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Ratchet effects in two-dimensional systems with a lateral periodic potential
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Radiation-induced ratchet electric currents have been studied theoretically in graphene with a periodic
noncentrosymmetric lateral potential. The ratchet current generated under normal incidence is shown to consist
of two contributions; one of them is polarization independent and proportional to the energy relaxation time,
and another is controlled solely by elastic-scattering processes and is sensitive to both the linear and circular
polarization of radiation. Two realistic mechanisms of electron scattering in graphene are considered. For
short-range defects, the ratchet current is helicity dependent, but independent of the direction of linear polarization.
For the Coulomb impurity scattering, the ratchet current is forbidden for the radiation linearly polarized in the
plane perpendicular to the lateral-potential modulation direction. For comparison, the ratchet currents in a
quantum well with a lateral superlattice are calculated at low temperatures with allowance for the dependence of
the momentum relaxation time on the electron energy.
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I. INTRODUCTION

Noncentrosymmetric periodic systems being driven out
of thermal equilibrium by a time-oscillating force, either
stochastic or deterministic, are able to transport particles
even if the force is zero on average. This directed transport,
generally known as the ratchet effect, is relevant to different
fields of the natural sciences. Various kinds of symmetry-
breaking micrometer- and nanometer-sized artificial structures
have been proposed and fabricated to model ratchets and
investigate their fundamental properties; for a review, see,
e.g., Refs. 1–4. The directed motion of Brownian particles
in water has been induced by modulating in time a spatially
periodic but asymmetric optical potential.5 Electronic ratchets,
where rectification of thermal fluctuations is achieved in
systems with inhomogeneous distribution of temperature, have
been studied theoretically in Refs. 6–8. In semiconductor
nanostructures, the ratchet effect has been demonstrated in
various systems with asymmetric scatterer arrays based on
both A3B5 (Refs. 9–12) and Si/Ge (Ref. 13) materials as
well as with asymmetric lateral superlattices.14,15 The spin
ratchets have been proposed for two-dimensional systems
with symmetric periodic potential and driving force but with
the Rashba spin-orbit interaction.16,17 Recently, the ratchet
current induced by terahertz radiation has been observed
in a semiconductor quantum-well (QW) structure with a
one-dimensional lateral periodic potential induced either
by etching a noncentrosymmetric grating into the sample
cap layer18 or by deposition of micropatterned metal-gate
fingers.19 Quantum graphene ratchets formed by asymmetric
periodic strain with the period comparable to the de Broglie
wavelength of free carriers have been studied in Ref. 20.

In the present theoretical work, we consider a classical
graphene ratchet consisting of a graphene sheet fabricated on
highly resistive substrate and covered successively by a thin
dielectric layer and a periodic grating of semitransparent metal
fingers; see Fig. 1. A technological opportunity to grow such a
system is demonstrated in Refs. 21 and 22 where photodetec-
tors with multiple interdigitated metal fingers fabricated on the
graphene were reported. To achieve symmetry breaking, the
superimposed lateral structure may form the infinite sequence

. . . ACBC ′ACBC ′ . . ., with A, B representing metal fingers
of the thicknesses a and b (a �= b), and C, C ′ representing
hollows of different thicknesses c and c′; see Fig. 1.

The paper is organized as follows. In Sec. II we for-
mulate the basic concept of the problem. In Sec. III we
take into account the radiation-induced heating of the free
carriers and spatial modulation of the heating, and deduce the
polarization-independent contribution to the ratchet current.
In Sec. IV we develop the Boltzmann kinetic formalism and
obtain microscopic expressions for the polarization-dependent
ratchet currents. The results are discussed in Sec. V. In Sec. VI
the summary of the research is outlined.

