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Trion ground state, excited states, and absorption spectrum using electron-exciton basis
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We solve the Schrödinger equation for two electrons plus one hole by writing it in the electron-exciton basis.
One advantage of this basis is to eliminate the exciton contribution from the trion energy in a natural way.
The interacting electron-exciton system is treated using the recently developed composite boson many-body
formalism, which allows an exact handling of electron exchange. We numerically solve the resulting electron-
exciton Schrödinger equation with the exciton levels restricted to the lowest 1s, 2s, and 3s states, and we derive
the trion ground-state energy as a function of the electron-to-hole mass ratio. This restricted electron-hole basis
already gives results in reasonable agreement with those obtained through the best variational methods using
free carriers. The main advantage of the electron-hole basis is to allow us to reach the bound and unbound trion
excited states as easily as the ground state. Through the trion wave functions, we also derive the optical absorption
spectrum in the presence of hot carriers for two-dimensional quantum wells. We find large peaks located at the
exciton levels, which are attributed to electron-exciton (unbound) scattering states, and small peaks identified
with trion bound states.
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I. INTRODUCTION

Trions, i.e., charged composite particles made of two
electrons plus one hole (X−), or two holes plus one electron
(X+), were first predicted in bulk semiconductors a few
decades ago.1 These three-body objects have well-known
counterparts in atomic physics, namely, charged hydrogen
ion2–5 H− or molecule H+

2 . Although their binding energies
are several orders of magnitude larger than for semiconductor
trions, their physics are essentially the same provided that
we use semiconductor effective masses, i.e., we neglect all
complexities coming from the valence band by assuming one
hole species only.

In the late 1970s, trions with very small binding energy
have been observed in bulk semiconductor samples such as
Ge and Si (Refs. 6 and 7). However, it is in the 1990s
only that high-quality semiconductor quantum wells allowed
precise studies of trion states using optical measurements.8–11

Indeed, the reduction of dimensionality is known to enhance
all composite particle binding energies. Recent experiments
in highly doped materials12–14 have further investigated the
interesting interaction which exists between trions and free
carriers.

Although single-trion eigenstates have up to now been
approached through a free carrier basis made of two electrons
plus one hole,15,16 or two holes plus one electron, this basis is
not the most appropriate one from a physical point of view.
Indeed, the three free carriers of a trion interact through the
strong Coulomb interaction which exists between elementary
charges ±e. This interaction has to be treated exactly in
order to possibly find the poles associated with the trion
bound states. It is physically clear that the trion ground-state
energy must lie slightly below the exciton energy because the
“second” electron is attracted not by an elementary charge,
but by the excitonic dipole. Yet, this weak attraction still
has to be treated exactly in order to get the trion bound
states. Thus, in the approach using free carriers, we face the
challenging task of solving a three-body Schrödinger equation

with a very high precision since ultimately the trion binding
energy we are interested in only is a very small fraction of
the total trion energy we get: the trion binding energy being
the difference between the trion and the exciton ground-state
energies.

The procedure we here propose avoids this difficulty. It uses
a basis made of electron-exciton pairs (e,X), the exciton states
being analytically known, both in two and three dimensions
(2D and 3D). Instead of a free energy made of free carrier
kinetic energies ε

(e)
ke

+ ε
(e)
k′

e
+ ε

(h)
kh

with a minimum value equal
to zero, the (e,X) basis we here use already contains the exciton
binding energy at the zeroth order in the interaction since the
“free energy” then is EXQ + ε

(e)
k′

e
. The construction of a trion

Schrödinger equation using electron-exciton pairs as a basis
can be done by using the recently developed composite boson
many-body theory17 that can exactly handle carrier exchanges
between the exciton and the electron or the hole, as induced
by the Pauli exclusion principle.

The goal of this paper is not to compete with the variational
approaches commonly used to derive the trion ground-state
energy. Thanks to rapid advances in computer technology,
elaborate variational methods can now reach the ground-state
energy with an amazing precision of ten decimal digits or
more,18 not really useful for semiconductor experiments.
Rather, our purpose in proposing a new way to approach the
trion problem is threefold:

(a) Variational methods are quite appropriate to derive
the trion ground-state energy with a numerical accuracy
which surpasses experimental data. However, the coordinates
commonly used19 in these variational procedures completely
mask the underlying physics of an electron interacting with
an exciton through Coulomb processes and the effect of
carrier exchanges on the structure. In contrast, the method
presented here provides a physically clear picture of the
many-body effects involved in a trion. Moreover, we can reach
a reasonably good value of the trion ground-state energy by
numerically solving the trion Schrödinger equation with just a
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few low-lying exciton levels kept in the electron-exciton basis,
which makes this numerical resolution quite easy to perform.

(b) The trion operator, defined in Eq. (9), constructed on
the electron-exciton basis we here use, is quite suitable for
further study of interacting trions20,21 because it integrates the
trion into the general framework of interacting excitons, for
which a powerful many-body formalism has been developed.17

Solving the trion Schrödinger equation in the electron-exciton
basis, as addressed in this work, provides useful grounds for
future works on many-body effects involving trions.

(c) Finally, the electron-exciton basis allows us to obtain the
trion excited states as easily as the ground state, usual varia-
tional procedures providing ground state only, by construction.

Through these ground- and excited-state wave functions, it
becomes possible to compute the whole absorption spectrum
for bound and unbound trions in doped semiconductors. We
here concentrate on optical absorption in 2D quantum wells in
the presence of hot carriers. For X− trion, i.e., two electrons
plus a hole with electron mass smaller than the hole mass,
this spectrum shows one small peak below the ground-state
exciton energy, which is associated with the trion ground
state, and right at the 1s, 2s, and 3s exciton levels, larger
peaks associated with unbound trions, i.e., electron-exciton
scattering states. Through the carrier energy distribution, the
absorption spectrum actually acts as a tool to probe the trion
relative motion wave function in momentum space. The peak
height is found to decrease with photon energy, due to the
fact that the trion wave-function amplitude decreases when
the electron relative motion momentum increases.

The paper is organized as follows: In Sec. II, we write the
trion Schrödinger equation using the two-electron–one-hole
basis for completeness since this basis is the standard one
to approach trion. We pay particular attention to the parity
condition for trions made of two electrons with same spin or
opposite spins. In Sec. III, we write the trion states in the
electron-exciton basis and we show how the parity condition
appears within this (e,X) representation. We then derive the
Schrödinger equation fulfilled by the prefactor of the trion
expansion in this (e,X) basis. In a last part, we focus on trion
made of opposite spin electrons in a singlet state to possibly
reach the trion ground state and also the trion relative motion
wave functions appearing in photon absorption spectrum.

In the first part of Sec. IV, we present numerical results on
the binding energies of the trion ground and excited states for
various electron-to-hole mass ratios. We then show the trion
relative motion wave functions for bound and unbound states.
Finally, we use these trion wave functions to calculate the
optical absorption spectra for various hot carrier distributions.
We then conclude.

II. X− TRION IN TERMS OF TWO ELECTRONS PLUS
ONE HOLE (e,e′,h)

We consider two electrons with spins s and s ′ and one hole
with total angular momentum m. The electron spins can be
±1/2. In bulk samples, the hole angular momentum can be
m = (±3/2,±1/2), while in narrow quantum wells, it reduces
to m = ±3/2 due to the heavy- and light-hole energy splitting
induced by the well confinement. However, since the hole
angular momentum does not play a role for a single X− trion if

we neglect the exciton splitting due to electron-hole exchange,
we will in the following ignore the hole angular momentum m

for simplicity.
The basis commonly used to represent X− trion is made

of three free carrier states, namely, a
†
ke ;sa

†
k′

e ;s ′b
†
kh

|v〉. By noting
that the system Hamiltonian for two electrons (e,e′) plus one
hole (h) in first quantization

Hee′h = p2
e + p2

e′

2me

+ p2
h

2mh

+ e2

εsc |re − re′ |
− e2

εsc |re − rh| − e2

εsc |re′ − rh| (1)

is invariant under the (e ←→ e′) exchange, where εsc is the
semiconductor dielectric constant, one order of magnitude
larger in semiconductor samples than in vacuum. We conclude
that the orbital part of the trion wave function must be even
or odd with respect to this exchange, the ground-state wave
function being even in order for this state to be nondegenerate.
As a result, the trion eigenstates can be divided into two groups.
One group consists of states that have an even orbital part and
an odd spin part (due to the Pauli exclusion principle). These
are spin singlet |S = 0,Sz = 0〉. The other group consists of
states that have an odd orbital part and an even spin part. These
are spin triplets |S = 1,Sz = (0, ± 1)〉.

