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Herzberg circuit and Berry’s phase in chirality-based coded qubit in a triangular triple quantum dot
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We present a theoretical proposal for the Herzberg circuit and controlled accumulation of Berry’s phase in
a chirality-based coded qubit in a triangular triple quantum dot molecule with one electron each. The qubit is
encoded in the two degenerate states of a three-spin complex with total spin S = 1/2. Using a Hubbard and
Heisenberg model the Herzberg circuit encircling the degeneracy point is realized by adiabatically tuning the
successive on-site energies of quantum dots and tunnel couplings across a pair of neighboring dots. It is explicitly
shown that encircling the degeneracy point leads to the accumulation of the geometrical Berry’s phase. We show
that only the triangular, not the linear, quantum dot molecule allows for the generation of Berry’s phase and we
discuss a protocol to detect this geometrical phase.
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I. INTRODUCTION

As discussed by Herzberg1 and Berry,2 the wave function
acquires a geometric phase,3 Berry’s phase, when it is
adiabatically moved along a circuit in the parameter space of
the Hamiltonian, the Herzberg circuit, enclosing a degeneracy
point. Since only the topology (enclosing a degeneracy point
or not) of the Herzberg circuit determines whether the
geometrical phase is accumulated, the Berry’s phase is less
sensitive to the effects of interactions between the system and
its environment. For this reason there is interest in attempting
to encode and manipulate quantum information in geometric
phases, for example holonomic quantum computing4 with a
generalized non-Abelian geometric phase.5

Experimentally, Berry’s phase in two-level systems has
already been demonstrated, including neutron6 and nuclear
spins,7 superconducting qubits,8 and a superconducting charge
pump.9 Preceding the successful experiments with super-
conducting circuits, the relation between Berry’s phase of
a superconducting circuit and other measurable quantities
was investigated theoretically,10,11 including a theoretical
proposal for realizing geometric quantum computation with
superconducting qubits.12

In this work, we demonstrate theoretically the generation
of the Herzberg circuit and Berry’s phase in quantum states
of a three-electron complex in a half-filled triangular triple
quantum dot molecule in a field-effect transistor within the
framework of Hubbard and Heisenberg models. The two-level
system, a qubit, is encoded in the two degenerate states of
a three-spin complex with total spin S = 1/2.13–15 An early
proposal to generate the geometrical phase in degenerate
one-electron quantum levels of a three-atom system was
discussed by Herzberg and Longuet-Higgins in Ref. 1 in
1963. A triple quantum dot (TQD) molecule studied here
is related to the three-atom system. We define a two-level
system, coded qubit,13,14 by the two lowest degenerate levels
of a half-filled three-electron TQD under an in-plane magnetic
field. It was shown that the quantum states of a coded qubit
in a TQD can be manipulated by tuning the gate voltages.13,14

This opens the possibility described in this work to engineer
the Hamiltonian to undergo adiabatic and cyclic evolution
along the Herzberg circuit resulting in accumulation of Berry’s

phase. Recent experiments16–19 on the linear TQD have already
demonstrated the high tunability and coherent manipulation of
the many-body quantum states in a TQD. However, we show
that it is not possible to generate a Herzberg circuit for a linear
triple quantum dot, only for a triangular triple quantum dot
molecule with control over quantum dot energies and at least
one tunneling amplitude.

The plan of the paper is as follows. In Sec. II, we describe
the system and the Hamiltonians for a triangular and linear
TQD. In Sec. III, we construct a Herzberg circuit generating
Berry’s phase in a triangular TQD. We show that it is not
possible to construct the Herzberg circuit for a linear TQD. In
Sec. V, a brief conclusion is given.