II. BASIC CONCEPT

According to the theory proposed in Refs. 18 and 19 in the
studied systems, i.e., the pulsating ratchets, the electric-current
generation is based on the combined action of a static, spatially
periodic in-plane potential

V (x) = V0 cos (qx + ϕV )

and a spatially modulated electric-field amplitude

E(x) = E0[1 + h cos (qx + ϕE)]

of the normally incident radiation. Here q = 2π/d, with
d being the superlattice period along x. In the considered
pulsating ratchets, the symmetry breaking is described by the
phase shift ϕV − ϕE different from an integer number of π ,
and the electromotive force is proportional to sin (ϕV − ϕE).
The structured graphene presented in Fig. 1 can also show
ratchet effects. The lateral potential V (x) can arise due to the
strain, either tensile or compressive, in graphene areas located
beneath the fingers A and B, whereas the in-plane modulation
of the pump radiation appears due to near-field effects of the
THz radiation propagating through the grating. For A �= B,
C �= C ′, the shapes and local extrema of the periodic functions
V (x) and E(x) are naturally shifted with respect to each other,
resulting in a difference between the phases ϕV and ϕE . For
example, for b = c = 2a = 2c′, a crude estimate gives a value
of 0.4 for sin (ϕV − ϕE).
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FIG. 1. Schematic representation of the studied ratchet structure.

The symmetry imposes restrictions on the polarization
dependence of the ratchet currents. Graphene modulated by
an asymmetric lateral potential V (x) has the point-group
symmetry C2v with the C2 axis parallel to the modulation
direction x and the mirror reflection plane perpendicular to
y. It follows then that the net dc current-density components
jx and jy are related to components of the polarization unit
vector e and amplitude E(x) ≡ |E(x)| of the normally incident
radiation by four linearly independent coefficients,

jx = [χ0(|ex |2 + |ey |2) + χL(|ex |2 − |ey |2)]E2(x)
dV

dx
,

(1)

jy = [χ̃L(exe
∗
y + e∗

xey) + γPcirc]E2(x)
dV

dx
.

Here we use the notations x and y for the in-plane coordi-
nates, the bar denotes averaging over the coordinate x, and
Pcirc = i(exe

∗
y − e∗

xey) is the degree of the radiation circular
polarization. The coefficient χ0 describes the contribution to
the ratchet current insensitive to the polarization state, while
the remaining three coefficients describe the linear (χL,χ̃L)
and circular (γ ) ratchet effects. We develop the kinetic theory
allowing us to derive equations for all of these coefficients.
Compared to Refs. 18 and 19, the theory will be substantially
extended to take into account specific properties of graphene,
namely, (i) the linear, Dirac-like dispersion of electron energy
leads to a strong energy dependence of elastic relaxation times
and (ii) the electron gas in doped graphene is degenerate even
at room temperature.

Taking the electric-field and lateral-potential modulation in
the above simplest form, we obtain, for the average in Eq. (1),

E2(x)
dV

dx
= qV0hE2

0 sin (ϕV − ϕE). (2)

It is worth noting that the factor h sin (ϕV − ϕE) in Eq. (2)
should be strongly sensitive to the geometry of the structured
coating of the graphene, namely, the thicknesses of stripes and
heights of the metal fingers. Furthermore, bias voltages applied
to the grid elements A and B should substantially change
the lateral potential V (x), as well as the relative amplitude
h and phase ϕE of the field modulation. The replacement of
thin semitransparent metal fingers by thick gate stripes should

reveal plasmonic effects similar to the photoresponse of the
THz plasmonic broadband detectors; see Refs. 15 and 23 and
references therein.

Hereafter we consider a graphene sheet with the lateral
potential V (x). The electron energy in each valley, either K or
K ′, is given by

Ek = h̄v0k + V (x), (3)

where v0 is the electron speed in graphene and the two-
dimensional wave vector k refers to the vortex of the hexagonal
Brillouin zone. Since in the model under consideration the
behavior of electrons in the K or K ′ valleys is identical,
we consider the current generation in one of them and then
double the result. In the course of presenting the results,
we will supplement them with similar results obtained for
the QW ratchet with the electron parabolic dispersion Ek =
h̄2k2/2m + V (x). For an adequate comparison of the two
low-dimensional systems, we have extended the theory of
Ref. 4 for QW ratchets to take into account the dependence of
the momentum relaxation time on the electron energy and the
degenerate statistics.