Consequently, the eigenstates of the Schrödinger equation
for one trion in the (e,e′,h) basis

(Hee′h − E(T ,S))
∣∣�(T )

SSz

〉 = 0 (2)

can be written as∣∣�(T )
S=1,Sz=2s

〉 =
∑

kek′
ekh

ψ
(T ,S=1)
kek′

ekh
a
†
ke ;sa

†
k′

e ;sb
†
kh

|v〉 (3)

when the two electrons have the same spin s, and as∣∣�(T )
S=(0,1),Sz=0

〉 =
∑

kek′
ekh

ψ
(T ,S)
kek′

ekh

[
a
†
ke ;1/2a

†
k′

e ;−1/2

− (−1)Sa†
ke ;−1/2a

†
k′

e ;1/2

]
b
†
kh

|v〉 (4)

when the two electron spins are opposite.
Since a

†
ke ;sa

†
k′

e ;s ′ = −a
†
k′

e ;s ′a
†
ke ;s , it is possible to replace the

prefactors in Eq. (3) by (ψ (T ,S=1)
kek′

ekh
− ψ

(T ,S=1)
k′

ekekh
)/2. For the same

reason, we can rewrite the second operator in Eq. (4) as the first
one, the prefactors now reading as (−1)Sψ (T ,S)

k′
ekekh

. As a result,
instead of writing the four trion states as in Eqs. (3) and (4),
we may as well write them in a more compact form as∣∣�(T )

S,Sz=s+s ′
〉 =

∑
kek′

ekh

φ
(T ,S)
kek′

ekh
a
†
ke ;sa

†
k′

e ;s ′b
†
kh

|v〉, (5)

where the prefactors in this expansion now read as

φ
(T ,S)
kek′

ekh
= ψ

(T ,S)
kek′

ekh
+ (−1)Sψ (T ,S)

k′
ekekh

(6)

within an irrelevant normalization factor. This new prefactor
then fulfills the parity condition

φ
(T ,S)
kek′

ekh
= (−1)Sφ(T ,S)

k′
ekekh

, (7)

a requirement not necessary to enforce if we use the expansions
(3) and (4) with prefactors ψ

(T ,S)
kek′

ekh
since this parity condition

is then fulfilled by the operators themselves.
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For the trion state written as in Eq. (5), the Schrödinger
equation (2) leads to

0 = [
Ekek′

ekh
− E(T ,S)

]
φ

(T ,S)
kek′

ekh

+
∑

q

Vq
[
φ

(T ,S)
ke+q,k′

e−q,kh
− φ

(T ,S)
ke+q,k′

e,kh−q − φ
(T ,S)
ke,k′

e+q,kh−q

]
,

(8)

where the free part of the energy reads as Ekek′
ekh

= ε
(e)
ke

+
ε

(e)
k′

e
+ ε

(h)
kh

[see also Eq. (A2)]. Details on the derivation of this
Schrödinger equation can be found in Appendix A.

The energies of trion states using the (e,e′,h) basis then
follow from solving the three-body Schrödinger equation (8)
with the parity condition φ

(T ,S)
kek′

ekh
= (−1)Sφ(T ,S)

k′
ekekh

. The trion
ground state belongs to the set of even states, i.e., states with
S = 0, while the solutions with odd wave functions lead to
triplet states, the three triplet states being degenerate.

III. TRION IN TERMS OF ELECTRON-EXCITON
PAIRS (e,X)

We now turn to the trion representation in terms of electron-
exciton pairs. Some useful results on excitons interacting
with free electrons are briefly rederived in Appendix B, for
completeness.

Since excitons form a complete basis for (e,h) pairs, we
can rewrite the trion states of Eq. (5) as∣∣�(T )

S,Sz=s+s ′
〉 =

∑
kei

φ
(T ,S)
ke,i

a
†
ke ;sB

†
i;s ′ |v〉. (9)

Using Eq. (B2), we can relate the prefactors of this (e,X)
expansion to those of the (e,e′,h) expansion in Eq. (5) through

φ
(T ,S)
ke,i

=
∑
k′

ekh

〈i|k′
ekh〉φ(T ,S)

kek′
ekh

. (10)

Before going further, let us note that the parity condition (7) on
φ

(T ,S)
kek′

ekh
, resulting from the Pauli exclusion principle between

the two electrons of the trion, imposes

∑
kei

λ

(
k′

e ke

i ′ i

)
φ

(T ,S)
ke,i

=
∑
kei

∑
qh

∑
peph

〈i ′|keqh〉〈qhk′
e|i〉〈i|peph〉φ(T ,S)

kepeph

=
∑
keph

φ
(T ,S)
kek′

eph
〈i ′|keph〉 = (−1)S

∑
keph

φ
(T ,S)
k′

ekeph
〈i ′|keph〉

= (−1)Sφ(T ,S)
k′

e,i
′ , (11)

where λ( k′
e ke

i ′ i ) is the Pauli scattering for electron exchange
between a ke electron and an i exciton, defined in Eq. (B4)
and shown in the diagram of Fig. 1. So, the parity condition
(7) reads in the (e,X) subspace as

φ
(T ,S)
k′

e,i
′ = (−1)S

∑
kei

λ

(
k′

e ke

i ′ i

)
φ

(T ,S)
ke,i

, (12)

which clearly is more complicated than Eq. (7). We will show
in the following how to overcome this complication.

The Schrödinger equation for one trion in the electron-
exciton basis reads for singlet and triplet trion states as

0 = (
Eke,i − E(T ,S)

)
φ

(T ,S)
ke,i

+
∑
k′

ei
′
ξ

(
ke k′

e

i i ′

)
φ

(T ,S)
k′

e,i
′ , (13)

where Eke,i = ε
(e)
ke

+ E
(X)
i is the free electron-exciton pair

energy. Details on this derivation are given in Appendix C.
The electron-exciton scattering ξ ( k′

e ke

i ′ i ) associated with direct
Coulomb interaction between one exciton and one electron is
shown in the diagram of Fig. 3. The φ

(T ,S)
ke,i

wave function in
this exciton-electron basis is subject to the constraint imposed
by the parity condition (12).

The parity condition (12), however, is difficult to implement
numerically. It is actually possible to include this condition into
the Schrödinger equation itself by setting

φ
(T ,S)
ke,i

= ϕ
(T ,S)
ke,i

+ (−1)S
∑
k′

ei
′
λ

(
ke k′

e

i i ′

)
ϕ

(T ,S)
k′

e,i
′ ; (14)

so, the parity condition (12) on φ
(T ,S)
ke,i

is automatically satisfied

for arbitrary ϕ
(T ,S)
ke,i

, which can then be regarded as a free
function. By inserting Eq. (14) into the Schrödinger equation
(13), we find the equation fulfilled by the ϕ

(T ,S)
ke,i

function as

0 = (
Eke,i − E(T ,S)

