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Classical-quantum crossovers in quasi-one-dimensional electron-hole systems: Exciton-Mott
physics and interband optical spectra
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We study quasi-one-dimensional electron-hole (e-h) systems by applying a self-consistent screened T -matrix
approximation (SSTA), which can treat an e-h pair embedded in the background of the exciton-plasma mixture,
characterized by the exciton ionization ratio. Two classical-quantum crossovers are found. The first crossover
takes place as the drastic suppression of ionization ratio, representing the onset of the quantum dissociation of the
exciton (binding-energy reduction and level-broadening effects). The second one can be seen in a gradual change
in the interband absorption-gain and photoluminescence spectra: Moss-Burstein effects become significant, and
the e-h plasma starts to dominate the optical gain. Most of the features of the absorption-gain spectra observed
in the recent experiments can be captured semiquantitatively by our SSTA.
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I. INTRODUCTION

Systems consisting of the same number of electrons and
holes provide stages for the fundamental research on the
many-body effects in the condensed matter. In fact, they exhibit
numbers of characteristic phases induced by the intercarrier
Coulomb interaction under the thermal equilibrium; an insu-
lating exciton-gas phase at low electron-hole (e-h) density and
low temperature, and a metallic e-h plasma phase at high e-h
density or high temperature. Between them, there exists an
exciton-Mott crossover1–10 or transition.1,3,9–19 Even a quan-
tum condensation (e-h pairing) is predicted theoretically in the
ultracold e-h systems, namely, the Bose-Einstein condensation
of excitons20–23 and the Bardeen-Cooper-Schrieffer state of e-h
Cooper pairs,24,25 which are connected via a crossover.26–30

The uniqueness of the e-h system is the long-range nature of
interaction, and the keen competition between the repulsive
and the attractive interactions. This makes sharp contrast with
the lattice systems with repulsive short-range interaction, e.g.,
Hubbard models, in which the many-body effects have been
also intensively studied.

Thermalized e-h systems are actually realized in the
nondoped semiconductors under a strong photoexcitation
because the intraband relaxation is usually much faster than
the interband one. They can also be found in the various
semimetals, such as divalent metals, type-II semiconductor
structures, and so on.1,31 The exciton-Mott crossover is
particularly important in the application to the laser devices
since the population inversion in e-h plasma is a source of
the optical gain. In the absence of many-body effects, it
is obvious that the device performances are improved by
using low-dimensional structures, e.g., quantum wells (two
dimension), and quantum wires (one dimension). Since low
dimensionality enhances the density of states in the vicinity
of the band edge, a lower threshold, a higher differential gain,
and a narrower bandwidth are expected there.32–35 However,
such advantages may be hindered by the many-body effects;
the excitonic effects are enhanced by the spatial confinement
in low-dimensional systems,36–38 which might prevent the
formation of e-h plasma. Further, the intercarrier scattering
rates near the Fermi level might be quite large in quasi-one-

dimensional (quasi-1D) systems even at low temperature.39

This non-Fermi-liquid nature implies a large broadening of
optical spectra, which can be a disadvantage of the optical
gain. Strong excitonic effects also demand the reconsideration
on the screening effects, i.e., once e-h pairs form charge
neutral excitonic bound states, they no longer give relevant
contribution to the screening effects.

The quality of the quasi-1D e-h systems has been much
improved since the early observation of lasing40–48 and
photoluminescence (PL) spectra.49–53 They can now provide
rich experimental outcomes to test the above issue. In recent PL
measurements on the T-shape quantum wires,54–57 a new peak
is found in the lower-energy side of the excitonic peak. The
energies of both new and excitonic peaks are almost unshifted,
and the intensity is transferred from the latter to the former,
as the e-h density is increased. As for the absorption-gain
spectra,54 the sharp exciton absorption line at low e-h density
continuously turns to the broad absorption-gain spectra of
e-h plasma at high e-h density, which is nothing but the
exciton-Mott crossover. The excitonic peak is almost unshifted
as in the PL spectra until the optical gain appears at around
the energy of the new peak found in PL spectra. They also
confirmed the thermalization of e-h systems by examining
the Kubo-Martin-Schwinger (or Kennard-Stepanov) relation
between the absorption-gain and PL spectra.58 This relation
does hold in wide range of the e-h density, and the temperatures
were estimated roughly as 40–70 K, which is much higher than
that of the environment (∼4 K).59

Theoretically, the interaction effects in quasi-1D e-h
systems are still controversial.39,60–69 It is known in three
dimensions that the perturbation theory or the equation of
motion (so-called semiconductor Bloch equation) are quite
effective,2–10 in which the self-energy is evaluated via the
screened Hartree-Fock approximation and the optical suscep-
tibility is computed with the screened T matrix to include the
excitonic correlation. However, in the quasi-1D system, their
results depend quite severely on the treatment of the screening
effects; if only the static screening is taken into account,62–65

the sharp excitonic absorption line continuously transforms
to the absorption-gain spectra of e-h plasma with increasing
e-h density, which is accompanied by the red-shift of the
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excitonic peak. Then, although the optical gain is correctly
reproduced at high e-h density, the red-shift contradicts with
the experimental observations. By contrast, if the dynamical
screening is considered,39 we see only the broadening of the
unshifted excitonic peak as e-h density is increased. The optical
gain is almost washed out by the strong intercarrier scatterings,
which do not explain the recent experiments, again.

In the above theories,39,62–65 they deal with an e-h pair
embedded in the background of e-h plasma, taking into account
the band-gap renormalization (BGR), screening and Pauli-
blocking effects. The renormalized band gap monotonously
decreases as the e-h density is increased. The energy shift
of the excitonic bound state is much smaller owing to its
charge neutrality. At the merging point of these two energies,
i.e., at the Mott density, the excitonic bound state completely
vanishes, and the optical gain can appear at low temperature
where the population inversion of the e-h plasma is realized.
Although this kind of theory does give an intelligible picture
of the exciton-Mott crossover, its application to the regime
of low e-h density and low temperature is problematic. For
example, it does not explain the experimentally observed
strong suppression of BGR. One can develop instead a self-
consistent theory for an e-h pair embedded in the background
of exciton gas, which correctly predicts BGR suppression at the
low e-h density and low temperature.70 However, at a certain
e-h density, it shows a sudden collapse of excitonic bound
states (pure Mott transition or ionization catastrophe), not the
exciton-Mott crossover.

To overcome the above problem, and to obtain a unified
description of the exciton-Mott physics, we need a treatment
for an e-h pair embedded in the mixture of exciton gas and
e-h plasma, and consider the ionization ratio in this mixture.71

In terms of Green’s function formalism, the e-h T matrix,
which denotes the effects by the excitonic bound states,
should be taken into account in the electron and the hole self-
energies.3,9,10,66–69,72–83 In a previous paper,84 we developed a
self-consistent screened T -matrix approximation, in which the
self-energies, the screening parameter, and the T matrices are
all determined in a consistent manner. Although the prototype
of this approximation was already proposed more than two
decades ago,3,75,76 its application has been restricted only to the
simplified theoretical models. Only recently, it is implemented
for the realistic models of semiconductors.77–83 Theories based
on the equation-of-motion approach85,86 and the path-integral
Monte Carlo simulations86,87 are also proposed to treat the
exciton-plasma mixture, whereas the physical meaning of the
ionization ratio is different from those used conventionally in
the self-consistent T -matrix theories.88

The main purpose of this article is to understand the exciton-
Mott crossover and the interband optical response in quasi-1D
e-h systems, whereas, we also complete the discussions on
the exciton-Mott transition. Two possibilities are pointed out
regarding the exciton-Mott transition. One is the gas-liquid
transition accompanied by a coexisting region of exciton
gas and e-h plasma,3,9–15,17,18 which are in fact observed in
bulk indirect semiconductors, e.g., Si and Ge,89 as well as
in the type-II structures on direct semiconductors.90 Inside
the coexisting region, the e-h chemical potential (the sum of
electron and hole chemical potentials) becomes independent
of e-h density. The other one is the pure Mott transition

characterized by the discontinuous jump of the ionization
ratio.19,23,70 This type of transition was observed recently in
the coupled quantum wells (e-h bilayer),91 which is, however,
only poorly examined theoretically. Note that the exciton-
Mott crossover and transition is distinctly distinguished here,
while in some literature their difference is only ambiguously
discussed.