II. THE MODEL

A lateral TQD is defined by metallic gates on top of
a two-dimensional electron gas in the (x,y) plane at the
GaAs/AlGaAs heterojunction with three local minima, capable
of confining a controlled number of electrons. With one
electron in each dot, the extended Hubbard Hamiltonian reads

Ĥhubb =
3∑

i=1

Ein̂iσ +
3∑

i,j = 1
i �= j

∑
σ

tij (B)ĉ†iσ ĉjσ

+ 1

2

3∑
i,j = 1
i �= j

Vij ρ̂i ρ̂j +
3∑

i=1

Uin̂i↑n̂j↓ +
∑

α

gμBSα · B,

(1)

where ρ̂i = n̂i↑ + n̂i↓, Ei is the on-site energy, and tij is the
tunnel coupling between dot i and dot j which acquires
the Peierl’s phase if field B is applied perpendicular to
the closed-loop structure of a triangular TQD. Vij is the
long-range Coulomb interaction between dot i and j , Ui is
the on-site Coulomb interaction of dot i, g is the g factor
of the host semiconductor, μB is the Bohr magneton, and
Sα is the spin of the αth electron. For the present study,
we set tij = t = −0.05 Ry∗, Ei = 0, Ui = U = 2.0 Ry∗, and
Vij = V = 0.5 Ry∗ as the initial state of the isolated triangular
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FIG. 1. (a) Schematic representation of a triangular triple quan-
tum dot. (b) Schematic representation of a linear triple quantum
dot.

TQD system. Ry∗ = 5.97 meV is the effective rydberg in
GaAs. For the linear TQD case, we set t13 = 0 and V13 = V/2.
In this analysis, we assume Ei and tij are independently
tunable parameters that will be varied to generate Berry’s
phase. Figures 1(a) and 1(b) show the schematic picture of a
triangular and a linear TQD, respectively.

As discussed in Ref. 20, the two arrangements of a TQD
lead to two topologically different Hamiltonians. The low-
energy spectrum (4 spin-3/2 and 4 spin-1/2 states) of a half-
filled TQD is mapped onto the Heisenberg model14,21,22 with
one localized spin in each dot,

H =
∑
i<j

Jij Si · Sj +
∑

i

gμBSi · B +
∑

i<j<k

χijkSi

· (Sj × Sk), (2)

where the exchange interactions Jij can be derived from the
Hubbard model and expressed by microscopic parameters as

Jij = 2|tij |2
(

1

U − V + (Ei − Ej )
+ 1

U − V − (Ei − Ej )

)
.

(3)

The coefficient χijk for the chirality operator in Eq. (2) is
nonzero only for a triangular TQD in the presence of a
perpendicular magnetic field and is much smaller than Jij .

Since the Heisenberg Hamiltonian commutes with the
total Sy operator of the system, we focus on the Sy = −1/2
subspace. We further assume that an in-plane magnetic field
By has been applied to separate the Sy = −1/2 and Sy = 1/2
subspaces by the Zeeman energy. In the Sy = −1/2 subspace,
a resonant triangular TQD with all Jij = J0 has the following
three eigenstates:13,14,20

|qs〉 = 1√
3

(|↓↓↑〉 + ei(2πs/3) |↓↑↓〉 + ei(4πs/3) |↑↓↓〉), (4)

where s = 0,±1 and spin configurations, such as |↓↓↑〉, label
the electron spins in quantum dots from spin up in dot 1
(rightmost) to spin down in dot 3 (leftmost). The two chiral
states, |q+〉 ≡ |q+1〉 and |q−〉 ≡ |q−1〉, constitute the two levels
of a chirality-based coded qubit in a triangular TQD. The
coherent manipulation of a coded qubit is achieved by tuning

the exchange interactions Jij . In the basis of the {|q±〉}, the
Heisenberg Hamiltonian reads

H
qb
tri = 1

4
(2J23 − J13 − J12)σ̂x +

√
3

4
(J13 − J12)σ̂y, (5)

where σ̂i is the Pauli matrix with i = x,y. Equation (5) shows
that a chirality-based coded qubit is equivalent to spin-1/2
under an effective magnetic field in the X-Y plane.