)⎡
⎣ϕ

(T ,S)
ke,i

+ (−1)S
∑
k′

ei
′
λ

(
ke k′

e

i i ′

)
ϕ

(T ,S)
k′

e,i
′

⎤
⎦

+
∑
k′

ei
′

[
ξ

(
ke k′

e

i i ′

)
+ (−1)Sξ out

(
ke k′

e

i i ′

)]
ϕ

(T ,S)
k′

e,i
′ ,

(15)

where ξ out( k′
e ke

i ′ i
) is the exchange-Coulomb scattering defined

in Eq. (B15), where “out” refers to the fact that Coulomb
interactions take place between the “out” electron-exciton pair
(k′

e,i
′). Using Eq. (B18), it is possible to rewrite this equation

into a symmetrical form with respect to the (ke,i) and (k′
e,i

′)
states as

Eke,iϕ
(T ,S)
ke,i

+
∑
k′

ei
′

[
ξ

(
ke k′

e

i i ′

)
+ (−1)Sξech

(
ke k′

e

i i ′

)]
ϕ

(T ,S)
k′

e,i
′

= E(T ,S)

⎡
⎣ϕ

(T ,S)
ke,i

+ (−1)S
∑
k′

ei
′
λ

(
ke k′

e

i i ′

)
ϕ

(T ,S)
k′

e,i
′

⎤
⎦ , (16)

where the relevant set of exchange processes now take a
symmetrical form between the “in” state (k′

e,i
′) and “out”

FIG. 1. Pauli scattering λ( k′
e ke

i′ i
) for electron exchange between

a ke electron and an i exciton, as given in Eq. (B4).
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FIG. 2. Pauli scattering λ( k′
e ke

i′ i
) for electron exchange between

a ke electron and an i = (νi,Qi) exciton, as given in Eq. (B6).

state (ke,i), namely,

ξech

(
ke k′

e

i i ′

)
= 1

2

[
ξ in

(
ke k′

e

i i ′

)
+ ξ out

(
ke k′

e

i i ′

)

+ (
Eke,i + Ek′

e,i
′
)
λ

(
ke k′

e

i i ′

)]
. (17)

In contrast to ξ out( k′
e ke

i ′ i
), the exchange-Coulomb scattering

ξ in( k′
e ke

i ′ i
), defined in Eq. (B14), has its Coulomb interactions

taking place between the “in” electron-exciton pair (ke,i), as
shown in the diagram of Fig. 5.

We note that this effective exchange scattering not only
contains the “in” and “out” exchange-Coulomb scatterings,
but also the Pauli scattering for electron exchange multiplied
by the sum of “in” and “out” electron-exciton pair energies in
order to end with an energylike quantity.

From now on, we only consider trions with zero center-of-
mass momentum. These are constructed on zero-momentum
electron-exciton pairs k and i = (ν, −k). Moreover, we
concentrate on singlet trion states S = 0, which are the relevant
states to get both the trion ground state and the photoabsorption
spectrum in the presence of a doped electron gas. So, we will
not quote the S index anymore to simplify the notation.

Equation (16) can be formally written into a matrix form as

(Ê + ξ̂eff)ϕ
(T ) = E(T )(1̂ + λ̂)ϕ(T ), (18)

where E(T ) is the trion energy we want to determine. For pairs
having zero center-of-mass momentum, as considered from
now on, the components of the ϕ(T ) vector are ϕ(T )(k,ν) ≡
ϕ

(T )
k,i=(ν,−k). We have denoted the identity matrix as 1̂, while

Ê is a diagonal matrix with components 〈kν|Ê|k′ν ′〉 =
E(k,ν)δkk′δνν ′ , the free electron-exciton pair energy be-
ing E(k,ν) = Ek,(ν,−k) = εν + k2/2μeX where μ−1

eX = m−1
e +

(me + mh)−1 is the inverse of the electron-exciton pair reduced
mass. ξ̂eff is an energylike matrix which includes Coulomb
and exchange processes within the electron-exciton pair. Its

FIG. 3. Direct Coulomb scattering ξ ( k′
e ke

i′ i
) between a ke electron

and an i exciton, as given in Eq. (B12).

FIG. 4. Part of the direct Coulomb scattering ξ ( k′
e ke

i′ i
) between a

ke electron and an i = (νi,Qi) exciton, as given in Eq. (B13), coming

from electron-electron repulsion. ξ (k′
e ke

i′ i
) also contains a negative

contribution coming from electron-hole attraction, as seen from the
second diagram of Fig. 3.

components are

〈kν|ξ̂eff|k′ν ′〉 =
[
ξ

(
k k′

(ν, −k) (ν ′, −k′)

)

+ ξech

(
k k′

(ν, −k) (ν ′, −k′)

)]
. (19)

Finally, λ̂ is a dimensionless matrix which originates from the
fact that the hole in the electron-hole pair forming the exciton
can be associated with any of the two electrons. Its components

are 〈kν|λ̂|k′ν ′〉 = λ( k k′

(ν,−k) (ν ′,−k′) ).

Figures 1–6 show the various scatterings appearing between
an electron and an exciton (for their derivations, see Appendix
B). In the case of zero-momentum electron-exciton pairs, they
take a compact form: The electron exchange reduces to

λ

(
k k′

(ν, −k) (ν ′, −k′)

)
= 〈ν|k′ + αek〉〈k + αek′|ν ′〉, (20)

while the direct Coulomb scattering between an electron and
an exciton simply is given by

ξ

(
k k′

(ν, −k) (ν ′, −k′)

)

= Vk−k′
∑

p

[〈ν|p − αhk〉〈p − αhk′|ν ′〉 − (αh → −αe)].

(21)

When Coulomb scattering is mixed with electron exchange,
the resulting exchange-Coulomb scattering is given, for zero-
momentum pairs, by

ξ in

(
k k′

(ν, −k) (ν ′, −k′)

)

=
[
ξ out

(
k′ k

(ν ′, −k′) (ν, −k)

)]∗

=
∑

p

Vk′+αek−p〈ν|p〉[〈p + αh(k − k′)|ν ′〉 − 〈k + αek′|ν ′〉],

(22)

FIG. 5. “In” exchange-Coulomb scattering ξ in( k′
e ke

i′ i
) between a

ke electron and an i exciton, as given in Eq. (B16).
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FIG. 6. Part of the “in” exchange-Coulomb scattering ξ in( k′
e ke

i′ i
)

between a ke electron and an i = (νi,Qi) exciton, as given in
Eq. (B17), coming from electron-electron repulsion.

where Vq = 2πe2/εscL
2q in 2D and Vq = 4πe2/εscL

3q2

in 3D.
It is actually possible to cast Eq. (18) into a Schrödinger-

type equation for ϕ(T ) by rewriting it as

E(T )ϕ(T ) = (1̂ + λ̂)−1(Ê + ξ̂eff)ϕ
(T ) ≡ Ĥeffϕ

(T ). (23)

The operator Ĥeff then appears as the effective Hamiltonian
for trion written in the electron-exciton basis. We see that
electron exchange within this pair appears not only through the
energylike exchange scatterings (ξ̂ in,ξ̂ out) and (Eλ̂) included
in ξ̂ech, but also in a subtle way through the (1̂ + λ̂)−1 operator
appearing in front of the more naive part of the Hamiltonian,
namely, (Ê + ξ̂eff).

IV. RESULTS AND DISCUSSIONS

The last step is to numerically solve the Schrödinger
equation (18) or equivalently Eq. (23). To do so, we restrict
the exciton basis 〈p|ν〉 to the three low-lying s-like states. The
inclusion of p- or d-like exciton wave functions requires a very
careful treatment of the angular part of the electron-exciton
pair wave functions in the calculation of the λ̂ and ξ̂ scatterings,
which is beyond the scope of this work. This extension will
be considered elsewhere. The 2D normalized wave functions
〈p|ν〉 used in this electron-exciton basis are22

〈p|1s〉 =
(

aX

L

) √
2π(

1 + a2
Xp2/4

)3/2 ,

〈p|2s〉 =
(

aX

L

)
3
√

6π
(
9a2

Xp2/4 − 1
)

(
1 + 9a2

Xp2/4
)5/2

, (24)

〈p|3s〉 =
(

aX

L

)
5
√

10π
(
1 − 25a2

Xp2 + 625a4
Xp4/16

)
(
1 + 25a2

Xp2/4
)7/2 ,

while for 3D they read as

〈p|1s〉 =
(

aX

L

)3/2 8
√

π(
1 + a2

Xp2
)2 ,

〈p|2s〉 =
(

aX

L

)3/2 32
√

2π
(
4a2

Xp2 − 1
)

(
1 + 4a2

Xp2
)3 , (25)

〈p|3s〉 =
(

aX

L

)3/2 72
√

3π
(
1 − 30a2

Xp2 + 81a4
Xp4

)
(
1 + 9a2

Xp2
)4 .

