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Ineffectiveness of energy filtering at grain boundaries for thermoelectric materials
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We use a one-band effective mass model within the Landauer formalism to investigate the influence of double
Schottky barriers on the thermoelectric coefficients. It is assumed that these double Schottky barriers arise due to
trapping states in grain boundaries. Such barriers can cause an energy filtering effect, which is widely believed
to advance thermoelectric efficiencies. We show that for low doping concentrations the Seebeck coefficient is
indeed increased due to energy filtering effects, whereas the electric conductivity is strongly decreased. The
resulting power factor is also decreased. For higher doping concentrations, which are necessary for large electric
conductivities and thus reasonable ZT values, the double Schottky barriers are very small and have therefore an
insignificant impact on the thermoelectric parameters. Consequently, there is no significant influence of grain
boundaries on ZT values due to additional electrostatic barriers. This does not preclude that other mechanisms at
grain boundaries, such as additional scattering due to disorder, can have a positive impact on the power factor.
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I. INTRODUCTION

The maximum efficiency of power conversion in a ther-
moelectric module is linked to its materials by the figure of
merit ZT 1

ZT = S2T σ

κ
, (1)

where S is the Seebeck coefficient, κ is the thermal conduc-
tivity, T is the temperature, and σ is the electric conductivity.

There are different approaches to optimize the figure of
merit either by manipulating the electronic structure or by
decreasing the thermal conductivity of the phonons without
disturbing the transport of the electrons. The latter idea can be
summarized by the electron crystal/phonon glass approach.2

Manipulating the electronic structure mainly aims at the
increase of the Seebeck coefficients or on an optimization
of the Lorenz number L within the Wiedemann-Franz law

κ

σ
= LT . (2)

Thereby, one idea is to go to lower dimensions to get peaks in
the density of states, which in turn can lead to a higher Seebeck
coefficient.3

Another idea is the manipulation of the electronic transport
properties to increase the Seebeck coefficient and thus the
figure of merit. A prominent example of this approach that
we want to discuss in this paper is the so-called energy
filtering,1,4–9 where an energy-dependent filtering effect can
increase the Seebeck coefficient. The mechanism is that
hot electrons can pass an additional barrier whereas cold
electrons get blocked at this barrier. Consequently, the Seebeck
coefficient is enhanced. Such a filtering effect is reported for
indium gallium arsenide superlattice films,10 bulk PbTe with
Pb nanoparticles,11 nanocrystalline PbTe,12–14 nanostructured
SiGe,15 and ZnO-based materials.16–18 An additional advan-
tage that often comes along with such an energy-filtering
mechanism is an additional phonon scattering,10,12,13,19 which
reduces the phonon part of the thermal conductivity and there-
fore can also increase the figure of merit. One drawback of the
filtering effect is always a reduction of the electric conductivity.

In this paper we investigate the effect of energy filtering at
grain boundaries due to double Schottky barriers. It is widely
believed that this effect can enhance the figure of merit in
granular systems.5,9 We show in our paper that this is not true
for realistic systems. The origin is that the barrier height and
width themselves depend on the number of charge carriers and
are vanishing for a reasonably high number of charge carriers.
To describe the double Schottky barrier at grain boundaries we
use the model by Seto.20 Although the model was first used to
describe polycrystalline silicon it has been successfully used
for many different material systems.21,22 The model works for
n- and p-type materials. Other groups also use this model to
explain the thermoelectric behavior of different materials.5,23

The basic idea of this model is the assumption of additional
surface states. For an n-type semiconductor these states can
be filled by electrons from donor levels. This will lead to a
negative space charge region directly at the interface and to
positive space charge regions on both sides of the interface.
These space charge regions create a so-called double Schottky
barrier that acts as a barrier for electrons. A schematic sketch
of the band structure in real space is shown in Fig. 1. The grains
are characterized by their length lg , the length of the interface
region li , the density of the surface states NT , the energy levels
of the trapping states ET , the donor density ND , and the energy
levels of the donors ED . The electrons in the donor states pass
over into the deep surface states, which arise in the grain
boundary. This leads to a negative charge accumulation in the
grain boundaries and to a positive charge accumulation in the
vicinity of the grain boundaries. The resulting space charge
distribution then creates a so-called double Schottky barrier.
In the following we describe the steps to get a quantitative
description of the double Schottky barrier. First we choose
lg , li , NT , and ND . The negative space charge density in the
boundary region is NT . The positive space charge density is
ND and the length of the positive space charge region, which
we call screening length lscr, is chosen such that the total charge
in the grain is zero lscr = liNT

ND
. Once we obtain the space charge

density n(x), we use the Poisson equation to get the potential
profile V (x). We assume a constant dielectric permittivity εr

throughout the whole grain.