For the fully resonant, half-filled triangular TQD, the two
degenerate states of the chirality-based coded qubit can be
also rotated to the Jacobi states, |L0〉 = 1√

2
(|↓↓↑〉− |↑↓↓〉)

and |L1〉 = 1√
6
(|↓↓↑〉 − 2|↓↑↓〉 + |↑↓↓〉). The two sets of

states |q±〉 and |L0,1〉 are related through linear transformation
given in Ref. 14. The two Jacobi states |L0〉 and |L1〉 may be
physically distinguished by the joint spin states on dot 1 and
dot 3. The spins in dot 1 and dot 3 form a spin singlet in
the state |L0〉 while they form a linear combination of spin
triplets with projections Sy = −1 and Sy = 0 in |L1〉. The
measurement of the joint spin states (singlet versus triplet) in a
pair of neighboring quantum dots can be carried out using the
spin blockade23 effect. This physical property of Jacobi states
will be used later.

Next we discuss the linear TQD model where J12 =
J23 = J0 and J13 = 0 in Eq. (2). In this case, the three
eigenstates13,14,20 are given by |L0〉, |L1〉, and |q0〉, respec-
tively. The two Jacobi states, |L0〉 and |L1〉, constitute the
levels of a coded qubit in a linear TQD. Similar to the case of
the triangular TQD, the coded qubit Hamiltonian in the basis
of {|L0(1)〉} reads

H
qb
lin = 1

4 (J12 + J23)σ̂x +
√

3
4 (J23 − J12)σ̂z. (6)

The coded qubit in a linear TQD is equivalent to a spin-1/2
under an effective field in the X-Z plane.

III. GENERATION OF BERRY’S PHASE

So far we have established the equivalence between a
coded qubit in a TQD and a model of a spin-1/2 particle
under an effective field R = (X,Y,Z), which is a function of
exchange couplings Jij . To generate Berry’s phase, we need
to adiabatically rotate the effective field R along a closed loop
encircling the diabolical point1,2,24 in the parameter space of R.
For a two-level system under magnetic field, there exists only
one diabolical point which lies at the origin of the parameter
space.

When the effective field R is adiabatically varied, the wave
function |ψ(0)〉 =|n(R(0))〉 initialized in the nth eigenstate of
the Hamiltonian at time 0 evolves as follows:2

|ψ(t)〉 = T e−(i/h̄)
∫

dt ′εn(R(t ′))eiγn(t) |n(R(t))〉, (7)

where the integral over the nth eigenenergy, εn(R(t ′))/h̄, is the
accumulated dynamical phase and γn(t) is the accumulated
geometrical phase. We remark that |n(R(t))〉 should be chosen
to be single-valued and the phase of the eigenstates at
different R should be continuously differentiable with respect
to R.

After the system is transported around the closed circuit C

in one period T , the system returns to the initial state |n(R(0)〉
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with a Berry’s phase defined by φn(C) ≡ γn(T ). For two-level
systems, we use n = ± to denote the two possible states. The
accumulated Berry’s phase has an analytical expression2 in the
two-level case, φ±(C) = ∓ 1

2�(C), where �(C) is the solid
angle subtended by the closed circuit with respect to the origin
of the parameter space.

Now we turn to the discussion of generating the Herzberg
circuit for a TQD. It is clear that the effective field X(Jij )
and Y (Jij ) in Eq. (5) as a function of exchange couplings can
be made to form a closed path encircling the origin in the
parameter space, if all three exchange interactions Jij can be
controlled independently. In experiments, Jij are manipulated
through tuning Ei and tij . The simplest attempt to construct
the closed loop in the X-Y plane is to vary the on-site energy of
each dot. However, this proposal fails because each exchange
interaction Jij depends on the on-site energies of dot i and j

through their energy difference �Eij . We note that a constraint
�E12 + �E23 + �E31 = 0 is implicitly imposed on these
energy differences. Therefore, we have only two degrees of
freedom with the on-site energies. We need to tune at least one
tunnel coupling. For instance, the effective field can be rotated
on a circle with radius J by tuning E1, E3, and t13, while
E2 = E, t23 = t12 = t are being held constant. Furthermore,
we select values of E1, E3, and t13 at each point on the circle
such that J13 = 4η√

3
J is satisfied at all times with η being

an arbitrary constant. Given these conditions, we construct a

Herzberg circuit by tuning the following parameters:

E1(θ ) = E +
√

(U − V )2 − 4(U − V )|t |2
J
β

(η − sin θ )
, (8)

E3(θ ) = E +
√

(U − V )2 − 4(U − V )|t |2
J
2α

cos θ + J
2β

(2η − sin θ )
, (9)

t13(θ ) =
√

[(U − V )2 − (E1 − E3)2]ηJ

4β(U − V )
, (10)

where α = 1/4, β = √
3/4, and θ is the accumulated angle

on the closed circuit. Figures 2(a) and 2(b) present the tuning
of the �E12, �E23, and t13 as functions of θ , and Fig. 2(c)
shows the response of Jij due to the changes in the Hubbard
parameters. Figure 2(d) shows the Herzberg circuit with radius
J in the parameter space R for the effective spin-1/2 model.

The two lowest states in the Sy = −1/2 subspace of a TQD
can be mapped onto the coded qubit model, Eq. (5), only
when on-site Coulomb repulsion is the dominant energy scale.
However, we note that the variations in �E13 and �E23 can
reach 0.58 U at certain points on the circuit, as shown in Fig. 2.
The validity of the Heisenberg model becomes questionable
over the course of transporting the system around the circuit
in Fig. 2. Thus, we expect that a more realistic circuit, which
minimizes the variations of all �Eij , would require tuning

FIG. 2. (Color online) (a) Variations of �E12 (blue curve) and �E23 (red curve) over one round on the closed circuit. Note that the variation
is comparable to U , the largest energy scale of the Hubbard model. (b) Variation of t13 over one round on the closed circuit. (c) The values of
Jij , computed with Eq. (3), over one round on the closed circuit. J12 is red, J23 is blue, and J13 is green. This circuit is generated under the
constraint that J13 is constant. (d) Parametric plot of the closed circuit itself in the parameter space R for the coded qubit (effective two-level
system). The x and y components of the circle are related to the Jij via the real and imaginary components of the off-diagonal matrix element
in Eq. (5).
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FIG. 3. (Color online) (a) Variations of �E12 (blue) and �E23

(red) over one round on the closed circuit. The variations of �Eij are
significantly suppressed when compared to Fig. 2(a). This is because
we vary all tij . (b) Variation of tij over one round on the closed circuit.
t12 is blue, t23 is red, and t13 is green. The values of tij are chosen
specifically to reproduce the same Jij in Fig. 2(c) and reduce the
variations of �Ei .

more than E1, E3, and t13. For instance, Figs. 3(a) and 3(b)
present another circuit, which involves tuning all Ei and tij
but E2 in order to produce identical Jij as shown in Fig. 2(c)
and also the same circuit as shown in Fig. 2(d). By moderately
tuning t12 and t23, we observe that the need to tune �Eij

is significantly reduced as shown in Fig. 3(a). Figures 4(a)
and 4(b) compare the energy gap between the lowest three
levels in the Hubbard model and the Heisenberg model in
the Sy = −1/2 subspace for the circuits presented in Figs. 2
and 3, respectively. As shown, the second circuit, which tunes
all tij , provides a better agreement between results of the
Hubbard and Heisenberg models. To manipulate the dynamical
phase of the coded qubit, a fast tuning of on-site energies is
preferred. However, in the case of the adiabatic accumulation
of geometrical phases, gating operations should be done
slowly and the tuning of the tunnel couplings might be more
favorable.

Figure 5 shows the numerical computation of accumulated
geometrical phase for the coded qubit along the Herzberg
circuit presented in Fig. 2. After one round on the circuit,
the state accumulates a geometric phase of π . To generate
the figure, we simulate the time evolution of the coded qubit,
which was initialized in the ground state at time t = 0, by
tuning the on-site energies and tunnel coupling according to
Eqs. (8)–(10). At time step θ which denotes the fraction of
the Herzberg circuit, we diagonalize the parametrized Heisen-
berg Hamiltonian and express the wave function |ψ(θ )〉 =∑

n=−1,0,1 cn(θ )|n(Rθ )〉. To update the wave function to
|ψ(θ + �θ )〉, we add a dynamical phase e−iωn(θ)�θ to cn(θ )