L is the sample size, aX is the 3D exciton Bohr radius defined as
aX = h̄2εsc/μXe2, with μ−1

X = m−1
e + m−1

h being the inverse
of the exciton reduced mass.

The Schrödinger equation (23), seen as a matrix spanned
by the k momentum, can be solved as a generalized eigenvalue
problem. To this end, we sampled the k = |k| value with 100
mesh points, according to ki = u3

i where the ui’s are equally
distributed, thereby allowing for more sampling in the small-k
region. However, for me/mh = 1/50 and 1/100 in 3D, we have
taken 220 and 350 mesh points in order for the λ matrices to
unambiguously stay positive definite. We have also taken an
upper cutoff kmax of 10 in 3D but 20 in 2D (in units of aX)
since the 2D wave functions have a larger radial extension in
k space.

A. Trion binding energies for ground and excited states

Figures 7 and 8 show the binding energies of the 2D and
3D ground-state trions as a function of the electron-to-hole
mass ratio me/mh. These two sets of results are expressed in
terms of their 2D and 3D effective Rydbergs, namely, R

(2D)
X

and R
(3D)
X , with R

(2D)
X = 4R

(3D)
X and R

(3D)
X = (μ̃X/ε2

sc)13.6 eV,
the ratio of the exciton reduced mass to the free electron mass
m0 being μ̃X = memh/m0(me + mh). Although the qualitative
behaviors of the 2D and 3D curves are very similar, the absolute
values of the binding energies are significantly larger in 2D
than in 3D. This is mainly due to the fact that the Coulomb
interaction Vq decreases more slowly, as 1/q in 2D instead of
1/q2 in 3D. For me/mh � 1, the trion binding energy stays
essentially constant as a function of mass ratio, in agreement
with experimental data: in most bulk semiconductor samples
such as GaAs and InAs, with an effective electron mass smaller
than the effective hole mass, the X− trion binding energy does
not significantly depend on the mass ratio. This is also true
for 2D.

In contrast, when me/mh increases above 1, which mimics
the change from X− to X+ trions, the two carriers then having
a heavy mass, we see that the binding energy first increases
essentially logarithmically and then saturates for large mass
ratios: when me/mh 
 1, the trion behaves as an hydrogen
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FIG. 7. (Color online) Ground-state trion binding energy in units
of the 2D exciton binding energy R

(2D)
X = 4R

(3D)
X , as a function of

the electron-to-hole mass ratio. A minimum is found for me slightly
lighter than mh.
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FIG. 8. (Color online) Same as Fig. 7 for 3D trion, the binding
energy unit being R

(3D)
X . The behavior is qualitatively similar, but

the binding energies are significantly smaller, which makes the
experimental observation of 3D trions more difficult.

molecule-ion H+
2 , with a large binding energy known to be

0.412R
(2D)
X in 2D (Ref. 23) and 0.194R

(3D)
X in 3D (Ref. 5).

The binding energies of the 2D and 3D trion ground states
we obtain as a function of mass ratio are qualitatively similar
to those obtained from variational methods.24–27 However,
the values we find using the three low-lying s-like states
only account for 60%–70% of the most accurate variational
results when me/mh > 1, and 50%–60% when me/mh � 1.
This suggests that the polarization of the exciton induced by
the second electron, which is not accounted for here because
our numerical calculation excludes p-like, d-like, and higher
angular momentum exciton states, plays a sizable role in the
binding, and this is more so when two carriers have a light
mass. For GaAs, with effective electron mass me = 0.067m0,
effective hole mass mh = 0.34m0, and dielectric constant
εsc = 12.5, Fig. 7 gives a 2D trion binding energy equal to
0.06R

(2D)
X = 1.2 meV, which is about a factor of 2 smaller than

the best variational result.24,26,27 Including into the exciton
basis higher orbital states up to l = 2 has been shown to
improve the binding energy up to 98% of accuracy in the
case of heavy hole.28

In spite of this discrepancy, one important advantage of
the present method compared to usual variational approaches
is that it allows reaching trion excited states as easily as
the ground state, while excited states are by construction
out of reach from usual variational methods. Figures 9 and
10 show the energy of the various excited bound states for
2D and 3D trions as a function of the mass ratio me/mh.
For me/mh � 1, we find one bound state only, which is the
ground state, in agreement with known results for X− trions
with a hole mass larger than the electron mass, both in 3D
(Ref. 29) and in 2D (Ref. 30). By contrast, the number of
trion bound states increases with me/mh when this ratio gets
larger than 1. A second bound state emerges for me/mh � 16
in 3D and me/mh � 10 in 2D. And so on. . . . These additional
bound states mainly come from the vibrational motion of the
two heavy carriers. The trion then is similar to a hydrogen
molecule-ion H+

2 or its deuterium isotopes HD+ and D+
2 .

Spectroscopic studies of their vibrational and rotational levels
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FIG. 9. (Color online) Bound-state binding energies of the 2D
trion ground state (GS) and the first three excited states in R

(2D)
X unit

as a function of the electron-to-hole mass ratio.

have been a central issue in molecular physics because
they represent the simplest molecules ever theoretically31–34

and experimentally35–37 studied. For very large mass ratio
me/mh = 1000 close to the molecular limit, we find 15 and
12 bound states in 2D and 3D systems, respectively.

B. Trion wave function

By solving the Schrödinger equation (23), we can also
obtain the ϕ

(T ,S=0)
k,i=(ν,−k) function from which the trion wave

function φ
(T ,S=0)
k,i=(ν,−k) with proper symmetry property in the

electron-exciton basis can be reached through Eq. (14). Indeed,

since Pauli scatterings λ( ke k′
e

i i ′ ) conserve momentum and spin,

the ϕ
(T ,S=0)
k′

e,i
′ functions which are required in the sum of Eq. (14)

also correspond to ϕ
(T ,S=0)
k′

e,i
′=(ν ′,−k′

e) functions.

To go further, let us first relate the φ
(T ,S=0)
ke,i=(ν,−ke) function,

which we can derive through solving the Schrödinger equation
(23), to the trion relative motion wave function used in previous
works on trion. In Ref. 38, we have shown [see Eq. (3.16) in this
reference] that the wave function of a trion with center-of-mass
momentum K, relative motion index η, and spin S = (0,1)
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FIG. 10. (Color online) Same as Fig. 9 for 3D, the energy unit
being R

(3D)
X .
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splits as

〈re,re′ ,rh|K,η,S〉 = 〈RT |K〉〈r,u|η,S〉, (26)

where RT = (mere + mere′ + mhrh)/(2me + mh) is the
center-of-mass coordinate, r = re − rh is the distance be-
tween one electron and the hole, while u = re′ − (mere +
mhrh)/(me + mh) is the distance between the other electron
and the center-of-mass coordinate of the electron-hole pair.
From 〈r,u|η,S〉, we can construct 〈ν,p|η,S〉 through a double
Fourier transform [see Eq. (3.18) of Ref. 38]

〈ν,p|η,S〉 =
∫

dr du〈ν|r〉〈p|u〉〈r,u|η,S〉. (27)

The parity condition 〈re,re′ ,rh|K,η,S〉 = (−1)S〈re′ ,re,

rh|K,η,S〉 on the (re,re′ ) coordinates then leads to

〈ν,p|η,S〉 = (−1)S
∑
ν ′,p′

〈ν|p′ + αep〉〈p + αep′|ν ′〉〈ν ′,p′|η,S〉,

(28)

which exactly is the parity condition for φ
(T ,S)
ke,i

given in Eq. (12)
when i = (ν, −ke), i.e., when the center-of-mass momentum
of the electron-exciton pair is zero, because the Pauli scattering
then reduces to Eq. (20).