115320-11098-0121/2012/86(11)/115320(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.115320


M. BACHMANN, M. CZERNER, AND C. HEILIGER PHYSICAL REVIEW B 86, 115320 (2012)

FIG. 1. (Color online) Schematic band diagram in real space
before (top) and after (bottom) the generation of the double Schottky
barrier. Ec is the energy at the bottom of the conduction band and Ev

is the top of the valence band.

In Fig. 2 (top), the space charge distribution and the re-
sulting double Schottky barrier for the parameters li = 0.5nm,
NT = 1 × 1020cm−3, ND = 1 × 1019cm−3, and εr = 10 are
shown. Double Schottky barriers for different donor densities
are shown in bottom panel of Fig. 2. The height and the width
of the barriers decrease strongly with increasing donor density.

II. METHOD

For the determination of the chemical potential we consider
three kinds of states in our system. The deepest states are in
the boundary. There are NT li total states of this kind per grain
at energy ET . The next higher states in energy are the donor
states. There are NDlg total donor states per grain at energy
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FIG. 2. (Color online) Top: Space charge distribution (red) and
the corresponding potential profile (blue) around the interface.
Bottom: double Schottky barrier for different donor densities.

ED . For the remaining states we choose the density of states
of a single band with a parabolic dispersion. We determine the
value of the chemical potential μ at a given temperature T by
imposing charge neutrality. This way, the chemical potential
ensures that the number of ionized donors equals the number
of electrons trapped in the boundary region plus the number
of electrons in the conduction band.

We use the nonequilibrium Green’s function (NEGF)
method24–27 to calculate ballistic transport through a double
Schottky barrier. The Green’s function of the system is
given by

G(E) = (E − H − �l − �r )−1 , (3)

where H is the one-band effective mass Hamiltonian, �l and
�r are the self-energies of the semi-infinite leads, and E is
the energy. The one-dimensional transmission probability is
given by

T1D(E) = Tr[�l(E)G(E)�r (E)G(E)†], (4)

where �l and �r are the imaginary parts of the left and right
self-energies, respectively. The transmission function through
the barrier in three dimensions can be obtained by integration
over the Brillouin zone

T Bar(E) = LxLymeff

2πh̄2 E2
∫ 1

0
dxxT1D(Ex2). (5)

According to Ref. 28 the transmission function T Bar can be
divided into

T Bar(E) = M(E)TBar(E), (6)

where

M(E) = LxLymeff

2πh̄2 E (7)

is the number of modes and TBar(E) is the average transmission
probability per carrier at energy E

TBar(E) = 2
∫ 1

0
dxxT1D(Ex2). (8)

In addition to scattering at the grain boundary, electrons are
also affected by other scattering mechanisms such as phonon
scattering or scattering at impurities. To handle these scattering
mechanism we define a second transmission function TBulk.
TBulk can be written as25

TBulk = λ

lg + λ
, (9)

where λ has the form28

λ = λ0(E/kBT )r . (10)

λ0 is a constant, lg is the length of the grain, and r specifies the
kind of scattering. The different scattering mechanisms TBulk

and TBar can be combined incoherently by using25

TGrain(E) = 1

1/TBulk + 1/TBar − 1
. (11)

TGrain(E) is the transmission function of one grain. Since
we want to describe a macroscopic solid, we consider n grains
in series. The incoherently combined transmission function of
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n scatterers in series can be calculated using again Eq. (11) to
obtain

TSolid(E) = 1

n

TGrain

1 − TGrain + TGrain
n

. (12)

For n we can write L
lg

, where L is the length of the sample, and
hence

TSolid(E) = lg

L

TGrain

1 − TGrain + TGrainlg
L

, (13)

where the term TGrainlg
L

describes the contact conductance of the
sample. For TGrain < 1 and lg � L the contact conductance is
negligible and the grain conductance dominates.