FIG. 4. (Color online) (a) The energy gap ε2 − ε1 (top figure) as
well as ε1 − ε0 (bottom figure) in both Hubbard (dotted curve) and
Heisenberg (solid curve) model for the circuit presented in Fig. 2. εi

is the ith eigenenergy of the system. (b) The same energy gaps in
both Hubbard (dotted) and Heisenberg (solid) model for the circuit
presented in Fig. 3. In both (a) and (b), the green, solid curve which
represents the energy gap between the two coded qubit levels is
a constant over the closed circuit. This is because we transport the
coded qubit on a constant energy surface as implied by the parametric
plot of {Bx,By} for the coded qubit (effective two-level system) in
Fig. 2(d).

with ωn(θ ) being proportional to the nth eigenenergies. In
order to extract the geometrical phase, we follow Eq. (7) and
evaluate the following inner product eiγn(θ) = eiωnθ 〈n(Rθ ) |
ψ(θ )〉, where ωn(θ ) is a constant along the Herzberg circuit (a
circle in the parameter space).

Having demonstrated explicitly the generation of Berry’s
phase in a triangular triple quantum dot, we now focus on
the coded qubit in a linear TQD. We note that the diagonal

FIG. 5. (Color online) Accumulation of Berry’s phase by the
coded qubit level, |q+〉. At the end of the Herzberg circuit, θ = 2π ,
the accumulated phase is π , in agreement with theory.
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element H11 of the Hamiltonian, Eq. (6), is always positive
because all Jij > 0. The effective magnetic field component
in the Z direction is always positive, and no closed loop can
be made to encircle the origin of the parameter space. Hence
we conclude that it is not possible to generate Herzberg circuit
and Berry’s phase with a coded qubit in a linear TQD.

IV. DETECTION OF BERRY’S PHASE

Let us now turn to a possible experimental observation of
Berry’s phase using quantum interference in a triangular TQD.
For the chirality-based coded qubit, the effective field R is
restricted to the X-Y plane. The solid angle subtended by any
closed circuit in the X-Y plane is either 0 or π , depending
on whether the closed circuit encircles the origin or not.
The limited range of Berry’s phase prevents an easy way to
extract the phase through quantum interference. Therefore, it
is essential to have a modified Herzberg circuit that is lifted
above the X-Y plane, so the solid angle subtended by the circuit
is given by � = 2π (1 − cos θ ), where cos θ = Z/(X2 + Y 2 +
Z2)1/2 is the direction cosine on the Bloch sphere. To generate
R with a Z component, we need to apply a magnetic field Bz

perpendicular to the triangular TQD. The real field Bz turns
on the chiral term χijk in Eq. (2). Since the chiral states are
eigenstates of the chirality operator, the chirality term acts as
a σ̂z operation in the coded qubit subspace. The coefficient,
χijk , attached to the chirality operator is ≈|t |3/U 2. If we take
t = −0.05 and U = 2.0, the values used to generate Fig. 3,
then χijk is about two to three orders of magnitude smaller than
Jij . It is important to realize that χijk , derived from third-order
perturbation theory, also depends on the TQD parameters
such as tij , and differences of on-site energies through terms
like 1/[(U − V + �Eij )(U − V + �Eki)]. Therefore, as the
system is adiabatically transported on a closed circuit by
varying the gate voltage, the magnitude of this effective Z field
will oscillate in its magnitude. An estimated change of the Z

field over the course of one complete circuit is two to three
orders of magnitude smaller than that of the X and Y fields.