If we now consider the creation operator for the (K,η,S)
trion made of opposite spin electrons, we find that it reads in
terms of electron-exciton pairs as [see Eq. (3.44) of Ref. 38]

T
†

KηS,Sz=0 =
∑
ν,p

〈ν,p|η,S〉a†
p+βeK,1/2B

†
ν,−p+βXK,−1/2. (29)

So, in view of Eq. (9), we are led to conclude that 〈ν,p|η,S〉
must be identified with

〈ν,p|η,S〉 = φ
(T ,S)
p,i=(ν,−p) (30)

with T = (K = 0,η).
Actually, the relative motion wave function that has

physical relevance is not 〈ν,p|η,S〉 but 〈r,u|η,S〉 or 〈r,p|η,S〉.
For bound-state trion, 〈r,u|η,S〉 has an extension of the order
of the exciton size aX along r and an extension of the order
of the trion size aT along u, while this latter extension goes
up to the sample size L for unbound trions. Through a Fourier
transform, we can reach

〈r,p|η,S〉 =
∫

du〈p|u〉〈r,u|η,S〉, (31)

which has an extension along p of the order of 1/aT for bound
state [see Fig. 11(a) and of the order of 1/L for unbound states
[see Figs. 11(b) and 12].

Due to dimensional arguments, the normalized |〈r,u|η0〉|2
function, which extends over aX for r and over aT for
u in the case of bound state, must be such that 1 �
aD

X aD
T |〈r = 0,u = 0|η0〉|2. Since 〈p|u〉 = eip·u/LD/2, Eq. (31)

then gives, using again dimensional arguments, 〈r = 0,p =
0|η0〉 � aD

T /LD/2
√

aD
X aD

T ; so, we end for the trion ground
state with

|〈r = 0,p = 0|η0〉|2 �
(

aT

aXL

)D

. (32)

In the case of unbound trions, the u extension is of the order
of L instead of aT ; so, the same dimensional arguments would
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FIG. 11. (Color online) L2|〈r,p|η〉|2 for the trion bound ground
state η = η0 (a) and |〈r,p|η〉|2 for an unbound state in a semilog plot
(b). The mass ratio is taken equal to mh/me = 5. The units for relative
motion momentum p and exciton radial coordinate r are aX and a−1

X ,
respectively.

give

|〈r = 0,p|η〉|2 �
(

1

aX

)D

. (33)

The |〈r = 0,p|η〉|2 functions are peaked on different momenta
p = pη depending on the unbound trion energies. This can
be physically understood by noting that, in the absence of
electron-exciton interaction, the trion wave function 〈r,u|η〉
must reduce to a product of an exciton wave function and an
electron plane wave 〈r,u|η,S〉 ∼ φν(r)(eipη ·u/LD/2). From

〈r,u|η〉 =
∑
ν,p

〈r|ν〉〈u|p〉〈ν,p|η〉, (34)

with 〈u|p〉 = eip·u/LD/2, it is then easy to see that this requires
〈ν,p|η〉 to be a delta function δp,pη

, this delta function being
broadened into a peak when electron-exciton interactions are
introduced.

We can compute 〈r,p|η,S〉 from the 〈ν,p|η,S〉 function that
we obtain through the numerical resolution of Eq. (23), via a
“Fourier transform in the exciton sense,” namely,

〈ν,p|η,S〉 =
∫

dr〈ν|r〉〈r,p|η,S〉, (35)
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FIG. 12. (Color online) |〈r = 0,p|η〉|2 for three unbound trion
states in a semilog plot, the mass ratio being mh/me = 5 and the
momentum p unit being aX .

or equivalently

〈r,p|η,S〉 =
∑

ν

〈r|ν〉〈ν,p|η,S〉. (36)

Note that for r = 0, the ν exciton levels that survive in the
ν sum are s-like states only. In practice, we have computed
〈r,p|η,S = 0〉 from 〈ν,p|η,S = 0〉 = φ

(T ,S=0)
p,i=(ν,−p) with T =

(K = 0,η), as obtained from the resolution of the Schrödinger
equation (23) along with the parity condition given in Eq. (14),
by keeping only the three lowest s states in the ν sum of
Eq. (36), as consistent with the fact that the electron-exciton
basis in solving the Schrödinger equation (23) has been
reduced to these three lowest levels.

Figure 11 shows |〈r,p|η,S = 0〉|2 for the trion bound
ground state η = η0 and for an unbound state. Note that, due
to Eq. (32), we are forced to plot the ground state through
L2|〈r,p|η0,S = 0〉|2 in order to have a quantity independent
of sample size L. The function |〈r,p|η,S = 0〉|2, from now
on written as |〈r,p|η〉|2 for simplicity, is concentrated around
the origin (r = 0,p = 0) for bound states, whereas it is peaked
around a pη value for unbound states. (The 1/L width comes in
practice into the figure through the momentum discretization
used in the numerical resolution.) Since the relevant quantity
for the trion oscillator strength is going to be |〈r = 0,p|η〉|2,
we have also plotted these normalized functions for three
unbound states (Fig. 12). We find that when the unbound
trion energy increases, this function broadens due to electron-
exciton interactions.

C. Trion absorption spectrum

Knowing the trion wave function for bound and unbound
states, it becomes possible to compute the absorption spectrum
in the case of trion formation, as a function of the photon
energy. When an exciton is created in a semiconductor through
photoabsorption in the presence of free electrons or free
holes, interaction between the photocreated exciton and the
free carriers can lead to a trion either in a bound state or
in an unbound state, depending on the photon energy. We,
however, wish to stress that this is only true for very low
doping. Otherwise, many-body interactions tend to wash out

the trion bound state and transform it into a complex object
which looks more like an exciton dressed by an electron cloud,
with a rather different line-shape behavior than that of a simple
trion, as experimentally shown in Ref. 39. In this work, we
have chosen to concentrate on the low-doping regime, in spite
of the quite weak coupling which exists between photon and
bound-state trion, in order to avoid the far more complex study
of many-body effects involving a three-fermion bound state.
This low-doping regime definitely is the one to start with and
understand fully before turning to a more complex situation.

With this goal in mind, we first consider an initial state with
one free electron with momentum ki and one photon with
energy ωph and momentum Qph. After photon absorption,
the final state contains two electrons and one hole, their
center-of-mass momentum being ki + Qph. Since we are
mainly interested in the low-lying trion states, we here focus
on spin-singlet (S = 0) states. The Fermi golden rule gives
the photon absorption as (−2) times the imaginary part of the
response function S(T )(ωph,Qph,ki) which, in the case of one
photon (ωph,Qph), has been shown to read as [see Eq. (16) of
Ref. 40]

S(T )(ωph,ki)

= |�|2LD
∑

η

|〈r = 0,pi |η〉|2
ωph + k2

i

2me
− [

E (η,S=0) + (ki+Qph)2

2(2me+mh)

] + i0+
.

(37)

� is the vacuum Rabi coupling, while pi is the relative motion
momentum of the (e,X) pair. Since the momentum of the
photocreated exciton is equal to the photon momentum Qph,
the total momentum of the (e,X) pair is Ki = ki + Qph and its
relative motion momentum pi is such that ki = pi + βeKi and
Qph = −pi + βXKi with βe = 1 − βX = me/(2me + mh); so
pi = βXki − βeQph � βXki since photon momenta are very
small on the characteristic electron scale. By noting that

k2
i

2me

− k2
i

2(2me + mh)
= (βXki)2

2μeX

, (38)

with μeX being the effective mass of the electron-exciton pair
defined above, we can rewrite Eq. (37) as

S(T )(ωph,ki) � |�|2LD
∑

η

|〈r = 0,βXki |η〉|2
ωph + (βXki )2

2μeX
− E (η,S=0) + i0+

.

(39)

Before going further, we wish to make three comments:
(i) In the absence of excess electrons in the sample, the

absorbed photon creates an exciton, the associated response
function reading as

S(X)(ωph) = |�|2LD
∑

ν

|〈r = 0|ν〉|2

ωph − [
ε(ν) + Q2

ph

2(me+mh)

] + i0+
.