III. SEEBECK RATCHET CURRENT

In this and the following sections, we will successively
consider two mechanisms of the ratchet current. In the
Seebeck ratchet effect, the spatially modulated radiation
heats the electron gas, changing its effective temperature from
the equilibrium value T to T (x) = T̄ + δT (x). Here T̄ is
the average electron temperature and δT (x) oscillates in
space with the period d. In turn, the correction δT (x)
causes the inhomogeneous correction to the conductivity,
δσ (x) = (∂σ/∂T )δT (x). Bearing in mind Ohm’s law j = σ E,
by replacing the dc electric field E with −(1/e)dV/dx and σ

with δσ (x), we obtain for the ratchet current

jx = 1

|e|δσ (x)
dV (x)

dx
. (4)

Here e < 0 is the electron charge. The nonequilibrium electron
temperature can be found from the energy balance equation,

T (x) − T

τε

= h̄ωG(x), (5)

where τε is the electron-energy relaxation time, ω is the
radiation frequency, the temperature is expressed in energy
units, and G(x) is the photon absorption rate per electron.
From Eqs. (4) and (5), we derive the working equation

jx = h̄ωτε

|e|
∂σ

∂T
G(x)

dV (x)

dx
, (6)

which can be used for a degenerate two-dimensional gas in
both graphene and QWs. In graphene, the Drude absorp-
tion rate per particle is inversely proportional to the Fermi
energy εF,

G(x) = e2v2
0

εF

τtr

1 + (ωτtr)2

2E2(x)

h̄ω
, (7)

while for QWs, v2
0/εF should be replaced by the inverse

electron effective mass 1/m. Here τtr is the transport relaxation
time, which determines the low-temperature conductivity.

115301-2



RATCHET EFFECTS IN TWO-DIMENSIONAL SYSTEMS . . . PHYSICAL REVIEW B 86, 115301 (2012)

The temperature dependence of the conductivity for degen-
erate electron gas in graphene is well documented,24

∂σ

∂T
= πe2

3h̄2 T εF

[
(ετ1)′

ε

]′

ε=εF

, (8)

while for the QW systems, one has

∂σQW

∂T
= πe2

3h̄2 T (ετ1)′′ε=εF
. (9)

Here primes denote differentiation over the electron energy
ε ≡ εk = h̄v0k or h̄2k2/(2m), and τ1(ε) is the momentum
relaxation time of a nonequilibrium correction to the electron
distribution function depending as cos ϕk on the azimuthal
angle ϕk of the electron wave vector k. Note that the transport
relaxation time τtr is equal to τ1(εF).

From Eqs. (6)–(9), we finally obtain the Seebeck contribu-
tion to the polarization-independent current, given by Eq. (1),
described by coefficient χ0. For graphene, it is given by

χS
0 = −2πe3v2

0T τε

3h̄2εF

τtr

1 + (ωτtr)2
εF

[
(ετ1)′

ε

]′

ε=εF

, (10)

while for the QW structures, one has

χS
0,QW = −2πe3T τε

3h̄2m

τtr

1 + (ωτtr)2
(ετ1)′′ε=εF

. (11)

The analysis of Eqs. (10) and (11) for different mechanisms of
electron scattering is postponed to Sec. V.

IV. POLARIZATION-DEPENDENT RATCHET CURRENTS

In the presence of normally incident radiation, an electron
is subjected to the periodic force,

F(x) = e[E(x)e−iωt + c.c.] − dV (x)

dx
x̂, (12)

where x̂ is the unit vector in the x direction. In the previous
section, we avoided the consideration in terms of the Boltz-
mann kinetic equation for the electron distribution function
fk and, instead, used the known expressions for the electron
conductivity. However, the second mechanism of the ratchet
currents should be treated on the base of the Boltzmann
equation,(

∂

∂t
+ vk,x

∂

∂x
+ F(x)

h̄

∂

∂k

)
fk(x) + Qk(f ) = 0. (13)

Here vk is the velocity of an electron with the wave vector k
equal to v0k/k in graphene and h̄k/m in a conventional QW,
and Qk is the collision integral. In what follows, we assume
that τtr,ω

−1 � τε and neglect the energy relaxation in Eq. (13),
in which case the integral Qk describes only momentum
relaxation processes. Thus, in the second mechanism, the
ratchet current can be independent of the energy relaxation
time, whereas in the first mechanism related to the carrier
heating, the current is proportional to τε.