Following Ref. 8, we now describe a possible procedure
to experimentally detect Berry’s phase in a triangular TQD.
First, we prepare the coded qubit in a linear superposition of
the form 1√

2
|q+〉 + 1√

2
|q−〉 by having an effective field R

along the Y direction. Next, we apply a Bz field to generate
R with a Z component. Then we tune the parameters Eij

and tij as shown in Fig. 3 to accumulate the geometrical
phase over one cyclic evolution on the circuit lying above
the X-Y plane. After one cyclic evolution with a period T , the
states |q±〉 acquire a phase ±δ(T ) + φ±(C), where δ(T ) is the
dynamical phase for state |q+〉. We then apply a spin-echo7,8,12

like procedure to eliminate the dynamical phases. We first
perform a NOT operation (σ̂x operation) on the coded qubit
to flip the two chiral states, and this step can be achieved by
rapidly tuning25 only Eij to minimize any additional changes
to the states. So the overall phase factor associated with |q±〉
is ∓δ(T ) + φ∓(C). Then we transport the system around the
same circuit in the opposite direction. According to Eq. (7),
the dynamical phase only depends on the eigenenergies
along the circuit. Since it is the same circuit, the state acquires
the same dynamical phase as before, but the sign of Berry’s
phase depends on the direction of traversal on the circuit.

Therefore, the states |q±〉 each acquire an additional phase
factor ±δ(T ) − φ±(C) during the second round on the circuit.
Finally, we remove the Bz field to return the system into the
X-Y plane. As discussed in Ref. 8, the accumulated dynamical
and geometrical phases during the processes of applying and
removing Bz actually cancel each other exactly. Therefore,
we can combine the phase factors accumulated over the two
complete rounds of the closed circuit to get the final state,
|ψf 〉 = 1√

2
e−i2φ+ |q+〉 + 1√

2
ei2φ+ |q−〉, where the dynamical

phases add destructively and only geometrical phase is left.
The final task is to perform quantum interferometry to

extract Berry’s phase from the system. We note that the Jacobi
states can be written as a linear combination of the two chiral
states,

|L0〉 = (−iei2π/3/
√

2) |q+〉 + (ie−i2π/3/
√

2) |q−〉,
(11)

|L1〉 = (−ei2π/3/
√

2) |q+〉 − (e−i2π/3/
√

2) |q−〉.
This implies that, for instance, the probability amplitude of
measuring |L0,1〉 state with respect to |ψf 〉 is given by

〈L0 |ψf 〉 = sin

(
2φ+ + 2π

3

)
,

(12)

〈L1 |ψf 〉 = − cos

(
2φ+ + 2π

3

)
.

It is clear that the result of projective measurements in the
Jacobi basis depends on Berry’s phase φ+(C).

Experiments23,25,26 have already demonstrated that the joint
spin states between two neighboring dots can be measured by
the spin to charge conversion. If the charge detection shows that
charge configuration (1,1,1) converts to charge configuration
(2,1,0), then we have a |L0〉 state in the triangular TQD.
Repeating the procedures of accumulating Berry’s phase with
different ratios of Z2/(X2 + Y 2 + Z2), one can extract Berry’s
phase following Eq. (12).

Once the modified Herzberg circuit is lifted from the X-Y
plane, the Berry’s phase depends on the geometry of the circuit.
Major sources of decoherences include fluctuating charges27

and nuclear spins.28 In the simplest approximation, the effects
of these two types of environment on the coded qubit can
be approximated with a spin-1/2 model in the presence of
a random fluctuating field Rrand. Such a model was already
studied in Ref. 29, which showed that Berry’s phase is more
robust than the dynamical phase.

V. CONCLUSION

In summary, we presented a theoretical proposal for the
Herzberg circuit and controlled accumulation of Berry’s phase
in a qubit encoded in the two degenerate chirality states of a
three-spin complex with total spin S = 1/2 in a triangular
triple quantum dot molecule with one electron spin each.
Using a Hubbard and Heisenberg model the Herzberg circuit
encircling the degeneracy point is realized by adiabatically
tuning the successive on-site energies of quantum dots and
tunnel couplings across pairs of neighboring dots. It is
explicitly shown that encircling the degeneracy point leads to
the accumulation of the geometrical Berry’s phase. We show
that only the triangular, not the linear, quantum dot molecule
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allows for the generation of Berry’s phase and we discuss
a protocol to detect this geometrical phase in interference
experiments relying on spin to charge conversion in spin
blockade and/or charge sensing spectroscopy.
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