(40)

For bound exciton having a spatial extension aX, dimensional
arguments lead to a normalized relative motion wave function
〈r|ν〉 such that 1 � aD

X |〈r = 0|ν〉|2; so,

|〈r = 0|ν〉|2 �
(

1

aX

)D

. (41)
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It is worth noting that this quantity is of the order of the
relative motion wave function for unbound trion states given
in Eq. (33). This is quite reasonable because unbound trions
look very much like an exciton with a free electron moving
possibly far away from it.

We then note that Eq. (32) gives an oscillator strength a
factor (aT /L)D smaller for bound trion than for unbound
trion; for large sample size L, this a priori prevents drawing
the full absorption spectrum for bound and unbound trions
using the same scale. We can, however, note that the L

factor which here appears comes from 〈u|p〉 = eip·u/LD/2;
so, this L factor physically is the length over which particles
keep their momentum, this length Lcoh being usually called
“coherence length.” As a result, when the sample volume
increases, (aT /L)D saturates to (aT /Lcoh)D , which can be not
so small in poor samples. Nevertheless, we have decided to
here show absorption spectra for bound and unbound trion
states on different curves to avoid this scaling problem. We
wish to stress that this scaling problem does not seem to
appear in experimental spectra; this indicates either that the
samples are very poor, or most likely that the doping is rather
large and what is evidenced as a trion line, in fact, is a singular
many-body response to the photon field, rather similar to Fermi
edge singularities in metal (Ref. 39).

(ii) The (i0+) term in the response function of an exciton
or a trion actually has to be broadened into iγ with γ being
associated with the inverse lifetime of the exciton or trion.
Indeed, the response functions quoted in Eqs. (37) and (40)
follow from using the Fermi golden rule. This rule is known to
be valid for transitions toward a continuum of states. When one
photon Qph is absorbed in an undoped semiconductor, we form
a well-defined exciton, its momentum being Qph. So, the Fermi
golden rule should not be used. We have shown (see Ref. 41)
that the Fermi golden rule can still be used for photoabsorption
with exciton formation provided that the exciton level is broad
enough to be seen as a continuum, the characteristic scale for
this broadening γ being the vacuum Rabi coupling �. When
the exciton level is very narrow, as in good-quality samples,
we usually say that the system suffers a “strong coupling”
with the photon field: instead of excitons created by photon
absorption through the Fermi golden rule, we have polaritons
which are the exact eigenstates of one photon coupled to
one exciton. So, when using formulas such as Eqs. (37) and
(40) for photon absorption, we implicitly assume the trion or
exciton to have a finite lifetime. As a result, i0+ should be
replaced by iγ .

(iii) The linear response to a field having Nph photons is
just Nph times the response function to one photon given in
Eq. (37). This makes the photon absorption linearly increasing
with photon number, i.e., laser intensity, as physically required
for linear response.

Of course, in real experiments, we not only have more than
one photon, but also more than one electron in the sample. The
effect of an electron-number increase turns out to be far more
subtle than a photon-number increase; indeed, photons are
noninteracting bosons, so that they all have the same energy,
while electrons are interacting fermions, so, their energies
spread out when their number increases. For Ne electrons and
a sample cold enough to possibly see undissociated trions, we
must distinguish two regimes:

(1) Cold carriers. For temperature T small compared to the
Fermi energy εF for the Ne electrons, with εF � k2

F and Ne �
(kF L)D , the Ne electrons are degenerate, i.e., their probability
to have a momentum ki between 0 and kF is equal to 1. So, the
response function of these Ne electrons to Nph photons should
read, in the absence of many-body interactions between the
trion and the electron gas, as

S(T )(ωph) = Nph

kF∑
ki=0

S(T )(ωph,ki) (42)

with S(T )(ωph,ki) given in Eq. (37). By replacing the ki sum
by an integral and by setting ε = (βXki)2/2μeX = βXk2

i /2me,
we get, for 2D systems having a constant density of states ρ,
the photon absorption spectrum A(T )

η0
(ωph) = −2 ImS(T )(ωph)

associated with the trion ground state η0, through

A(T )
η0

(ωph)

= 2πNph|�|2LD/βX

∫ βXεF

0
ρ dε|〈r = 0,

√
2μeXε|η0〉|2

× δ(ωph + ε − E (η0)). (43)

This readily gives, for a positive photon detuning δph =
E (η0) − ωph,

A(T )
η0

(ωph) = 2πNph|�|2LDρ

βX

|〈r = 0,
√

2μeXδph|η0〉|2 (44)

for E (η0) − βXεF < ωph < E (η0) and zero otherwise. A(T )
η0

(ωph)
essentially follows the decrease of the bound trion relative
motion wave function |〈r = 0,p|η0〉|2 along p, the trion
absorption spectrum spreading on the low-energy side, since
more energetic electrons can be used to form the ground-state
trion (see Fig. 13).

It is worth noting that this absorption spectrum does not
increase in amplitude under an electron number increase,
but just spreads on the low-energy side since kF increases
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FIG. 13. (Color online) Absorption A(T )
η0

(ωph) [defined in
Eq. (44)] in the presence of cold electrons in 2D quantum wells as a
function of the photon energy ωph in R

(3D)
X unit. The trion ground-state

energy E (η0) lies 0.24R
(3D)
X below a larger exciton peak which lies at

−4R
(3D)
X (not shown). We have taken a mass ratio mh/me = 5 and set

Nph|�|2ρ/βX = 1, the LD factor in Eq. (44) being canceled by the
wave function part of this equation, due to Eq. (32).
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when Ne increases. Such a spectrum, however, is rather naive
because it forgets many-body effects in the final state similar
to those leading to Fermi-edge singularities: Instead of having
a smooth decreasing low-energy tail, these effects bring a
peak at the absorption threshold, as discussed and observed
in Ref. 39.

(2) Hot carriers. In the case of hot carriers, the Ne

dependence of the absorption spectrum is totally different and
strongly depends on where the carriers are injected. Let

N (ki ,ε
∗
e ) = Ne

f
(
εki

,ε∗
e

)
∑

ki
f

(
εki

,ε∗
e

) (45)

be their density probability. We will here use a Gaussian
distribution for the injected carriers

f
(
εki

,ε∗
e

) = e−ζ (k2
i /2me−ε∗

e )2
, (46)

the constants ζ and ε∗
e being possibly tuned through the bias

voltage window of the injected electron current. We here
consider that the injected carrier concentration stays in the
dilute limit, to possibly neglect many-body effects. Summing
over the electron momentum ki then amounts to transforming
Eq. (42) into

S(T )(ωph,ε
∗
e ) = Nph

∑
ki

N (ki ,ε
∗
e )S(T )(ωph,ki). (47)

1. Bound trion

The absorption spectrum associated with the trion bound
state η0, given by Eq. (44) in the case of cold carriers,
transforms into

A(T )
η0

(ωph,ε
∗
e ) = 2πNphNe|�|2LD f (δph/βX,ε∗

e )∫ ∞
0 dε f (ε/βX,ε∗

e )

×|〈r = 0,
√

2μeXδph|η0〉|2. (48)

This shows that, for hot carriers, the absorption spectrum
is proportional to Ne; so, under an electron-number increase,
the whole spectrum amplitude increases, instead of spreading
out as for degenerate electrons.