In terms of the distribution function, the electric-current
density in graphene is written as

j = νe
∑

k

vkfk(x), (14)

where the factor ν accounts for the spin and valley degeneracy;
in QW structures ν = 2 and in graphene ν = 4.

So as not to overload the theory with overly cumbersome
equations, we impose the following properties of the system
under consideration: the electron mean-free path le = v0τtr and
energy-diffusion length lε = v0

√
τtrτε are both small compared

with the superlattice period d; and the ac diffusion is neglected,
which is valid if v0 � ωd. On the other hand, no restrictions
are imposed on the value of ωτtr. Moreover, we assume the
radiation electric field and the lateral potential to be weak
enough so that

|eE0|v0τtr � T and |V (x) − V (x)| � εF.

Then, according to the phenomenological Eqs. (1), the function
fk(x) should be calculated in the third order of the perturbation
theory, including the second order in the electric-field ampli-
tude and the first order in the lateral potential. Taking into
account that our aim is to derive an expression for the sum
(14) rather than to find the function fk(x) explicitly, we can
express this sum in the form

jα = νe2

h̄

∑
k

f
(EV)
kω (x)E∗(x) · ∂(τ1vα)

∂k
+ c.c., (15)

where α = x,y, and f
(EV)
kω is the second-order iteration linear

both in E(x) and dV (x)/dx. It can be found from the
equation (

−iω + vk,x

∂

∂x

)
f

(EV)
kω (x) + Qk(f (EV))

= − e

h̄
E(x)

∂f (V )

∂k
+ dV

dx

1

h̄

∂f (E)

∂kx

, (16)

where the first-order corrections are given by

f
(V )
k = V (x)f ′

0(εk), f
(E)
k = −eτ1ω E(x)vkf

′
0(εk). (17)

Here f0(εk) is the equilibrium Fermi-Dirac function at V (x) ≡
0, and τ1ω = τ1/(1 − iωτ1).

A. Graphene

In contrast to systems with the parabolic energy dispersion,
in graphene the relaxation time τ1 is energy dependent even for
the short-range scattering potential. Moreover, the derivative
∂vα/∂kβ is k dependent, which means that the current (15)
cannot be in general expressed exclusively in terms of the
macroscopic fluctuation, δNω(x) = 4

∑
k f

(EV)
kω .

To calculate the ratchet current, we solve the kinetic
Eq. (16) and find a contribution to f

(EV)
kω (x) even in k. It is

convenient to present it as a sum of isotropic part 〈f (EV)
kω (x)〉 and

anisotropic part δf
(EV)
kω (x), where the angular brackets denote

averaging over the directions of k. The isotropic part describing
a nonequilibrium correction to the energy distribution of
electrons has the form

〈
f

(EV)
kω

〉= iev2
0

2ω

[
(−f ′

0)
(εkτ1ω)′

εk

Ex(x)
dV

dx
+ f ′′

0 τ1ωV (x)
dEx

dx

]
.

(18)
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In fact, Eq. (18) describes the local oscillation of the electron
kinetic energy induced by a combined action of the ac electric
field and the dc static electron potential. The oscillation
amplitude increases with decreasing the frequency ω until the
latter becomes comparable with τ−1

ε , whereupon the amplitude
is stabilized by the energy relaxation processes.