Aside from the Mott transition, we can also imagine the
quantum condensation (e-h pairings).20–30 Since the e-h pairing
is suppressed by the strong quantum fluctuations, it will be
hard to see the real quantum condensation in quasi-1D systems.
However, we still find its precursor effects in the single-particle
spectra, as will be discussed in Sec. III E.

The paper is organized as follows: In Sec. II, we introduce
the model Hamiltonian of the quantum wire, and explain our
theoretical framework. Then, we present the results on the
quasiequilibrium properties and on the optical response of
quasi-1D e-h systems in Sec. III. Discussions and summaries
are given in Secs. IV and V.

II. FORMULATION

A. Model of quasi-1D e-h system on quantum wire

We consider a model quantum wire along the x axis.
Electrons and holes are confined in its rectangular cross section
|y| � �y/2, |z| � �z/2 by a hard-wall potential. Under the
sufficiently strong potential confinement, one is allowed to
consider only the lowest subband, where the wave function in
the confined directions reads as

u(r⊥) = 2√
�y�z

cos

(
π

�y

y

)
cos

(
π

�z

z

)
(1)

with r⊥ = (y,z). Then, the effective electron-electron (e-e)
Coulomb interaction potential along the wire is described in
the Fourier transformed form

Vq = 2e2

ε0

∫
D

d2r⊥

∫
D

d2r ′
⊥K0(q|r⊥ − r ′

⊥|)

× |u(r⊥)|2|u(r ′
⊥)|2, (2)

where D denotes the cross section of the quantum wire, ε0 is the
background dielectric constant, and K0(x) is the lowest-order
modified Bessel function of the second kind.

It should be mentioned here that the lowest-subband
approximation in Eq. (2) does not hold well in the T-shape
quantum wire used in experiments.47,54–57 The confinement
potential in the T-shape quantum wire is rather shallow, and the
effects of the excited subbands are non-negligible especially
for the holes, namely, the intersubband energy spacing is
smaller than the exciton binding energy. However, as we
see shortly, �y and �z are tuned so as to reproduce the
exciton binding energy observed in the experiments, so that
the energy structures of the single-particle and optical spectra
can be captured properly, even if Eq. (2) is used as the model
interaction potential. Still, the spectral broadening induced
by the intercarrier scatterings might be overestimated because
the intersubband screening generally “softens” the short-range
part of the interaction.
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The electrons and holes confined in this quantum wire are
described by the many-body Hamiltonian

H =
∑
akσ

εakc
†
akσ cakσ + 1

2L

∑
q

Vq : ρc,qρc,−q : , (3)

where L is the wire length, and the pair of colons means
the normal ordering of annihilation and creation operators
between them. The operator cakσ annihilates an electron or
a hole with a wave number k and spin σ , depending on a = e
and h, respectively. The charge density operator is also written
as

ρc,q =
∑
akσ

zac
†
ak−qσ cakσ , (4)

where za denotes the sign of particle charge (ze = −1, zh =
+1). The energy dispersions of electron and hole along the
wire are given as

εa,k = h̄2k2

2ma

+ Eg

2
(5)

with the bare band gap Eg and the effective mass ma .

B. Self-consistent screened T -matrix approximation
with feedback to screening

We explain here the self-consistent screened T -matrix
approximation (SSTA) developed by the authors.84 It enables
us to treat the suppression of plasma screening by the formation
of e-h bound states. The flowchart of our numerical calculation
is given in Fig. 1, together with the corresponding Feynman

Σ

(1) Full Green’s function (Dyson Eq.)

(2) Screened interaction (PPA)

(3) Screened T-matrix (Bethe-Salpeter Eq.)

(4) New guess of selfenergy

QP

T T= +

(0) Initial guess of selfenergy

S
el

f-
co

ns
is

te
nt

 lo
op

Σ = +

Σ(HF)
Σ(MW)

Σ(L’)

+ T

- Σ(L2)Σ(L)

+ T

FIG. 1. Our calculation scheme depicted with Feynman diagrams.
Thick and thin solid lines denote full and bare single-particle Green’s
functions, respectively, while thick and thin wavy lines represent
screened and bare Coulomb interactions, respectively. Screening of
interaction is evaluated with quasistatic plasmon pole approximation,
considering only the quasiparticle contribution (ionized fraction).

diagrams. Throughout this section, we use the Planck units,
i.e., h̄ = 1 and kB = 1. Green’s functions, T matrices, and
self-energies presented below are retarded ones.

Let us start from an initial guess of the self-energy �a(k,ω).
The full single-particle Green’s function is written as

Ga(k,ω) = 1

ω − εa,k + μa − �a(k,ω)
. (6)

The chemical potential of the electron and hole, μe and μh,
are determined so as to satisfy

n = − 2

L

∑
k

∫
dω

π
fF(ω)ImGa(k,ω), (7)

where n is the (axial) e-h density, i.e., electron, or equivalently,
hole number per unit length on the wire, and fF(ω) = [eω/T +
1]−1 is the Fermi distribution function at temperature T . The
factor 2 stems from the spin degeneracy.

The energies of the quasielectron and the quasihole, ξe,k

and ξh,k , are given as the solution of

Re
[
G−1

a (k,ξa,k − μa)
] = 0, (8)

which determines the renormalized band gap

E∗
g = ξe,k=0 + ξh,k=0, (9)

and the quasiparticle densities

n(0)
a = 2

L

∑
k

fF(ξa,k − μa). (10)

Following the proposal by Zimmermann and Stolz,75,76 we
define the ionization ratio as

α = 1

2n

(
n(0)

e + n
(0)
h

)
, (11)

which denotes the e-h portion behaving like free particles.
The screening effect is taken into account via the plasmon-

pole approximation. We evaluate the quasistatically screened
Coulomb interaction potential as

Wq = Vq

(
1 + �2

q

�2 − �
2
q

)∣∣∣∣∣
�→0

= Vq

[
1 + Vq

[
e2

ε0κ
+ Cq2

16mn

]−1
]−1

, (12)

using the quasi-1D plasma frequency

�q =
[
nq2

m
Vq

]1/2

(13)

and the effective plasmon-pole frequency

�q =
[
�2

q + ne2

εκ
· q2

m
+ Cq4

16m2

]1/2

, (14)

where κ is the (dimensionless) screening parameter and
C is the adjustable parameter introduced to describe the
contribution other than the plasmon pole.62 We expect that
the screening is mostly attributable to the e-h plasma, and is
determined by n(0)

e ∼ n
(0)
h . Thus, we estimate the screening
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parameter as

κ = 2λL

L

∑
a,k

fF(ξa,k − μa)[1 − fF(ξa,k − μa)] (15)

using the so-called Landau length λL = e2/ε0T . Here, only the
quasiparticle contribution is kept, and the interaction between
the quasiparticles is neglected. We adopt C = 4 following
Ref. 62, while the final results depend only weakly on the value
of C.

Next, we evaluate the screened T matrices Tab(k,k′; Q,�),
in order to consider the multiple e-e (a = b = e), h-h (a = b =
h), and e-h (a �= b) scatterings in which the wave numbers of
a and b particles are changed from k and Q − k to k′ and Q −
k′, respectively. Among them, the e-h one, Teh, is especially
important since it describes the effects of the excitonic bound
states. These T matrices are determined so as to satisfy the
Bethe-Salpeter equation

Tab(k,k′; Q,�)

= zazbW|k−k′| + 1

L

∑
k′′

zazbW|k−k′′|G(0)
ab (k′′; Q,�)

× Tab(k′′,k′; Q,�). (16)

Here, the pair Green’s function without vertex correction is
expressed in the spectral representation as

G(0)
ab (k; Q,�) = −

∫
d�′

π

ImG(0)
ab (k; Q,�′)

� − �′ + iδ
(17)

with

ImG(0)
ab (k; Q,�)

= −
∫

dω′

π
[1 − fF(ω′) − fF(� − ω′)]

× ImGa(k,ω′)ImGb(Q − k,� − ω′) (18)

= − 1

fB(�)

∫
dω′

π
fF(ω′)fF(� − ω′)

× ImGa(k,ω′)ImGb(Q − k,� − ω′), (19)

where δ is an infinitesimally small positive number, and
fB(�) = [e�/T − 1]−1 is the Bose distribution function. Two
Fermi distribution functions in Eq. (18) account for the
Pauli-blocking effects on the electron and hole, respectively.

