 and g ∼ 2 for electrons in Si. Since the
peak width in Fig. 4(c) is larger than Bnuc by a factor of 104,
the mechanism of the current peaks at B = 0 is not explained
by hyperfine interaction.

Similar peaks were also seen in Si DQD in Ref. 19,
where the peak is well described by spin-flip cotunneling.31

When kBT > t (kB is Boltzmann’s constant and t is the
interdot tunnel coupling), the spin-flip cotunneling current
is given by Icot = 4ecgμBB/3 sinh(gμBB/kBT ) with c =
h{[�R/(� − ε)]2 + [�L/(� + ε − 2U ′ − 2eVds)]2}/π , where
e is the electron charge, �L(R) is the coupling of the lead to
the left (right) dot, � is the depth of the two-electron level,32

and U ′ is interdot charging energy. Since we observed clear
resonant tunneling peaks, �L(R) is larger than t .33 In addition,
if �L(R) > t > kBT ∼ 21 μeV, the current would be much
larger than the observed current shown in Fig. 4(b). As a
result, kBT > t so that Icot can be used to fit the current
peak. The blue curve in Fig. 4(c) is Icot, which has a good
agreement with the data by using T ∼ 250 mK, yielding
g ∼ 2.3 and c ∼ 54 kHz/μeV. Since the current does not vary
much along the base of the triangle in Fig. 4(b), we assume
�L ∼ �R ≡ �. By using expression of c with � ∼ 1 meV,
ε ∼ 0 meV, U ′ ∼ 1 meV, and eVds ∼ 2 meV estimated from
the bias triangle shown in Fig. 4(b), we extracted � ∼ 26 μeV.
Furthermore, t can be extracted to be about 0.3 μeV from the
unblocked resonant tunneling peak current (∼0.6 pA) with
Eq. (15) in Ref. 21. These values are similar with those in
Ref. 19 and in an experimentally reasonable range so that the
spin-flip cotunneling processes are most likely the mechanism
of the peak. It should be noted that, as for the dip in Fig. 3,
spin-valley blockade with disorder could also explain the peak,
but again we have at present no evidence of the required
field-dependent valley splitting.34
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FIG. 5. (Color online) (a) and (b) Energy diagrams of a Si DQD
where (NL,NR) = (2,1) or (3,0) in (a), and (2,2) or (3,1) in (b).
The blue and yellow lines indicate different valleys. (c) Electron
configuration for the (3,1) regime in a Si DQD where doubly
degenerate valleys are taken into account.
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APPENDIX A: VALLEY DEPENDENT BLOCKADE

We consider two typical blockades at (2,1) ⇔ (3,0) and
(2,2) ⇔ (3,1), where the valley splitting is assumed to be
small and tunneling between the different valleys is assumed
to be weak.23 Figure 5(a) shows the energy diagram of the first
case. The blockade does not occur in the direction from (3,0) to
(2,1) because the right-hand QD is empty. In the direction from
(2,1) to (3,0), once two electron spins occupy one valley in the
left-hand QD and an electron spin enters the same valley in the
right-hand QD, no current flows because of the weak tunneling
between different valleys. As a result, a blockade occurs for the
same polarity as that of (1,1) ⇔ (2,0) [see Fig. 2(d)]. Current
blockade resulting from spin and valley degree of freedoms
has been termed the spin-valley blockade,35 which must play
an important role for spin or valley qubits of Si.

Similarly, a blockade due to valleys occurs for the second
case under negative bias polarity, as shown in Fig. 5(b). In
contrast, current flow occurs for positive polarity because of
doubly degenerate valleys. The (3,1) ⇒ (2,2) transtion can be

FIG. 6. (Color online) Magnetic field dependence of the current at
triple point C, where Vds = 2 mV, VTG = 0.97 V, and VC = −1.99 V.
No dependences are observed.

explained as follows. Figure 5(c) shows a typical (3,1) state
where doubly degenerate valleys which have different wave
numbers (+kz and −kz) are included. In the left QD, two spins
occupy the −kz valley and a single up spin occupies the +kz

valley, whereas a single up spin occupies the +kz valley in the
right QD. In this case, a PSB occurs in the +kz valley, while
the −kz valley in the right QD is empty so that one of the
two spins in the left QD can move to the right QD. In other
configurations, a spin in the left QD can also move to the right
QD in a similar manner. As a result, current flow occurs in this
condition, which is a possibility to explain our consecutive
blockades. However, since this model does not fully explain
the PSB patterns, further experimental studies of the PSB in a
few-electron Si DQD are necessary.

APPENDIX B: NO MAGNETIC FIELD DEPENDENCE

Figure 6 shows the current at triple point C as a function of
magnetic field B with a detuning. The bias direction is opposite
to that in Fig. 3, where we did not observe a current dip.

APPENDIX C: ESTIMATION OF BC

We do not know an accepted value for the spin-orbit length
in a Si QD, lSO Si from the literature. On the other hand, the
spin-orbit length of InAs QD, lSO InAs, has been reported, and
is in the range 120–250 nm.24,36 An estimate for lSO Si can be
made by comparing only Rashba parts of lSO Si and lSO InAs,
taking the Dresselhaus contribution in Si to be negligible
because it is a nonpolar crystal.