The anisotropic oscillating correction δf
(EV)
kω describes the

dynamic alignment of electron momenta in the k space. It has
the form

δf
(EV)
kω

= ev2
0τ2ω

2

[
(−f ′

0)εk

(
τ1ω

εk

)′
(Ex cos 2ϕk + Ey sin 2ϕk)

dV

dx

+ f ′′
0 τ1ωV (x)

(
dEx

dx
cos 2ϕk + dEy

dx
sin 2ϕk

) ]
. (19)

Here τ−1
2ω = τ−1

2 − iω, where τ2 is the relaxation time of the
second-order harmonics of the distribution function propor-
tional to cos 2ϕk = (k2

x − k2
y)/k2 or sin 2ϕk = 2kxky/k2.

Substitution of the solution f
(EV)
kω = 〈f (EV)

kω 〉 + δf
(EV)
k ω into

Eq. (15) yields the ratchet current exactly in the form of Eq. (1),
where (see the details in the Appendix)

χ0 = e3v2
0

2πh̄2 (ReS1 − ImS2), (20a)

χL = χ̃L = − e3v2
0

2πh̄2 ImS2, (20b)

γ = e3v2
0

2πh̄2 (ReS2 − ImS1). (20c)

The complex coefficients S1,2 are defined by the following
expressions:

S1 = ε3

(
τ1

ε

)′
τ2ω

(
τ1ω

ε

)′
− 1

2

[
ε2

(
τ1

ε

)′
τ2ωτ1ω

]′
,

(21)

S2 = (τ1ε)′(τ1ωε)′

ωε
− 1

2ω
[(τ1ε)′τ1ω]′,

where one should set ε = εF.
One can see that for the second mechanism, the ratchet

current reveals contributions that are both dependent and
independent of the polarization.

In order to reveal the physical nature of the polarization-
dependent ratchet currents, we will consider in more detail one
of the contributions to these currents, e.g., the contribution
due to the first terms in the square brackets in Eq. (18). By
substituting this term into Eq. (15), using the average (A2),
and replacing (−f ′

0) by δ(ε − εF ) (see Appendix), we can
reduce this contribution to the form

j = e2v2
0

2εF
(τ1ε)′ε=εF

δNω(x)E∗(x) + c.c. (22)

Here δNω(x) is the electron density fluctuation related to the
first term in Eq. (18) and proportional to Ex(x)(dV/dx):

δNω(x) = iev2
0

2ωεF
(τ1ωε)′ε=εF

g(εF)Ex(x)
dV

dx
, (23)

where we introduced the density of states

g(ε) = 2

π

ε

h̄2v2
0

. (24)

0 10.5

0 10.5

(a)

(b)

FIG. 2. (Color online) (a) Schematic representation of the spatial
variation of the Dirac point along the x axis due to the built-in lateral
potential V (x) (solid curve); see Eq. (3). The dash-dotted horizontal
line shows the equilibrium Fermi energy. (b) Spatial variation of the
first derivative of the lateral potential and spatial modulation of the
radiation electric field.

It is convenient to present the further interpretation by using
the illustration sketched in Fig. 2. The lateral potential is
chosen in the form of V0 cos (2πx/d), as shown in Fig. 2(a),
and the phase of the electric-field amplitudes Ex,y(x) is
shifted by ϕV − ϕE = π/2 as follows: Ex,y(x)/Ex,y = 1 +
h sin (2πx/d), as illustrated by Fig. 2(b). In this case, the
products E(x)(dV/dx) and

E2(x)
dV

dx
= 2E E(x)

dV

dx

are nonzero. The time and space variation of δN is represented
by

δN(x,t) ∝ E0
dV

dx
(ImS2 cos ωt + ReS2 sin ωt),

where E0 = E is the electric-field scalar amplitude, and S2

is given by the first term in the second equation (21). For
the circularly polarized light, Ex(t) ∝ cos ωt, Ey(t) ∝ sin ωt ,
and, therefore, the time average of the product δN (x,t)Ey(t)
is proportional to ReS2. On the other hand, the χ̃L-related
current in Eq. (1) is induced by the linearly polarized light with
Ex(t),Ey(t) ∝ cos ωt , resulting in χ̃L ∝ ImS2, in agreement
with Eqs. (21). The other terms in these equations are obtained
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FIG. 3. (Color online) Frequency dependencies of ratchet currents in graphene for scattering by (a) short-range defects and (b) Coulomb
impurities.

in a similar way by taking into account the explicit expressions
for 〈f (EV)

kω 〉 and δf
(EV)
k ω .