Then, the new guess of the self-energy is given in the
spectral representation as

�a(k,ω) = �(HF)
a (k) −

∫
dω′

π

Im�a(k,ω′)
ω − ω′ + iδ

, (20)

with the Hartree-Fock self-energy

�(HF)
a (k) = 1

L

∑
k′

V|k−k′|
∫

dω

π
ImGa(k′,ω). (21)

The imaginary part of the self-energy, which denotes the
correlation effects, is decomposed into four terms:

Im�a = Im
[
�(MW)

a − �(L2)
a + �(L)

a + �(L′)
a

]
. (22)

Here, �(MW)
a and �(L2)

a denote the Montroll-Ward9,10 and the
screened Born (the second-order contribution of �(L)

a ) terms,
respectively, while �(L)

a and �(L′)
a describe the direct and

exchange contributions of the screened T matrix, respectively.
Their contributions are explicitly written as

Im
[
�(MW)

a (k,ω) − �(L2)
a (k,ω)

]
= −

∫
dω′

π
[fB(ω + ω′) + fF(ω′)]

× 2

L2

∑
b,k′k′′

(V|k−k′′| − W|k−k′′|)W|k−k′′|

× ImG(0)
ab (k′′; k + k′,ω + ω′)ImGb(k′,ω′) (23)

and

Im
[
�(L)

a (k,ω) + �(L′)
a (k,ω)

]
= −

∫
dω′

π
[fB(ω + ω′) + fF(ω′)]

× 1

L

∑
b,k′

Im[2Tab(k,k; k + k′,ω + ω′)

− δabTaa(k,k′; k + k′,ω + ω′)]ImGb(k′,ω′), (24)

where the factor 2 again results from the spin degeneracy.93

The self-energy contribution of Eq. (23) is rather irrelevant
since the screening is suppressed in quasi-1D systems: Vk ∼
Wk . Therefore, the self-energies are almost dominated by the
T -matrix contribution �(L), which expresses the effects of
the excitonic bound states and of the multiple intercarrier
scatterings. Particularly, the latter effect leads to intrinsic
broadening in the single-particle and optical spectra. This
makes sharp contrast to the theory of the semiconductor
Bloch equation, the self-energy of which does not include
these effects, and the spectral broadening can be treated
phenomenologically at best (see Sec. II D for details).

Starting with an initial guess of �a(k,ω), we iterate
the above loop of calculation until it converges. Then, we
eventually determine the self-energy �a(k,ω), the screening
parameter κ , and the T matrix Tab(k,k′; Q,�), which are
consistent with each other.

Our formalism is overall based on Ref. 77, but has
distinctive difference in the following points. One is the
improvement in the definition of the ionization ratio. We
consider that our definition by Eqs. (10) and (11) is more
reasonable because the one used in Ref. 77 sometimes gives
a considerable difference between n(0)

e and n
(0)
h . Another

difference lies in the self-energy terms. We substitute the
second-order scattering (screened Born) term in the direct
T -matrix contribution with the Montroll-Ward term to avoid
double counting of Feynman diagrams. We no longer need the
additional screened Hartree-Fock (SHF) term, namely, the sum
of the static screened-exchange and the Coulomb-hole terms,
since it is already considered via the Hartree-Fock and the
Montroll-Ward terms. We also add the exchange contributions
of T matrices neglected in Ref. 77.

Our SSTA fully takes into account the two-body (excitonic)
correlations via the T matrices. Thus, it is valid in the low
e-h density region except at the extremely low temperature
where the trionic (three-body) or the biexcitonic (four-body)
correlations are relevant. Meanwhile, in the high e-h density
region, our SSTA is valid again, where the Montroll-Ward
self-energies play the most essential role and the T -matrix
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FIG. 2. (Color online) Phase diagram of quasi-1D e-h system
depicted as intensity plot of ionization ratio α on the n-T plane.
Electron-hole density n and temperature T are scaled by in-
verse of quasi-1D exciton Bohr radius a−1

1D = (8.09 nm)−1 = 1.24 ×
10−6 cm−1, and binding energy E1D = 14.0 meV = 162 K, respec-
tively. Isothermal compressibility diverges at the boundary of the
gray-shaded region, inside which an inhomogeneous thermodynamic
state is expected. This boundary shows a dip near na1D ∼ 6 × 10−2,
on which there is a pure Mott transition point. Thin solid lines denote
the contours of α = 0.1, 0.5, 0.9, and 1.0. On the thick dotted line,
ionization ratio has its minimum at the fixed temperature, and starts
to show quantum dissociation of quasiexcitons. This line almost
overlaps the thin dotted line expressed by Eq. (44). Thick and thin
broken lines show the plasma-gain-onset densities evaluated by our
SSTA and by Eq. (28), respectively. Equation (28) also gives a good
approximation for the Mott density evaluated by the semiconductor
Bloch equation (SBE).

contributions become irrelevant. Therefore, our SSTA is
expected to give a reasonable interpolation between the low
and the high e-h density regimes, and enables us to draw a
“global” phase diagram of e-h systems, as will be shown in
Fig. 2.

Although the quasistatically screened interaction is used in
the T matrices, the dynamical correlation effects are still taken
into account in our SSTA. As already discussed in Ref. 39, the
most essential consequence of the dynamical screening is the ω

dependence of the screened HF self-energies at intermediate or
high e-h densities. In our SSTA, this ω dependence is included
in the Montroll-Ward terms, so that the dynamical screening
effect is accounted for partially. In the previous theories, the
dynamical screening effects in the T matrices are completely
neglected,62–64 or treated only approximately,39,65 in order to
carry out the numerical evaluation. It is known that some of
the approximations to the dynamically screened T matrices
give unphysical results. For example, the so-called Shindo
approximation92 seems to hide the optical gain observed
experimentally.39

C. Interband optical spectra

Now, let us consider the interband optical response against
the linearly polarized light along the quantum wire, neglecting
the wave-number dependence of the corresponding dipole
matrix element d. The optical absorption-gain spectra, i.e.,

the imaginary part of the interband optical susceptibility per
unit length, is written as

Pabs(�) = −2|d|2
L

Im

[∑
kk′

Geh(k,k′; Q = 0,� − μ)

]
, (25)

as a function of the photon energy �, where the e-h chemical
potential is defined as μ = μe + μh, and the full e-h pair
Green’s function is given as

Geh(k,k′; Q,�)

= G(0)
eh (k; Q,�)δkk′

+ 1

L
G(0)

eh (k; Q,�)Teh(k,k′; Q,�)G(0)
eh (k′; Q,�). (26)

The photoluminescence spectra can also be obtained from
these absorption-gain spectra by means of the Kubo-Martin-
Schwinger (KMS) relation. In fact, they are proportional to

PPL(�) = fB(� − μ)Pabs(�). (27)

Note that KMS relation holds exactly under our SSTA.77,93

The KMS relation and the inequality PPL(�) � 0 also
show that the optical absorption is possible at � > μ, while
the optical gain (negative absorption) appears at � < μ.
Therefore, the e-h plasma (quasielectrons and quasiholes) can
contribute to the gain at the high-n region satisfying E∗

g � μ.
With this in mind, we determine the plasma-gain-onset density
nP(T ) by the condition, E∗

g = μ at a given temperature T .
As will be discussed in the Appendix, we find a simple
approximation for this density:

nPλT ∼ 2

(
M

m

)1/4

I−1/2(0) = 1.21 ×
(

M

m

)1/4

, (28)

where we define the thermal de Broglie wavelength as

λT = h√
2πmkBT

(29)

with the reduced mass m. This formula shows that the
plasma-gain onset can be understood as a classical-quantum
crossover. In other words, it is essentially determined by
the Pauli-blocking or the phase-space-filling effects and is
insensitive to the many-body effects, e.g., the screening. This
fact gives the reason why the free-carrier theory explains some
aspects of the experimental observations pretty well.

The real part of the the interband optical susceptibility also
gives the information on the e-h pair condensation. In fact, the
e-h pair susceptibility

χpair = 2

L

∑
kk′

Geh(k,k′; Q = 0,� = 0) (30)

should diverge at the critical temperature or at the critical
density if the e-h pair condensation takes place. This is the
so-called Thouless criterion.30,94

D. Semiconductor Bloch equation

In the following sections, we compare the results obtained
by our SSTA with those by the so-called semiconductor Bloch
equation (SBE).62–64 In the SBE, one considers a pair of
a quasielectron and a quasihole embedded in the pure e-h
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plasma. The finite-lifetime effects of the quasielectron and
quasihole are neglected, and only their renormalizations in
energy are taken into account. It is examined whether this pair
can form a bound state (quasiexciton) or not by considering the
screening of e-h attractive interaction and the Pauli-blocking
effect.