Figure 14 shows the 2D ground-state trion absorption spec-
trum A(T )

η0
(ωph,ε

∗
e ) for various injected carrier average energies

ε∗
e [see Eq. (46)]. The major advantage of using injected

hot carriers to study trion over the usual photoluminescence
experiments in doped or undoped semiconductors42 is that it
allows us to resolve the trion spectrum in a more controlled
way, and also to possibly reduce the carrier many-body effects
compounded in usual trion spectra. Conversely, the absorption
spectrum can be used to probe the hot-carrier distribution.
For decreasing photon energy, the absorption intensity follows
the decrease of the trion wave function |〈r = 0,pi |η〉|2 with
relative motion momentum pi , as shown in Fig. 11(a). When
the electron number increases, the amplitude of the whole
spectrum increases, as a result of the Ne factor in Eq. (48),
but does not spread, in contrast to the low-T limit shown in
Fig. 13, for which the absorption spreads without changing its
amplitude.
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FIG. 14. (Color online) Absorption A(T )
η0

(ωph,ε
∗
e ) defined in

Eq. (48) associated with the trion ground state in 2D quantum wells,
as a function of the photon energy ωph (in R

(3D)
X unit) for different

parameters ε∗
e , and ζ = 500 R

(3D)
X

−2
in the electron distribution

of Eq. (46). We have set NphNe|�|2 = 1 and taken a mass ratio
mh/me = 5.

2. Unbound trion

The situation for unbound trion is far more complex
because unbound trion states have energies close to exciton
energies; so, photoabsorption with formation of a trion A(T ) is
mixed with photoabsorption with formation of an exciton A(X)

which exists in the absence of excess carriers. The resulting
absorption spectrum could be thought to read as

f A(T ) + (1 − f )A(X) = A(X) + f [A(T ) − A(X)], (49)

where f is the capture rate of an electron by an exciton. For
Ne electrons in a sample volume LD , this capture rate should
be of the order of the exciton volume divided by the average
volume occupied by an electron, namely,

f � aD
X

LD/Ne

= Ne

(
aX

L

)D

. (50)

However, by noting that electrons with different ki’s contribute
differently to trion absorption, as seen from Eq. (37), the
absorption spectrum should in fact read as, instead of Eq. (49),

A(ωph,ε
∗
e ) = A(X)(ωph) +

(
aX

L

)D ∑
ki

N (ki ,ε
∗
e )

× [A(T )(ωph,ki) − A(X)(ωph)] (51)

with N (ki ,ε
∗
e ) given by Eq. (45) for hot carriers. We see that

the absorption spectrum reduces to the exciton spectrum in the
absence of free carriers Ne = 0, as physically required.

The exciton absorption spectrum A(X)(ωph) is made of delta
peaks centered on the exciton energies ε(ν), and weighted by
the value at r = 0 of the exciton wave function squared |〈r =
0|ν〉|2 [see Eq. (40)]. These delta peaks are broadened when
taking into account the finite exciton lifetime, which amounts
to replacing i0+ by iγ in Eq. (40) as previously explained; so,
the delta functions are then replaced by Lorentzian function
with a small half-width γ , namely,

δ(ω) → γ /π

ω2 + γ 2
. (52)
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Although, according to Eq. (51), the photon absorption
contains exciton and trion parts, we have chosen here to
only show the trion part in order to avoid ambiguity coming
from their lifetime, yet undetermined experimentally. The
contribution to the photon absorption spectrum resulting from
unbound trions is given by

A(T )(ωph,ε
∗
e )

= Nph

(
aX

L

)D ∑
ki

N (ki ,ε
∗
e )A(T )(ωph,ki)

= 2πNphNe|�|2aD
X∫ ∞

0 dε f (ε/βX,ε∗
e )

∫
dε f (ε/βX,ε∗

e )

×
∑

η

|〈r = 0,
√

2μeXε|η〉|2δ(ωph + ε − E (η)), (53)

the discrete sum over η being ultimately replaced by a
continuous sum over kη. To compute it, we have introduced a
finite lifetime and replaced the delta function by a Lorentzian
function along Eq. (52). This essentially adds a small high-
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FIG. 15. (Color online) Unbound trion absorption A(T )(ωph,ε
∗
e )

for 2D quantum well as defined in Eq. (53) where we have
set NphNe|�|2 = 1. It shows unbound trion peaks resulting from
electrons scattering with 1s exciton (a) and with 2s or 3s exciton (b)
as a function of the photon energy ωph in R

(3D)
X unit. We have taken a

broadening γ = 0.01R
(3D)
X in Eq. (52). Other parameters are the same

as in Fig. 14.

energy tail to the absorption spectrum, which would have a
sharp edge otherwise.

Figures 15(a) and 15(b) show the line shape of the three
largest peaks located at the lowest-s exciton levels for 2D
quantum well, namely, −4R

(3D)
X , −4/9R

(3D)
X , and −4/25R

(3D)
X ,

these peaks being associated with unbound trions, i.e., the
electron-exciton scattering states. We see that these peaks
spread on both sides of each exciton level due to energy
conservation enforced by the delta function. The peak height
decreases with the increase of the exciton level due to the
〈r = 0|ν〉 factor in Eq. (36) which for 2D exciton is equal to
4/aX

√
2π (2n − 1)3 with n = (1,2,3) for these three peaks.

The peak line shape essentially is a Lorentzian which moves
slightly toward the lower-energy side when contributions from
electrons with large kinetic energy start to weigh in. Moreover,
the peak height slightly decreases; this can be attributed to
broadening at large relative motion momentum induced by
electron-exciton scattering.

Differences between calculated results and experimental
data obtained for a dilute hot-carrier gas are expected to
primarily come from the finite width of the quantum well.
Indeed, all binding energies are known to increase when the
space dimension D decreases, as evidenced from the fact
that the exciton binding energy is equal to R

(3D)
X in 3D but

R
(2D)
X = 4R

(3D)
X in 2D. As a result, the trion binding energy in

a finite-width quantum well is expected to be substantially
smaller than its exact 2D value. Other sizable effects are
expected to come from thickness fluctuations,44 confinement
of the trion wave function by potential barriers which are not
infinite, and also by the potential resulting from remote donor
ions.43

V. CONCLUSION

Motivated by the idea that Coulomb interaction between
an electron and a hole is far stronger than between an
electron and an exciton, we here construct a Schrödinger
equation for trion using an electron-exciton basis instead of
the standard free-carrier basis. One obvious difficulty with
the electron-exciton formulation is to exactly handle electron
exchange within the electron-exciton pair. This is done through
exchange scatterings between electron and exciton similar to
those which exist between two excitons, as in the composite
boson many-body theory. Restricting the exciton basis to the
first three s states, we have numerically solved the resulting
Schrödinger equation for the trion ground state in 2D and 3D
systems, as well as for excited bound and unbound states.
Using just these three states, our results for the ground
state are in reasonable agreement with those obtained from
the best variational methods. The main advantage of the
electron-exciton approach presented here is to reach excited
states as easily as the ground state, these excited states being
out of reach from usual variational methods. Since we do
here solve a Schrödinger equation, we are also capable of
reaching the trion wave functions for bound and unbound
states. Through these trion wave functions, we can calculate
the optical absorption spectrum associated with the trion bound
states in the presence of injected hot carriers. The spectra have
small peaks associated with trion bound state and large peaks
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coming from unbound states, i.e., electron-exciton scattering
states.
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APPENDIX A: SCHRÖDINGER EQUATION FOR TWO
ELECTRONS AND ONE HOLE

We here derive the Schrödinger equation (8) for trion states
using the (e,e′,h) basis. Starting from the Schrödinger equation
(2), the prefactors of the trion state in Eq. (5) must fulfill

0 =
∑

kek′
ekh

{[
Ekek′

ekh
− E(T ,S)

]
φ

(T ,S)
kek′

ekh

+
∑

q

Vq
[
φ

(T ,S)
ke+q,k′

e−q,kh
− φ

(T ,S)
ke+q,k′

e,kh−q

−φ
(T ,S)
ke,k′

e+q,kh−q

]}
a
†
ke ;sa

†
k′

e ;s ′b
†
kh

|v〉. (A1)

If we now project this equation onto 〈v|bph
ap′

e ;s ′ape ;s and use

〈v|ap′
e ;s ′ape ;sa

†
ke ;sa

†
k′

e ;s ′ |v〉 = δp′
ek′

e
δpeke

− δss ′δp′
eke

δpek′
e
,

we get one term only for s ′ = −s, i.e., for [S = (0,1),Sz = 0]
trions, namely,

0 = [
Epep′

eph
− E(T ,S)

]
φ

(T ,S)
pep′

eph
+

∑
q

Vq
[
φ

(T ,S)
pe+q,p′

e−q,ph

−φ
(T ,S)
pe+q,p′

e,ph−q − φ
(T ,S)
pe,p′

e+q,ph−q

]
. (A2)

By contrast, for s ′ = s, i.e., for (S = 1,Sz = 2s) triplet trions,
this projection yields two terms. These two terms, however,
are equal since φ

(T ,S=1)
kek′

ekh
= −φ

(T ,S=1)
k′

ekekh
and Vq = V−q, so that

we end up with the same Schrödinger equation (A2) for all
four trion states.