Using Onsager relations in linear response the thermoelec-
tric coefficients can be linked to the transmission function
T Solid(E) = M(E)TSolid(E) within the Landauer formalism by
the following equations29

σ = e2L0, (14a)

S = − 1

eT

L1

L0
, (14b)

κe = 1

T

(
L2 − L2

1

L0

)
, (14c)

Lj = 2

h

∫ ∞

−∞
T Solid(E)(E − μ)j

(
− ∂f

∂E

)
dE. (14d)

At this point we want to stress that even though we are using
the Landauer formalism this does not mean that the transport
description is purely ballistic. The transport in the grain is
assumed to be diffusive and described by Eqs. (9) and (10),
whereas the transport across the grain boundary is described
as ballistic. Although the formalism used by other groups is
different, the physical description of the problem is in principle
the same. For instance Popescu et al.9 also use a diffusive
description for the transport in the grains and a ballistic
description for the grain boundaries. The central quantity in
their formalism is the scattering time τ (E), whereas in our
formalism the central quantity is the transmission function
T (E). However, in principle both formalisms describe the
same physics, their relation is shown in Ref. 28.

III. RESULTS

A. Simple model

We first investigate the effect of energy filtering within a
more general framework. Since in our complex model the
barrier height and width depend on NT and ND , which also
influence the chemical potential, we first employ a simpler
model for the barrier transmission. From the results obtained
with the simple model we can estimate the conditions under
which the thermoelectric efficiency can be increased. In the
next step we investigate if these conditions can be fulfilled in
a more realistic model.

To estimate the highest enhancement caused by energy
filtering due to a barrier we choose a step function for the
transmission function T1D(E)

T1D(E) =
{

1 E > Ub

0 E � Ub

. (15)

0.16 0.49 0.92 1.3 1.7 59 188 360 490 108 329 601 834

FIG. 3. (Color online) Electric conductivity σ , Seebeck coeffi-
cient S, and power factor S2σ vs chemical potential μ and barrier
height Ub for different grain sizes lg . Top: lg = 50 nm. Bottom:
lg = 200 nm.

For our investigation we use an effective mass and a constant
value for λ to omit additional energy filtering due to scattering
effects other than the barrier. With these assumptions we obtain
the following expression for the transmission function T Solid:

T Solid(E) =
{

meff

2πh̄2 E
λ(E−Ub)lg

Elg+Ub(λ−lg ) E > Ub

0 E � Ub

. (16)

Figure 3 shows the thermoelectric coefficients vs barrier
height and chemical potential for different grain sizes. The fol-
lowing parameters were used: meff = 0.25 × m0, λ0 = 20 nm,
r = 0, and T = 300 K. These parameters describe a typical
semiconductor and are used to make general statements. A few
general trends can be seen. The conductivity increases with
increasing chemical potential and decreases with increasing
barrier height. The Seebeck coefficient shows the opposite
behavior. For a given chemical potential the power factor has a
maximum when the barrier height is close to the chemical
potential. To conclude this part we emphasize that with a
constant barrier it is indeed possible to optimize the power
factor as shown in Ref. 9. However, we will show in the
following that the barrier itself depends on the chemical
potential and the above criteria cannot be fulfilled. Therefore,
no significant increase in the power factor is possible.

B. Realistic model

We just showed under what conditions the power factor can
be increased due to a barrier. In principle, one needs a high
chemical potential and a barrier height that is in the range of the
chemical potential. For the real system we run into difficulties,
since a high chemical potential requires a high donor density,
which leads to an effective screening of the Coulomb potential,
which in turn reduces the height and the width of the double
Schottky barrier. This reduces the effect of the energy filtering.

To make quantitative judgments we calculate the ther-
moelectric coefficients for different chemical potentials and
different barriers by altering the density of the surface states
NT from 0 to 2 × 1020 cm−3. Since the interface thickness
is 1 nm, this corresponds to a total trapped charge density
QT of 2 × 1013 cm−2. Hence the range of NT covers typical
values for QT .20 For the other parameters we used typical
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FIG. 4. (Color online) Electric conductivity σ , Seebeck coeffi-
cient S, and power factor S2σ vs chemical potential μ and density
of the surface states NT for different grain sizes lg . Top: lg = 50 nm.
Bottom: lg = 200 nm.

values (ED = −20 meV, ET = −500 meV, li = 1 nm, meff =
0.25 × m0, εr = 10, λ0 = 20 nm, r = 0, and T = 300 K).