The SBE considers the renormalization of the electron and
the hole energies by means of the screened Hartree-Fock
approximation (SHFA). The quasiparticle energies ξa,k and
the chemical potential μa are determined so as to satisfy

ξa,k = εa,k + 1

2

∑
q

(Wq − Vq) −
∑
k′

Wk−k′fF(ξa,k′ − μa),

(31)

κ = 2λL

L

∑
a,k

fF(ξa,k − μa)[1 − fF(ξa,k − μa)], (32)

n = 2

L

∑
k

fF(ξa,k − μa), (33)

where the screened interaction potential Wq is evaluated by
substituting Eq. (32) into Eq. (12). The second and the third
terms of Eq. (31) are called Coulomb hole and screened
exchange self-energies, respectively. The renormalized band
gap E∗

g is also determined via Eq. (9).
The single-particle Green’s function is approximated in the

free-carrier form as

Ga(k,ω) ∼ 1

ω − ξa,k + μa + iδ
. (34)

Then, Eqs. (16)–(18), and (26) lead to the formal expression
of the full e-h pair Green’s function95,96

Ĝe-h(Q,�) = (� − ĤQ + μ + iδ)−1F̂Q. (35)

Here, we use the matrix notation: the matrix elements of
Ĝe-h(Q,�) are given by Ge-h(k,k′; Q,�), and the effective
Hamiltonian for the quasielectron-quasihole pair with the total
momentum Q is defined as

ĤQ = K̂Q − 1

L
F̂QŴ . (36)

The matrix elements of K̂Q, F̂Q, and Ŵ are written as

[K̂Q]kk′ = (ξe,k + ξh,Q−k)δkk′, (37)

[F̂Q]kk′ = [1 − fF(ξe,k − μe) − fF(ξh,Q−k − μh)]δkk′, (38)

[Ŵ ]kk′ = Wk−k′ , (39)

respectively. Equation (35) is numerically evaluated by diag-
onalizing ĤQ. Although ĤQ is not Hermite due to (F̂QŴ )† =
Ŵ F̂Q �= F̂QŴ , we can prove that all eigenvalues of ĤQ

are real. If the lowest eigenvalue of ĤQ=0 lies below the
renormalized band gap E∗

g , it can be identified as the (ground)
energy of quasiexciton E∗

X.
In the SBE framework, the exciton Mott crossover is

discussed traditionally in terms of the Mott density nM(T ),
which is determined by the condition B∗

X = E∗
g − E∗

X → +0
at a given temperature T . As n is increased, both the Coulomb
hole and the screened exchange self-energies work to reduce
the effective band gap E∗

g . Whereas, the quasiexciton energy

E∗
X shows much weaker dependence on n owing to its charge

neutrality. This means that the effective binding energy B∗
X is

suppressed by the Pauli-blocking and the screening effects. At
the Mott density, the quasiexciton level E∗

X finally merges into
the energy continuum of scattering states above E∗

g , which
implies the complete ionization of the excitons.

Now, let us discuss the relation between the Mott and
the plasma-gain-onset densities within the SBE framework.
In the following, for a given temperature T , we assume
that phase transitions never occur at any e-h densities. This
leads to μ < E∗

X at n < nM(T ) since μ → E∗
X − 0 implies

the divergence of the e-h pair susceptibility, or equivalently,
the e-h pair condensation. Then, we obtain the inequality
nM(T ) � nP(T ) because μ < E∗

X < E∗
g and thus n < nP(T )

always hold as far as n < nM(T ) is fulfilled. Here, it should
be noted that the conditions n < nM(T ) and n < nP(T ) are
equivalent to E∗

X < E∗
g and μ < E∗

g , respectively.
Further, we can show the equality nM(T ) = nP(T ) in 1D

and 2D e-h systems, as shown in the following. This is a direct
consequence of the stability of bound states, and is one of the
characteristic aspects of the low-dimensional e-h systems. The
proof is simple. At n < nP(T ), the Pauli-blocking factor F̂Q is
a positive definite. In fact, we can confirm the inequality

1 − fF(ξe,k − μe) − fF(ξh,Q−k − μh)

= fF(ξe,k − μe)fF(ξh,Q−k − μh)

fB(ξe,k + ξh,Q−k − μ)
> 0 (40)

since ξe,k + ξh,Q−k � E∗
g > μ. Thus, we can define F̂

1/2
Q and

the similar matrix

Ĥ ′
Q = F̂

−1/2
Q ĤQF̂

1/2
Q = K̂Q − 1

L
F̂

1/2
Q Ŵ F̂

1/2
Q , (41)

which is Hermite and has the same eigenvalues as ĤQ. As
a result, the problem is mapped to an ordinary Schrödinger
equation for the e-h pair with an effective attractive interaction.
Note that even an infinitesimally small attractive potential
can form a bound state in 1D and 2D systems,97 so that
a quasiexciton always exists at n < nP(T ), which implies
nM(T ) � nP(T ). As mentioned above, the converse inequality,
nM(T ) � nP(T ), generally holds. Thus, we finally obtain the
equality.

As Mott himself argued, the screening effect plays the
most essential role in the Mott physics in the bulk (three-
dimensional) e-h systems: the quasiexcitons are expected to be
dissociated when the exciton Bohr radius becomes comparable
to the screening length. Therefore, the above equality nM(T ) =
nP(T ) might seem peculiar since it means that not only the
plasma-gain-onset density but the Mott density is determined
almost only by the Pauli-blocking effect. However, we should
note that Mott’s argument holds only in the bulk case. At
low dimensions, the quasiexciton is never dissociated only by
the screening effects since a bound state survives even for an
infinitesimally weak e-h attractive interaction.

Not only in our SSTA, but also in the SBE framework,
the plasma-gain-onset density nP(T ) is well approximated by
Eq. (28). Thus, for quasi-1D e-h systems, we finally obtain

nM(T ) = nP(T ) ∼ 1.21 ×
(

M

m

)1/4 1

λT
. (42)
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III. RESULTS

The parameter values in our model are chosen with
in mind the T-shape quantum wires used in the recent
experiment,47,54–57 which are fabricated at the intersection of
a 14 nm (001) Al0.07Ga0.93As and 6 nm (110) GaAs quantum
wells. Using the effective masses of bulk GaAs along the
wire,64 we estimate the electron and hole effective masses as
me = 0.0665m0 and mh = 0.11m0, respectively, where m0 de-
notes the electron rest mass. Then, the exciton total and reduced
masses are given by M = me + mh = 0.1765m0 and m =
memh/(me + mh) = 0.0414m0, respectively. We optimize the
side lengths of the rectangular cross section, �y and �z, so as
to reproduce the experimentally observed quasi-1D exciton
binding energy E1D = 14.0 meV by fixing the aspect ratio to
�z/�y = 6/14, and using the background dielectric constant
ε0 = 13.74. This evaluation gives �z/a1D = 1.00, where we
define the quasi-1D Bohr radius as a1D = h̄/

√
2mE1D =

8.09 nm.
Hereafter, all the energy and length quantities are scaled by

E1D and a1D, respectively. The results are insensitive to �z/�y ,
as well as to �z/a1D, while their temperature dependence is
affected by the e-h mass ratio me/mh to some extent.

A. Phase diagram

Before discussing the single-particle and interband optical
spectra in the quasi-1D e-h system, we give an overview of
exciton-Mott physics. The phase diagram on the n-T plane
is given in Fig. 2, which is depicted as an intensity plot
of ionization ratio α. This diagram clearly shows that the
traditionally used Mott density gives only an oversimplified
description of the exciton-Mott physics.

The electrons and holes are almost fully ionized and behave
as classical and quantum plasma in the left-upper (low-n
and high-T ) region and the right-lower (high-n and low-T )
region, respectively. Almost pure exciton gas, characterized
by the extremely small ionization ratio, is realized only at
low e-h density (na1D � 0.5 × 10−1) and low temperature
(kBT/E1D � 10−1). At even lower temperature, there is a
shaded region in which we find the homogeneous thermo-
dynamic states being unstable. Its boundary is determined by
the divergence of the isothermal compressibility

− 1

L

(
∂L

∂p

)
T

= 1

n2

(
∂μ

∂n

)−1

T

→ +∞, (43)

where p denotes the “pressure” of the e-h system. The stability
of the homogeneous thermodynamic state requires that μ is
an increasing function of n. Therefore, the above divergence
implies the instability toward either a phase separation or an
inhomogeneous thermodynamic state. This boundary shows a
dip at around na1D ∼ 6 × 10−2, which is a pure Mott transition
point, namely, one finds there a discontinuity in the ionization
ratio as a function of e-h density.