B. Quantum-well structures

In this section we extend the theory of Refs. 4, 18, and 19
to consider the degenerate statistics of the two-dimensional
electron gas in heterostructures and take into account the
possible difference between the relaxation times τ1 and τ2

and their energy dependence.
The solution of the kinetic Eq. (16) shows that Eqs. (18)

and (19) are also valid for the QW structures, provided that
v2

0 and (τ1ω/εk)′ are replaced by the squared Fermi velocity
v2

F = 2εF/m and τ ′
1ω/εk , respectively. Furthermore, for the

QW structures, we also obtain Eqs. (20), with v2
F instead of v2

0,
and S1,2 given by

S1,QW = ετ ′
1τ2ωτ ′

1ω − 1

2ε
(ε2τ ′

1τ2ωτ1ω)′,
(25)

S2,QW = (τ1ε)′(τ1ωε)′

ωε
− 1

2ωε
[(τ1ε)′τ1ωε]′.

We note that for a quadratic energy dispersion εk =
h̄2k2/(2m) and energy-independent time τ1 ≡ τtr, the partial
derivative ∂(τ1vα)/∂kβ = δαβh̄τtr/m is independent of k, and
Eq. (15) for the ratchet current takes the form4

j = 2e2τtr

m
Re[δNω(x)E∗(x)],

where δNω(x) = 2
∑

k f
(EV)
kω is the second-order correction to

the electron density.

V. DISCUSSION

We calculate the ratchet-current excitation spectrum for two
types of elastic scattering actual for graphene. For scattering
by short-range defects, one has

τ1 = τtr
εF

ε
, τ2 = τ1

2
,

and Eqs. (21) yield χL = 0 for this case. In contrast, for
scattering by Coulomb impurities, when

τ1 = τtr
ε

εF
, τ2 = 3τ1,

S1 = 0, and χL = χ0. This means that the x component of the
current is generated in this case only by x-polarized radiation:
jx ∝ |ex |2.

In Fig. 3, we plot the ratchet-current frequency dependence
for both types of scattering. It can be seen that the coefficients
χ0,L and γ have complex nonmonotonous behavior. In the
static limit ω → 0, χ0 remains finite, while the circular ratchet
current is absent, γ → 0. This is correct because helicity-
dependent effects cannot be present for a static electric field.
For Coulomb scattering, γ also tends to zero but this occurs at
ω ∼ τ−1

ε � τ−1
tr , as discussed in the paragraph below Eq. (18).

Now we turn to the QW structures. For scattering by short-
range defects in QWs when

τ1 = τ2 = τtr,

Eqs. (25) yield

χ0 = χL = χ̃L = −ωτtr γ, γ = e3

2πh̄2mω

τ 2
tr

1 + (ωτtr)2
.

Again, we obtain generation of jx at radiation polarization
along the x axis only, but, in contrast to graphene, this takes
place for short-range scattering. Comparing this expression
with the result for Boltzmann statistics valid at room temper-
ature Troom,4 we get

γ (T = 0)

γ (Troom)
∼ Troom

εF
.

This estimation implies that the helicity-dependent ratchet
current shows no remarkable variation with temperature.

For scattering by Coulomb impurities in QWs, when

τ1 = τtr
ε

εF
, τ2 = τ1/2,

we obtain χ0 �= χL. Figure 4 shows the ratchet current in
QW structures. One can see that for Coulomb scattering,
polarization-dependent ratchet currents are sign constant,
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FIG. 4. (Color online) Frequency dependencies of ratchet currents in QW structures at two types of elastic scattering: (a) by short-range
defects and (b) by Coulomb impurities. Inset shows the frequency range where χ0 changes its sign.

while χ0 has a maximum and changes its sign at ωτtr ≈ 2;
see inset in Fig. 4.