The Rashba spin-orbit energy, ESO, is given by37

Eso ∝ eP 2

3

[
1

E2
g

− 1

(Eg + �SO)2

]
σ · k × 〈E〉v, (C1)

where Eg is band gap, �SO is spin-orbit splitting in the valence
band, P is a band parameter related to the interband momentum
matrix elements, σ is Pauli spin matrices, k is wave vector,
and 〈E〉v is electric field. According to theory, P does not
vary much between Si and InAs,38 and 〈E〉v , the electric field
relevant for Rashba coupling, should be roughly the same size
in the Si and InAs experiments because similar gate voltages
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were used. Denoting as A the term in braces,

A = 1

E2
g

− 1

(Eg + �SO)2
, (C2)

we take Eg Si = 1.1 eV, �SO Si = 0.044 eV, Eg InAs =
0.42 eV, �SO InAs = 0.38 eV,37 resulting in lSO Si/lSO InAs ∼
AInAs/ASi ∼ 70. Note that AInAs may be smaller because
g ∼ 8 in the nanowire,36 which is smaller than the bulk value
(g ∼ 13). As a result, we expect lSO Si to be in the range
1–10 μm.

Using estimated lSO Si, we estimate the value for BC,25

BC = 2
√

2(1 + |η|2)t
√

�rel/�out

η2
x + η2

y

, (C3)

where �out is the rate of escape from the (0,2) singlet into
the lead, �rel = Imax/4e is the spin relaxation rate, η = tSO/t ,
and tSO is the non-spin-conserving tunnel coupling due to spin-
orbit interaction. For simplicity, we assume ηx ∼ ηy ∼ ηz, and
|η| = | tSO|/t ∼ ldot/lSO giving

BC = 2
√

3(1 + ldot/lSO)t
√

Imax/4e�out

ldot/lSO
, (C4)

where ldot = h/2π
√

Eorbmeff , meff is the effective mass in
Si, Eorb ∼ 300 μeV (experimentally measured value for the

FIG. 7. (Color online) BC versus t , where lSO and �out are
parameters.

orbital level spacing), and Imax ∼ 0.5 pA (again experimental
value). BC is plotted in Fig. 7. We note that the range of BC

is similar to that in Fig. 3 for this range of the parameters.
While these estimates are rough, we believe they justify our
interpretation that spin-orbit interaction plays an important
role. The key point is that Rashba spin-orbit coupling is small,
but not extremely small.
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35A. Pályi and G. Burkard, Phys. Rev. B 80, 201404(R) (2009).
36C. Fasth, A. Fuhrer, L. Samuelson, V. N. Golovach, and D. Loss,

Phys. Rev. Lett. 98, 266801 (2007).
37R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional

Electron and Hole Systems (Springer, Berlin, 2003).
38C. Tahan and R. Joynt, Phys. Rev. B 71, 075315 (2005).

115322-5

http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1038/nature05065
http://dx.doi.org/10.1126/science.1116955
http://dx.doi.org/10.1038/nphys1053
http://dx.doi.org/10.1103/PhysRevLett.88.186802
http://dx.doi.org/10.1103/PhysRevLett.88.186802
http://dx.doi.org/10.1103/PhysRevLett.102.166802
http://dx.doi.org/10.1063/1.3124242
http://dx.doi.org/10.1103/PhysRevLett.104.096801
http://dx.doi.org/10.1103/PhysRevLett.104.096801
http://dx.doi.org/10.1038/nnano.2007.302
http://dx.doi.org/10.1103/PhysRevLett.106.156804
http://dx.doi.org/10.1126/science.1070958
http://dx.doi.org/10.1126/science.1070958
http://dx.doi.org/10.1103/PhysRevB.72.165308
http://dx.doi.org/10.1126/science.1113719
http://dx.doi.org/10.1103/PhysRevLett.99.036801
http://dx.doi.org/10.1103/PhysRevLett.99.036801
http://dx.doi.org/10.1038/nphys1247
http://dx.doi.org/10.1103/PhysRevLett.102.146802
http://dx.doi.org/10.1038/nphys988
http://dx.doi.org/10.1103/PhysRevB.77.073310
http://dx.doi.org/10.1038/srep00110
http://dx.doi.org/10.1143/APEX.2.095002
http://dx.doi.org/10.1103/RevModPhys.75.1
http://dx.doi.org/10.1103/PhysRevB.82.155312
http://dx.doi.org/10.1103/PhysRevB.82.155312
http://dx.doi.org/10.1103/PhysRevB.81.201305
http://dx.doi.org/10.1103/PhysRevB.80.041301
http://dx.doi.org/10.1103/PhysRevB.64.125316
http://dx.doi.org/10.1103/PhysRevB.82.155424
http://dx.doi.org/10.1103/PhysRevLett.96.176804
http://dx.doi.org/10.1103/PhysRevLett.96.176804
http://dx.doi.org/10.1088/0953-8984/15/50/R01
http://dx.doi.org/10.1088/0953-8984/15/50/R01
http://dx.doi.org/10.1103/PhysRev.103.1127
http://dx.doi.org/10.1103/PhysRevB.84.245407
http://dx.doi.org/10.1103/PhysRevLett.102.176806
http://dx.doi.org/10.1103/PhysRevLett.102.176806
http://dx.doi.org/10.1126/science.282.5390.932
http://dx.doi.org/10.1103/PhysRevB.80.201404
http://dx.doi.org/10.1103/PhysRevLett.98.266801
http://dx.doi.org/10.1103/PhysRevB.71.075315