On the thick dotted line, the ionization ratio shows the
minima at the fixed temperatures. This line almost overlaps
the thin dotted line which expresses the condition

nλT ∼ 0.2, (44)

and thus defines a classical-quantum crossover. The physical
meaning of this crossover is the onset of the quantum
dissociation of the quasiexciton. In fact, as shown in the next
section, the ionization is a rapidly increasing function of n

in the quantum regime nλT � 0.2, whereas it is a decreasing
function of n in the classical regime nλT < 0.2, obeying the
classical Saha equation.

The solid line shows the plasma-gain-onset density nP(T ),
at which the optical gain induced by e-h plasma appears
satisfying the condition μ = E∗

g . As discussed in Sec. II C,
this density is well approximated by Eq. (28):

nλT ∼ 1.21 × (M/m)1/4 = 1.74, (45)

as shown in the broken line. It provides the criterion of the
classical-quantum crossover for the interband optical spectra,
as will be mentioned in Sec. III D. This broken line almost
coincides with the chain line which shows the Mott density
obtained by the SBE. Let us remind here that the Mott and the
plasma-gain-onset densities are exactly the same within the
SBE framework, as proved in Sec. II D.

B. Thermodynamic quantities

Figure 3(a) represents the n dependence of the ionization
ratio α at several temperatures. At low e-h density nλT 
 1,
the ionization ratio is well approximated by the Saha equation3

for the mixture of ideal gas of electrons, holes, and excitons:

α2

1 − α
= 1

nλT
exp

(
−E1D

kBT

)
. (46)

This equation predicts the enhancements of α with increasing
T or with decreasing n, which we call entropy and thermal
dissociations,98 respectively. The ionization ratio has its
minimum at around the e-h density of Eq. (44) as indicated by
arrows, and then starts to deviate from the classical Saha equa-
tion at the higher e-h density. Indeed, α is drastically increased
as a function of n, which we call quantum dissociation.98 This
dissociation is caused by the reduction of the quasiexciton
binding energy and the level broadening of the quasiexciton.
At low temperature, this feature is enhanced and finally turns
to a discontinuous jump on the pure exciton-Mott transition
point. Discontinuous change at the transition point is also seen
in the e-h chemical potential, screening parameter, and the
band-gap renormalization, as will be mentioned shortly.

In Fig. 3(b), we plot the e-h chemical potential μ, as a
function of n. At high temperature (kBT/E1D � 0.3), μ grad-
ually and monotonously increases as a function n. However,
once we enter a low-temperature region, μ starts to show an
anomaly at around na1D ∼ 0.5. As the temperature decreases,
μ shows a stepwise increase from the value in the almost
pure exciton gas to that in the quantum e-h plasma, as seen
in the data at kBT/E1D = 0.13. This characteristic behavior is
a precursor of the pure Mott transition. We also confirm that
the e-h chemical potential at such low temperature approaches
asymptotically the result for the ideal gas of exciton at low e-h
densities, and not the one calculated by screened Hartree-Fock
approximation, in which excitonic effects are neglected. The
discontinuity in the e-h chemical potential is about a half of the
exciton binding energy: �μ ∼ E1D/2. An explanation for this
value of �μ will be given in Sec. III C. Except for the stepwise
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FIG. 3. (Color online) e-h density dependence of several single-
particle quantities at kBT/E1D = 0.13, 0.25, 0.5, and 1. (a) e-h
density dependence of ionization ratio α (thick lines), together with
those evaluated by the Saha equation (thin lines). Arrows show the
quantum-dissociation-onset density. (b) e-h chemical potential μ.
Gray solid lines show results calculated in ideal exciton gas on the
low e-h density side, and those obtained by screened Hartree-Fock
approximation (SHFA) in the high e-h density side. (c) Screening
parameter κ (thick lines) together with results calculated by Debye-
Hückel and Thomas-Fermi approximations κDH and κTF (thin lines).
(d) Band-gap renormalization E∗

g − Eg (thick lines), together with
those obtained by SHFA (thin lines). Quasiexciton energy estimated
by SBE is also shown in the thin lines.

increase mentioned above, μ shows only weak n dependence,
which is understood as the precursor of the instability toward
the inhomogeneity [(∂μ/∂n)T → +0 in Eq. (43)].

Figure 3(c) shows the n dependence of screening parameter
κ . At high temperature, its asymptotic behaviors in the low and
high e-h density limits are well described by the Debye-Hückel
and Thomas-Fermi approximations

κDH = 2nλL = 2e2n

ε0kBT
, (47)

κTF = 4M

πm
· 2nλL

(nλT)2
= e2

ε0

4M

π2h̄2n
, (48)

respectively. Our results interpolate these two limiting cases:
κ monotonically increases at low e-h density, then takes a
maximum at around the e-h density satisfying

nλT =
(

4M

πm

)1/2

, (49)

which is determined by κDH = κTF, and finally turns to a
decreasing function at high e-h density. The condition of
Eq. (49) gives the criterion of the classical-quantum crossover
of the screening parameter. At low temperature, κ shows
some singular behaviors at low e-h density. In fact, κ is
strongly suppressed from κDH in the region with ionization
ratio α � 0.6. Resultantly, we see the drastic change of α near
at na1D ∼ 0.6. In particular, we see a discontinuous shift of κ

at the pure Mott transition point.
Figure 3(d) shows the n dependence of band-gap renormal-

ization (BGR) E∗
g − Eg for several choices of temperatures

together with those obtained by SHFA. Our SSTA predicts that
the BGR is much smaller than that of SHFA at the low-n region
nλT � 0.2 where the quantum dissociation effect is irrelevant.
This suppression of BGR is actually observed in experiments.
In SHFA, BGR is mainly determined by the Coulomb hole
term or, equivalently, by the screening by the e-h plasma in
this low-n region, which gives rise to a relevant red-shift of
E∗

g . By contrast, in our SSTA, the e-h T -matrix contribution,
namely, the multiple e-h scattering effect, is dominant in the
self-energy, which influences strongly the formation of the
exciton satellite peak in the single-particle spectra, but affect
BGR only weakly (see also Sec. III C).

At low temperature, the BGR is further reduced in our SSTA
since the screening is suppressed by the exciton formation. As a
result, it starts to show stepwise e-h density dependence at low
temperature, reflecting the drastic change of ionization ratio
at na1D ∼ 5 × 10−2. Above the plasma-gain-onset density, the
deviation of BGR by our SSTA from that by the SHFA becomes
smaller at all temperatures.

In Fig. 3(d), we also show the n dependence of the
quasiexciton energy E∗

X − E∗
g , which is estimated by SBE and

measured from the bare band gap. Its energy shifts are much
smaller than those of BGR. Although SBE uses the SHFA
self-energies which overestimate BGR at low e-h density, it
well reproduces the excitonic peak energies of the PL spectra
obtained by our SSTA (see Sec. III D). This insensitivity
of quasiexciton energy to the treatment of the surrounding
background (self-energies) stems from its charge neutrality.
Only at around the Mott density, the quasiexciton energy is
slightly red-shifted, merging into the energy continuum of the
scattering states above E∗

g .
As mentioned above, the BGR E∗

g − Eg is strongly sup-
pressed in the low-n region. This suppression ends at some e-h
density, and BGR starts to decrease distinctly as a function of n.
Since the quasiexciton energy is almost independent of n, the
quasiexciton binding energy B∗

X = E∗
g − E∗

X is also reduced
when n exceeds this e-h density. In other words, this e-h density
corresponds to the classical-quantum crossover shown in the
thick dotted line in Fig. 2, which gives the onset of quantum
dissociation of excitons or, equivalently, the minimum of the
ionization ratio. Actually, we can confirm that the ionization
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FIG. 4. (Color online) Intensity plots of single-particle spectral
functions for electron (upper panel) and hole (lower panel) at a low
temperature kBT/E1D = 0.13. Electron-hole densities are given as
(a) na1D = 2 × 10−3, (b) 5 × 10−2, and (c) 1. Black solid lines
represent quasielectron and hole energies ξe,k and ξh,k . Chemical
potentials of the electron and the hole are also shown in broken
lines. White broken lines in (c) show the “shadow” dispersion of the
quasihole and quasielectron energies μ − ξh,k and μ − ξe,k .

ratio has the minimum in Fig. 3(a) at the e-h density where the
BGR curve is “bent” and starts to be decreased in Fig. 3(d).