The Seebeck contribution to the ratchet current is absent
in graphene for both considered types of elastic scattering;
cf. Eq. (10). The nonzero Seebeck ratchet current in graphene
appears, e.g., at scattering by the screened Coulomb potential.

The Seebeck ratchet current is also absent for short-range
scattering in QWs; cf. Eq. (11). In contrast, for scattering by
Coulomb impurities, χS

0,QW is nonzero. Its ratio to the elastic-
scattering contribution can be estimated as

χS
0,QW

χ0,QW
∼ π2 τε

τtr

T

εF
.

At the low temperature T ≈ 4 K, the energy relaxation time in
QWs is τε ∼ 1 ns (Ref. 25), while the transport scattering
time is τtr ∼ 1 ps. Therefore, the Seebeck contribution to
the polarization-independent ratchet current dominates in QW
structures at low temperatures for scattering by the smooth
Coulomb potential.

VI. SUMMARY

To summarize, radiation-induced electric currents in
graphene with a spatially periodic noncentrosymmetric lateral
potential are studied theoretically. The ratchet current is shown
to consist of a polarization-independent contribution and the
contribution sensitive to linear and circular polarization of
radiation. Two microscopic mechanisms of the polarization-
independent ratchet current are considered and compared: the
Seebeck contribution generated in the course of energy relax-
ation and the current controlled by elastic-scattering processes.
We demonstrate that the ratchet-current excitation spectrum
strongly depends on the type of elastic scattering. Two realistic
mechanisms of electron scattering in graphene are analyzed.
For a short-range potential, there are polarization-independent
and helicity-dependent currents, while the linear polarization
leads to no ratchet current. For the Coulomb scattering, the
linearly polarized radiation generates the ratchet current only
for the polarization vector parallel to the lateral-potential

modulation direction. The Seebeck ratchet current is shown
to vanish for both types of elastic scattering in graphene.
For comparison, we have analyzed the ratchet effect in QW
structures with a lateral superlattice and degenerate electron
gas and demonstrated the polarization-dependent effects as
well as the Seebeck ratchet current for the Coulomb scattering.
These results show that ratchet-current measurements allow
one to identify a dominant mechanism of elastic scattering in
graphene.
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APPENDIX: DERIVATION OF EQUATIONS FOR S1 AND S2

In order to calculate explicitly the current (15) for graphene,
one can apply the identity

∂(τ1vβ)

∂kα

= h̄v2
0

[
τ1

ε
δαβ + ε

(
τ1

ε

)′
kαkβ

k2

]
. (A1)

The summation over k in Eq. (15) is performed in two
stages: first, by averaging over the directions of the wave
vector k, and, second, by integration over the modulus k ≡ |k|,
or, equivalently, over the energy ε ≡ εk = h̄v0k. To find the
contribution of 〈f (EV)

kω 〉 to the ratchet current, it suffices to use
the average

〈
∂(τ1vβ)

∂kα

〉
= h̄v2

0

2

(τ1ε)′

ε
δαβ. (A2)

Since the anisotropic correction δf
(EV)
kω is a linear function of

cos 2ϕk and sin 2ϕk, its contribution to the ratchet current j is
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found by using the identities

〈
cos 2ϕk

∂(τ1vx)

∂kx

〉
=−

〈
cos 2ϕk

∂(τ1vy)

∂ky

〉
=

〈
sin 2ϕk

∂(τ1vx)

∂ky

〉

=
〈

sin 2ϕk
∂(τ1vy)

∂kx

〉
= h̄v2

0

4
ε

(
τ1

ε

)′
. (A3)

The calculation at the second stage, i.e., integration over
the energy, is simplified by the assumption of the degenerate

statistics, in which case the the first derivative f ′
0 can be

replaced by the δ function −δ(ε − εF ). The terms in f
(EV)
kω

proportional to the second derivative f ′′
0 are treated by using

the identity

4
∑

k

f ′′
0 (εk)F (εk) = [g(ε)F (ε)]′ε=εF

, (A4)

where F (ε) is an arbitrary smooth function of ε, and g(ε) is
the electron density of states given by Eq. (24).
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