In Fig. 4 we show results for the thermoelectric coefficient
vs chemical potential μ and density of the surface states
NT . The general trends we observed in Fig. 3 still hold for
low chemical potentials. Increasing the chemical potential
increases the electric conductivity and reduces the Seebeck
coefficient. Increasing the density of the surface states leads
to an increase of the barrier height and therefore reduces the
electric conductivity and increases the Seebeck coefficient.
The latter behavior can only be observed for low chemical po-
tentials, because for larger chemical potentials a higher donor
density ND is required. A high donor density leads to a high
effective screening of the trapped surface charge and therefore
reduces the height and the width of the barrier (see Fig. 2).

In Fig. 5 the power factor for different chemical potentials
and grain sizes is plotted. For low chemical potentials the
power factor is reduced with increasing density of the surface
states. For high chemical potentials there is no influence of
the density of the surface states on the power factor. The grain
size has only a small effect on the power factor. An appreciable
enhancement of the power factor is not observed.

As already mentioned, the important quantity is not the
power factor but the figure of merit. If the thermal conductivity
is dominated by the lattice contribution the optimization of
the power factor also optimizes the figure of merit. This is
why we considered the power factor and not the figure of
merit. Nevertheless, if the electric thermal conductivity κe is
comparable to the lattice thermal conductivity, a reduction
in the electric thermal conductivity can enhance the figure
of merit. To estimate the order of magnitude of the electric
thermal conductivity we show in Fig. 6 (top) the electric
thermal conductivity for different chemical potentials vs the
density of surface states NT . For higher chemical potentials, κe

is hardly influenced since a high chemical potential results in
a low barrier. For low chemical potentials κe rapidly decreases
with increasing NT , but even without a barrier the absolute
value of κe is much smaller than the smallest lattice thermal
conductivities reported.30

Figure 6 (bottom) shows the Lorenz number [see Eq. (2)] for
different chemical potentials as a function of NT . The Lorenz
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FIG. 5. (Color online) Top: Power factor vs density of the surface
states NT for different chemical potentials and a grain size lg =
100 nm. Bottom: Power factor vs density of the surface states NT for
different grain sizes and a chemical potential μ = 0.1.

number always increases with increasing NT , but for low
chemical potentials this effect is stronger. The Lorenz number
increases because with increasing NT the barrier increases as
well. An increase of the barrier leads to a blocking of the cold
electrons, which means that hot electrons are preferred to cross
the barrier. Hence, on average, each charged particle carries
more heat compared to the case without a barrier.

For the sake of completeness we also show the figure of
merit for three different lattice thermal conductivities κl =
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FIG. 6. (Color online) Top: Thermal conductivity of the electrons
κe vs density of surface states NT . Bottom: Lorenz number L vs
density of surface states NT .
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FIG. 7. (Color online) ZT vs chemical potential μ and density
of surface states NT for κl = 0.1 W/(mK) (left), κl = 1 W/(mK)
(middle) and κl = 10 W/(mK) (right). Top: lg = 50 nm. Bottom:
lg = 200 nm.

0.1,1,10 W/(mK) in Fig. 7. These values of κl are chosen to
cover typical ranges of thermoelectric materials. In principle,
the figure of merit shows the same behavior as the power factor,
except that for low κl the figure of merit decreases earlier with
increasing chemical potential μ than the power factor. The
reason is that κe increases and hence reduces the figure of merit
with increasing chemical potential. There is no qualitative
difference between grain sizes of 50 nm and 200 nm.

IV. CONCLUSION

We employed a one-band effective mass model to capture
the main effects in grain boundary structures. We showed for

a simple model that an enhancement of the power factor can
only be achieved when the barrier height is in the range of the
chemical potential. For a realistic model these conditions could
not be reproduced since a high chemical potential prevents a
barrier due to screening effects. From this we conclude that
an effective enhancement of the figure of merit at reasonable
values of the chemical potential cannot be achieved by a double
Schottky barrier. These results are contrary to general belief5

and to results presented by Popescu et al.9 They investigated
the effect of energy filtering on grain boundaries and modeled
the grain barriers using rectangular barriers, where they varied
the height and width of the barrier independently from the
other parameters. Therefore, they were able to obtain an
enhancement in the power factor. In this paper we showed
that the width and the height of the barrier depend on the
chemical potential. If we employ the realistic model of the
double Schottky barrier to describe the barrier formation due to
charge accumulation in the grain boundaries an enhancement
of the power factor is not observed for a wide range of
realistic parameters. Nevertheless, we do not exclude that other
energy-dependent scattering effects at grain boundaries can
occur and that these effects can increase the power factor.
To investigate these effects one has to perform ab initio
calculations and simulate the grain boundary on an atomistic
scale.
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