C. Single-particle spectral functions

Figure 4 shows the single-particle spectra

Aa(k,ω) = −2 ImGa(k,ω − μa/h̄) (a = e,h) (50)

at low temperature for three different choices of e-h density.
We plot together the quasiparticle energies ξe,k and ξh,k , which
clearly shows that our definition is quite reasonable. The
spectrum at low e-h density in the first panel [Fig. 4(a)] has
not only a well-defined main quasiparticle branch, but also
a nearly flat branch with weak intensity, which corresponds
to the exciton-satellite peak. The fact that both quasiparticle
energies and the excitonic satellite are properly reproduced
here guarantees the validity of calculation on the ionization
ratio we presented above. One finds that the interaction does
not affect the mass of dispersion, but that it only influences the
band-gap renormalization. This supports the rigid-band-shift
picture.

With increasing e-h density, both quasiparticle and exciton-
satellite branches broaden and start to merge as shown in
the second panel [Fig. 4(b)]. The long low-energy tail can
be understood as a remnant of the excitonic bound state. In
the high-density limit in Fig. 4(c), the spectral broadening is
not only further enhanced, but also exhibits the interesting
feature mentioned below. In the upper panel, we plot the
“shadow” of the hole energy dispersion μ − ξh,k in the white
line. Then, we can see that the spectral weight of Ae(k,ω)
spreads mainly in the region ω > ξe,k and ω > μ − ξh,k , or
the region ω < ξe,k and ω < μ − ξh,k . This spectral weight
redistribution is understood as the tendency of the mode
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FIG. 5. (Color online) Intensity plots of single-particle spectral
functions for electron and hole at a high temperature kBT/E1D =
0.5. Electron-hole densities are given as (a) na1D = 2 × 10−3,
(b) 5 × 10−2, and (c) 1.

repulsion at ω = μe due to the mixing of the “original”
dispersion ξe,k and the “shadow” one μ − ξh,k via the e-h
interaction or, equivalently, as a precursor behavior of the e-h
Cooper pairing.99 A corresponding feature of Ah(k,ω) is also
found in the lower panel.

Figure 5 shows the single-particle spectra at higher temper-
ature. Again, at low e-h density [Fig. 5(a)], we see the exciton-
satellite branch, whereas its dispersion is almost parallel to the
main quasiparticle branch and extends towards larger k values.
The broadening of both dispersions with increasing n is the
same overall with Fig. 4, but this time, the quasiparticle peaks
always show large energy tails in both low- and high-energy
sides at high e-h density, and the precursor behavior of the e-h
Cooper pairing is absent.

We can also evaluate the single-particle spectra in the
low e-h density limit by neglecting the trionic (three-body)
correlations, which is given as

Aa(k,ω) = 2π

(
1 −

∑
n,q

ca,n,q,k

)
δ(ω − εa,k/h̄)

+ 2π
∑
n,q

ca,n,q,kδ(ω − En,q/h̄ + εā,q−k/h̄), (51)

ca,n,q,k = 2|φn[k − (ma/M)q]|2[fB(En,q − μ)

+ fF(εā,q−k − μā)], (52)

with ā = h and e for a = e and h, respectively.3 The energy
of the exciton with momentum q is denoted as En,q = En +
h̄2q2/2M , where En denotes the nth exciton level described
by the wave function φn(k) in the momentum space. The first
and the second terms correspond to the main quasiparticle
and exciton-satellite branches, respectively. At extremely low
temperature, as expected, the system behaves as an insulating
exciton gas: both the electron and hole single-particle spectra
show energy gaps, and their chemical potential lies at around
the center of each energy gap, which results in μ ∼ Eg − E1D.
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The exciton-satellite branch has a negative-mass dispersion
h̄ωa,k ∼ Eg − E1D − εa,k since the contribution of n = 0
and q = 0 is enhanced by the thermal distribution function
fB(En,q − μ). At higher temperature, the contribution at q �= 0
can also be important, among which the terms satisfying
n = 0 and k − (ma/M)q ∼ 0 are the most relevant due to the
factor of |φn|2. As a result, the dispersion of exciton-satellite
branch is approximately given as h̄ωa,k ∼ εa,k − E1D, which is
parallel to the main quasiparticle branch. The gradual change
in the mass of the exciton-satellite dispersion from negative to
positive values is seen in Ae(k,ω) shown in the upper panels
of Figs. 4(a) and 5(a).

As e-h density is increased at low temperature, the exciton-
satellite structure near k = 0 is broadened but is almost
unshifted in energy located at around Eg/2 − E1D due to the
charge neutrality of the e-h pair. This implies that the remnant
of the exciton satellite still remains even at around the Mott
density: even when the band-gap renormalization becomes
comparable to the exciton binding energy Eg − E∗

g ∼ E1D,
the exciton-satellite structure at around Eg/2 − E1D still lies
below the effective band edge at around E∗

g/2. Therefore,
we do not see the complete ionization at the Mott density,71

whereas the excitonic fraction 1 − α is of the order of
several percent at most. Here, the effective ionization energy
for an electron or a hole in the exciton-satellite states is
roughly estimated as E∗

g/2 − (Eg/2 − E1D) ∼ E1D/2, which
also gives the reason why the discontinuity in the e-h chemical
potential is close to E1D/2 at the pure Mott transition.

D. Interband optical spectra

Now, let us discuss the interband optical spectra. Figure 6
shows the e-h density dependence of absorption-gain spectra
for several choices of temperature. The spectra are evaluated
in two different ways, one by means of our SSTA and the other
by the SBE.

In our SSTA, the intercarrier scattering process gives an
intrinsic broadening. By contrast, in SBE calculation, this
broadening is absent. Thus, we introduce a phenomeno-
logical broadening by hand by taking a convolution with
the Lorentzian with half-width γ = E1D/14 ∼ 1 meV. This
difference can be seen in the n and T dependencies of the
linewidth of the excitonic peak located at h̄� ∼ Eg − E1D. It
is enhanced as n or T increases in our SSTA, but trivially not
in SBE.

Another difference appears in the n dependence of the
peak energy of the absorption spectra. At low e-h density,
our SSTA results exhibit the excitonic peak almost unshifted
or slightly blue-shifted, while it is slightly red-shifted in
SBE results. As shown in Fig. 6(c), when and only when
the temperature and the e-h density are close to the unstable
region in the phase diagram, the peak shows a red-shift also
in our calculation, which is interpreted as the precursor of
thermodynamic instability, and should be distinguished from
that seen at higher temperature. The absorption peak starts to
show a blue-shift when n exceeds nP(T ). This blue-shift is
almost parallel to that of the e-h chemical potential because
the excitonic enhancement (Coulomb enhancement) of spectra
works at h̄� ∼ μ.
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FIG. 6. (Color online) Absorption-gain spectra evaluated with our
SSTA at (a) kBT/E1D = 0.5, (b) 0.25, and (c) 0.13. Those calculated
using SBE at corresponding temperatures are also shown in (d)–(f) for
comparison. Electron-hole density is changed from na1D = 2 × 10−3

to 1.

We can also see the third difference in the band-edge
threshold, which is the stepwise structure at the renormalized
band gap h̄� = E∗

g . In our SSTA, this threshold can be
confirmed in the spectra only at the low e-h density because
the spectral broadening smears out this fine structure. At such
low-n region, this threshold is almost unshifted, reflecting the
strong suppression of BGR. By contrast, SBE results show
the red-shift from the extremely low e-h density, and the
spectral threshold is clearly seen in the spectra up to around
the plasma-gain-onset density n � nP(T ).

The fourth difference is found in the low-energy spectral
tail of the optical gain. Both in our SSTA and in SBE
spectra, the optical gain, namely, the negative absorption, does
appear and grows up at n � nP(T ). Its spectral structure is
much more smeared in our SSTA than in the SBE, as most
significantly seen in the long tails in the lower-energy side.
These low-energy tails are far from those of the Lorentzian
function and never reproduced even if we tune the broadening
parameter γ in the SBE calculation. The appearance of optical
gain contradicts the results of Ref. 39, which predicts the
vanishingly small gain, buried in the huge spectral broadening.
This contradiction is ascribed to the shortcomings of the
Shindo approximation92 used there.

In Fig. 7(a), the optical-gain spectra −Pabs(�) at kBT =
0.25E1D are examined in detail from the intermediate to
the high e-h density. Here, we compare the results with and
without vertex corrections in the solid and the broken lines,
which we evaluate using ImGeh and ImG(0)

eh , including and
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FIG. 7. (Color online) (a) Optical gain spectra at kBT/E1D =
0.25 for several choices of e-h density, na1D =0.1, 0.25, 0.5, 0.75, 1.0,
and 1.25. Spectra evaluated with and without vertex corrections are
shown in solid and broken lines, respectively. (b) Maximum value of
optical-gain spectra as a function of e-h density, which are evaluated
with our SSTA (thick lines) and with SBE (thin lines). Results at
kBT/E1D = 0.13, 0.25, 0.5, and 1 are shown. Diamond symbols
indicate the plasma-gain-onset densities, which are approximated by
Eq. (28).

neglecting the excitonic effects, respectively. One finds that
the excitonic correlation enhances the broad structure near
h̄� ∼ μ (excitonic enhancement), and instead the spectral
weight at the band edge h̄� ∼ E∗

g is suppressed. This intensity
transfer can be understood within the SBE framework, and is
discussed elsewhere.64 In spite of this intensity transfer, the
gain peak still stays at slightly above the renormalized band
edge, which is the vestige of the divergence in the free-carrier
joint density of states. This is the characteristic feature of 1D
e-h systems. In 2D and 3D systems, the gain peak locates near
the e-h chemical potential μ, where the excitonic enhancement
at around h̄� ∼ μ forms the peak structure.

The gradual growth of the optical gain at n ∼ nP(T ) can
be viewed as a classical-quantum crossover in our SSTA.
This makes sharp contrast with the SBE results showing
a clear optical-gain threshold at n = nP(T ). In fact, our
gain spectra exhibit a so-called excitonic gain even at n <

nP(T ).41–46,66–69,72,73 This gain stems from the low-energy tails
of the single-particle spectra, which give rise to the finite
weight of the joint density of states even at h̄� < μ.

The difference in the optical-gain growth can be seen more
clearly in Fig. 7(b), in which we plot n dependence of the
maximum values of the optical gain for several choices of
temperature. In both cases, the optical gain becomes relevant
near the plasma-gain-onset density given by Eq. (28), as
indicated in the diamond symbols. The difference is that the
gain increases smoothly from the lowest density in our SSTA,
while shows clear thresholds in the SBE.

The maximum value of the optical gain is an increasing
function of n at low n, while it turns into a decreasing
function at high n. This nonmonotonic n dependence can be
seen in both our SSTA and the SBE spectra,63 whereas the
free-carrier theory predicts that the gain maximum increases
monotonically. The optical-gain peak near the renormalized
band edge is suppressed by the above-mentioned intensity-
transfer mechanism in the many-body calculations, while it
is absent in the free-carrier theory. In our SSTA, it is further
smeared out forming the long low-energy spectral tail. Since

0

0.5

1

1.5

0

2

4

6

8

-2 -1 0-2 -1 0

(b) 0.5(a) kBT/E1D=0.25 na1D

FIG. 8. (Color online) Photoluminescence spectra at
(a) kBT/E1D = 0.25, (b) 0.5. Electron-hole density na1D is
changed from 2 × 10−3 to 1. Arrows show the ground-state energy
of effective Hamiltonian used in SBE, which denotes quasiexciton
energy or renormalized band gap, depending on whether e-h density
is below or above Mott density.

the gain suppression near the renormalized band edge is more
emphasized at higher e-h density, the maximum value of the
optical-gain spectra is decreased.

We finally show the photoluminescence spectra in Fig. 8.
In the low-n region n � nP(T ), the excitonic peak is located
at h̄� ∼ Eg − E1D, and is slightly red-shifted. It is interesting
that the peak of the absorption spectra is almost unshifted or
slightly blue-shifted, while that of the PL spectra is slightly
red-shifted in our SSTA. This makes sharp contrast with the
SBE results, where both the absorption and the PL spectra
show red-shifts at n � nP. In our SSTA, the Moss-Burstein
effects, namely, the phase-space-filling effects on the optical
spectra, start to work below the plasma-gain-onset density.

The red-shifts of the PL peak start enhanced when n

exceeds nP(T ). In this high-n region, the peak positions of
the PL and optical-gain spectra are almost similar and locate
slightly above the renormalized band gap h̄� = E∗

g , which is
a decreasing function of n. Together with this enhancement of
the red-shifts, we can also see the rapid spectral broadening.
This broadening is attributable to the Moss-Burstein effect.
The energy range of the relevant spectral intensity E∗

g � h̄� �
μ becomes wider since E∗

g and μ are the decreasing and
increasing functions of n, respectively.

At low temperature kBT � E1D, the PL peak energy is
well reproduced by the ground-state energy of the effective
Hamiltonian ĤQ=0 used in SBE. Interestingly enough, the
quasiexciton energy obtained by SBE formalism is rather close
to the PL peak than the excitonic peak in the absorption-gain
spectra. This implies that the excitonic peak in the absorption-
gain spectra is affected by the Moss-Burstein effects and thus
blue-shifted.

Our results on the interband optical spectra are summarized
in Fig. 9. We plot the n dependence of the peak energies of
the absorption, gain, and PL spectra together with the upper
and lower half-widths of the peak. The n dependence of the
quasiexciton energy, renormalized band gap, and e-h chemical
potential are also shown.

As already discussed above, the most dominant spectral
changes are found in the quantum-crossover at around n ∼ nP.
In fact, the spectral characteristics of the e-h plasma is
strongly enhanced at n � nP. We can also see another quantum
crossover at around n ∼ nmin(
 nP) where the ionization
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FIG. 9. (Color online) Summary of our results on interband
optical spectra at (a) kBT/E1D = 0.13, (b) 0.25, (c) 0.5, and (d) 1.0.
Peak energy of the absorption, gain, and photoluminescence spectra
are shown by circle, square, and triangle, respectively, together with
error bars denoting the upper and lower half-widths of the peak.
Renormalized band gap and e-h chemical potential are also shown
in broken and dotted lines, respectively. Renormalized band gap, e-h
chemical potential, and PL peak energy cross almost simultaneously
at around plasma-gain-onset density nP (shown in the thick broken
line in Fig. 2). The e-h density corresponding to the minimum of
ionization ratio is denoted by nmin (shown in the thick dotted line in
Fig. 2).

ratio is minimized and the quantum dissociation begins. The
Moss-Burstein effects (energy splitting between the absorption
and the PL peaks) and the spectral broadenings start to be
relevant there. The band-edge threshold in the absorption
spectra is thus smeared out.

Noteworthy is that the e-h chemical potential μ, the renor-
malized band gap E∗

g , and the PL peak energy cross almost
simultaneously at around n = nP. This is a characteristic
feature of the quasi-1D system, which can be proved rigorously
within the SBE framework, as mentioned in Sec. II D.

E. e-h pair susceptibility

The contour plot of the e-h pair susceptibility is given in
Figs. 10(a) and 10(b), which are evaluated by our SSTA and
the SBE, respectively. We also plot the condition μ = E∗

X,
where E∗

X denotes the quasiexciton energy estimated by SBE.
In our SSTA, the presence of excitonic bound states below the
Mott density is accounted for in the evaluation of μ, whereas
SBE estimates μ under the assumption of complete ionization.
Further, the intercarrier scatterings bring the imaginary parts
to the self-energies in our SSTA, but not in SBE. As for the e-h
pair condensation, SBE tells us nothing more than the Bardeen-
Cooper-Schrieffer (BCS) mean-field theory, while our SSTA
partially accounts for the pair fluctuation effects.

With this in mind, let us compare our SSTA and the SBE
results. In our SSTA, the e-h pair susceptibility is enhanced as n

is lowered, but does not diverge even at the lowest temperature

10-1

100

10-2 10-1 100 10-2 10-1 100

(a) Present Study (b) SBE

2.0

4.0

6.0

1.0

Unstable

1.0

2.0

Unstable
Condensation

FIG. 10. (Color online) Contour plot of the e-h pair susceptibility
evaluated in units of E−1

1D a−1
1D by (a) our SSTA and (b) SBE. On

broken and dotted lines, e-h chemical potential μ coincides with
renormalized band gap E∗

g and with SBE quasiexciton energy E∗
X,

respectively. The e-h pair susceptibility diverges on the boundary of
the hatched region, which appears only in the SBE result. Isothermal
compressibility diverges on the boundary of the gray region, inside
which a homogeneous thermodynamic state is unstable. Chain line
denotes the contour of the ionization ratio α = 0.5.

at which our calculations were done. By contrast, in the SBE
result, the contours crowd into a single curve at low T , which
indicates the divergence of the pair susceptibility. In particular,
our SSTA predicts correctly the absence of the exciton Bose-
Einstein condensation (BEC) at low e-h density as one expects
in the 1D and 2D systems, while SBE predicts incorrectly a
condensation at finite temperature.

Such a difference mainly stems from the n dependence of
the e-h chemical potential. At high temperature, the prerequi-
site for BEC, μ = E∗

X, coincides with the plasma-gain-onset
condition μ = E∗

g in both our SSTA and SBE. This is because
the renormalized band gap, the e-h chemical potential, and
the quasiexciton energy cross (almost) simultaneously, as
mentioned in Secs. II D and III D. However, these conditions
μ = E∗

X and μ = E∗
g define different lines on the phase

diagram at low temperature near or inside the unstable
region.100 In our SSTA, the prerequisite for BEC is never
satisfied in the low e-h density region: the line denoting μ =
E∗

X is discontinued inside the unstable region, reflecting the
pure Mott transition. By contrast, in SBE, the line of μ = E∗

X
runs into the lowest e-h density region. Clearly, neglecting the
excitonic effects in the self-energies gives unreasonably high
e-h chemical potentials.

Even in the intermediate or high e-h density region, the e-h
pair condensation is not found for any calculated parameters
of n and T , whereas SBE still predicts a finite-temperature
transition. In our SSTA, the divergence of the e-h pair
susceptibility is smeared out by the spectral broadening of
the intercarrier scatterings, which is enhanced strongly by the
low dimensionality. By contrast, SBE predicts unreasonably
high transition temperature again because the intercarrier
scatterings are completely neglected.

An extraordinary enhancement of the e-h pair susceptibility
is found in our SSTA in the n-T region with low ionization
ratio region, namely, α � 0.5. There, the excitonic correlation
is enhanced because the small ionization ratio is fed back as
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the screening suppression resulting in the stabilization of the
excitonic bound states.

IV. DISCUSSION: COMPARISON WITH EXPERIMENTS

In this section, we compare our optical spectra with
those measured in the most recent experiments.47,54–57 The
absorption-gain spectra observed on the high-quality quantum
wire show the following features. At low n, both the excitonic
peak and the band-edge threshold are almost unshifted. As
n is increased, the spectral broadening is enhanced and
the band-edge threshold is smeared out. When n is further
increased, the excitonic peak is blue-shifted, and the optical
gain (negative absorption) appears in the low-energy side.
Appearance of optical gain shows a crossover behavior: small
but finite optical gain is seen from low e-h density. The gain
spectra have long low-energy tails, which can not be explained
by the broadening of Lorentzian type.

Our theory succeeds in explaining all the above aspects
of the experimental observation, as already mentioned in the
previous section. It makes sharp contrast to the SBE ones
which show artificial red-shifts in the excitonic peak as well as
in the band-edge threshold, and do not explain the many-body
spectral broadening.

Agreement between our theory and the experiment is
quantitative with respect to the spectral peak energies and
their intensities. Although the spectral broadening is somewhat
overestimated, the detailed spectral shape is qualitatively
reproduced. This overestimation is presumably attributable
to the oversimplification of the model interaction potential
mentioned in Sec. II A, and the overestimation of the multiple
intercarrier scattering effects in the self-consistent T -matrix
approximation.

As for the PL spectra, our theory is still insufficient since it
fails to explain the two-peak structure found in experiments.
One possibility is that the low- and high-energy peaks have
the excitonic and biexcitonic origins, respectively. Another
possibility is that this double-peak structure is a precursor of
inhomogeneity or pure Mott transition found in the lowest-
temperature region of our phase diagram. It is noteworthy that
an inhomogeneous state (biexcitonic crystallization) is also
proposed by the bosonization method.101 Anyway, we should
take into account the trionic (three-body) or the biexcitonic
(four-body) correlations in order to clarify this point, which is
left for our future problem.

V. SUMMARY

We clarified the features of quasi-one-dimensional electron-
hole (e-h) systems by applying a self-consistent screened
T -matrix approximation we developed recently, which can
deal with an e-h pair embedded in the background of the
exciton-plasma mixture, characterized by the concept of
exciton ionization ratio. It turned out that the exciton-Mott
physics as well as the changes in interband optical spectra can
be understood as classical-quantum crossovers.

The onset of the quantum dissociation of the exciton
(binding-energy reduction and level-broadening effects) de-
fines a classical-quantum crossover at nλT ∼ 0.2 in our GaAs
quantum wire, where n and λT are the e-h density and

the thermal de Broglie length defined with the e-h reduced
mass, respectively. At lower temperature, an inhomogeneous
phase with some first-order phase transitions is expected since
not only the divergence in the compressibility but also the
discontinuous change in the ionization ratio is found.

Another classical-quantum crossover is found in the
changes of interband optical spectra. In the low-n region,
both the excitonic peak and the band-edge threshold are
almost unshifted in energy in the absorption-gain spectra. In
the high-n region, enhanced Moss-Burstein effects are seen
in the absorption-gain and photoluminescence spectra, and
the optical gain does appear with the long low-energy tails
caused by the intercarrier scattering. The spectral changes
between these two regions take place gradually at nλT ∼
1.21 × (M/m)1/4, where m and M denote the reduced and
the total mass of an e-h pair, respectively.
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APPENDIX: DERIVATION OF EQ. (28)

In this Appendix, we derive Eq. (28). We consider the
criterion of the plasma-gain onset

μ − Eg∗ =
∑
a=e,h

(μa − ξa,k=0) = 0 (A1)

in the D-dimensional e-h systems. Our purpose here is to
rewrite this condition in terms of the e-h density n and the
temperature T .

As already discussed in Sec. III C, the rigid-band-shift
picture works pretty well at high-n region, e.g., near the
plasma-gain onset. The quasiparticle energy ξa,k is well
approximated by

ξa,k ∼ h̄2k2

2ma

+ ξa,k=0 (A2)

with the bare masses of the electron and the hole me and mh.
This implies that the relation among n, T , μe, and μh can be
evaluated by the free-carrier theory as

nλD
T

(
m

ma

)D/2

= 2ID/2−1

(
μa − ξa,k=0

T

)
(A3)

in D-dimensional e-h system, where

Iν(x) = 1

�(ν + 1)

∫ ∞

0

εν

exp(ε − x) + 1
dε (A4)

denotes the complete Fermi-Dirac integral of order ν. Let us
rewrite Eq. (A3) to

nλD
T

(
m

M

)D/4

= 2[ID/2−1(xe)ID/2−1(xh)]1/2, (A5)

ID/2−1(xe) =
(

mh

me

)D/2

ID/2−1(xh), (A6)
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with xa = (μa − ξa,k=0)/T . In principle, the right-hand side
of Eq. (A5) can be rewritten as a function of x = xe + xh and
δ = (me − mh)/(me + mh) by using Eq. (A6). It is independent
of δ in the classical limit ex 
 1:

2[ID/2−1(xe)ID/2−1(xh)]1/2 ∼ const × ex. (A7)

The δ dependence is still weak for small |δ| even in the
semiquantum regime ex ∼ 1 because the right-hand side of
Eq. (A5) is an even function of δ and its derivative vanishes
at δ = 0. (In our model, the value of δ is about 0.25.) Thus,
it is reasonable to estimate the right-hand side of Eq. (A5) by
setting δ = 0.

Then, we can write the criterion of the plasma-gain onset,
x = 0, as

nλD
T = 2

(
M

m

)D/4

ID/2−1(0) (A8)

in terms of n and T since Eq. (A6) immediately gives
xe = xh = 0 for x = 0 and δ = 0. The complete Fermi-Dirac
integral is computed numerically as

ID/2−1(0) =
⎧⎨
⎩

0.604899 (D = 1),
ln 2 = 0.693147 (D = 2),
0.765147 (D = 3).

(A9)

The validity of the above approximation can be confirmed by
comparing the solid and the broken lines in Fig. 2.
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