It is actually possible to recover this Schrödinger equation
starting from Eqs. (3) and (4) with trion states written in terms
of ψ

(T ,S)
kek′

ekh
, instead of Eq. (5) with prefactors φ

(T ,S)
kek′

ekh
, these

prefactors being linked by Eq. (6). The major interest of this
second derivation is to evidence that the relevant function is
not ψ

(η,S)
kek′

ekh
, but φ

(η,S)
kek′

ekh
.

Let us first consider the (S = 1,Sz = 2s) trion state given
in Eq. (3). When used into the Schrödinger equation (2), we
get Eq. (A1) with φ

(T ,S)
kek′

ekh
replaced by ψ

(T ,S)
kek′

ekh
. If we now

project this equation onto 〈v|bph
ap′

e ;s ′ape ;s , we find two terms
that are no longer equal. However, since Vq = V−q, they can
be combined to make appear (ψ (T ,S=1)

kek′
ekh

− ψ
(T ,S=1)
k′

ekekh
), which is

nothing but φ
(T ,S)
kek′

ekh
for S = 1. The resulting equation then

reduces to Eq. (A2).
If we now consider the (S,Sz = 0) trion states given in

Eq. (4), we get the same equation (A1) with a
†
ke ;sa

†
k′

e ;s ′ now

replaced by [a†
ke ;1/2a

†
k′

e ;−1/2 − (−1)Sa†
ke ;−1/2a

†
k′

e ;1/2] and φ
(T ,S)
kek′

ekh

replaced by ψ
(T ,S)
kek′

ekh
. When projected onto 〈v|bph

ap′
e ;−1/2ape ;1/2,

these two terms yield two terms that can again be combined
to make appear (ψ (T ,S)

kek′
ekh

+ (−1)Sψ (T ,S)
k′

ekekh
), so that we also end

up with a Schrödinger equation for φ
(T ,S)
kek′

ekh
identical to the one

given in Eq. (A2).

APPENDIX B: USEFUL RELATIONS ON
ELECTRON-EXCITON SCATTERINGS

For completeness, we, in this Appendix, derive a few useful
relations involving excitons interacting with free electrons,
some of which are possibly found in previous works on
exciton17 and trion.20 An exciton i = (νi,Qi) with center-of-
mass momentum Qi , relative motion index νi , electron spin s,
and hole spin m, expands on free electron-hole pairs as

B
†
i;s,m =

∑
kekh

a
†
ke ;sb

†
kh;m〈kekh|i〉

=
∑

p

a
†
p+αeQi ;s

b
†
−p+αhQi ;m

〈p|νi〉, (B1)

where αe = 1 − αh = me/(me + mh). Conversely, a free
electron-hole pair reads in terms of excitons as

a
†
ke ;sb

†
kh;m =

∑
i

B
†
i;s,m〈i|kekh〉

=
∑
νi

B
†
νi ,ke+kh;s,m〈νi |αhke − αekh〉. (B2)

Since the hole spin m plays no role in problems dealing with
one exciton interacting with an electron, we will, from now
on, drop the index m from the notations.

As easy to check from the above equations, electron
exchange between one free electron ke with spin σ and one
exciton i with electron spin s leads to

B
†
i;sa

†
ke ;σ = −

∑
k′

ei
′
λ

(
k′

e ke

i ′ i

)
B

†
i ′;σ a

†
k′

e ;s , (B3)

where λ( k′
e ke

i ′ i
) is the Pauli scattering for electron exchange

shown in Fig. 1. It readily follows from this diagrammatic
representation that the Pauli scattering is given by

λ

(
k′

e ke

i ′ i

)
=

∑
ph

〈i ′|keph〉〈phk′
e|i〉. (B4)

This compact expression of Pauli scattering between (e,X)
pairs allows us to check that two exchanges reduce to an
identity, as a result of the closure relation on |i〉 exciton states

∑
i ′′,pe

λ

(
k′

e pe

i ′ i ′′

)
λ

(
pe ke

i ′′ i

)

=
∑

i ′′,pe,qh,q′
h

〈i ′|peq′
h〉〈q′

hk′
e|i ′′〉〈i ′′|keqh〉〈qhpe|i〉

= δi ′iδk′
eke

. (B5)

As seen from Fig. 2, for an exciton labeled by i = (νi,Qi), this
Pauli scattering reduces to

∑〈νi ′ |p′〉〈p|νi〉 provided that the
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(p,p′) momenta are such that k′
e = p + αeQi , ke = p′ + αeQi ′

and −p′ + αhQi ′ = −p + αhQi . This gives

λ

(
k′

e ke

i ′ i

)
= δk′

e+Qi′ ,ke+Qi
〈νi ′ |ke − αeQi ′ 〉〈k′

e − αeQi |νi〉.
(B6)

These Pauli scatterings formally appear through two com-
mutators

[Bi ′;s ′ ,B
†
i;s] = δi ′iδs ′s − Di ′s ′;is , (B7)

[Di ′s ′;is ,a
†
ke ;σ ] = δs ′σ

∑
k′

e

λ

(
k′

e ke

i ′ i

)
a
†
k′

e ;s . (B8)

From them, it is easy to show that the scalar product of two
electron-exciton pairs is given by

〈v|ape ;σ Bj ;σ ′B
†
i;s ′a

†
ke ;s |v〉

= 〈v|ape ;σ {[Bj ;σ ′,B
†
i;s ′ ] + B

†
i;s ′Bj ;σ ′ }a†

ke ;s |v〉

= δσsδσ ′s ′δpeke
δji − δσs ′δσ ′sλ

(
pe ke

j i

)
. (B9)

Exciton and electron also interact by direct Coulomb

scattering ξ ( k′
e ke

i ′ i
), which also follows from two commutators.

For an electron-hole Hamiltonian H , they appear through

[H,B
†
i;s] = E

(X)
i B

†
i;s + V

†
i;s , (B10)

[
V

†
i;s ,a

†
ke ;s ′

] =
∑
k′

ei
′
ξ

(
k′

e ke

i ′ i

)
B

†
i ′;sa

†
k′

e ;s ′ . (B11)

Its diagrammatic representation, shown in Fig. 3, readily gives

ξ

(
k′

e ke

i ′ i

)
= Vk′

e−ke

∑
peph

[〈i ′|pe + ke − k′
e,ph〉

− 〈i ′|pe,ph + ke − k′
e〉]〈phpe|i〉. (B12)

For i = (νi,Qi), this scattering reduces to
∑〈νi ′ |p′〉〈p|νi〉

provided that the (p,p′) momenta are such that p′ +
αeQi ′ = p + αeQi + ke − k′

e and −p′ + αhQi ′ = −p + αhQi

for the electron-electron part, as shown in the diagram
of Fig. 4, while p′ + αeQi ′ = p + αeQi and −p′ + αhQi ′ =
−p + αhQi + ke − k′

e for the electron-hole part. This gives

ξ

(
k′

e ke

i ′ i

)
= δQi′ +k′

e,Qi+ke
Vk′

e−ke

∑
p

[〈νi ′ |p + αh(ke − k′
e)〉

− (αh → −αe)]〈p|νi〉. (B13)

We can mix the direct Coulomb scattering ξ with the
electron exchange λ to get the “in” and “out” exchange-
Coulomb scatterings defined as

ξ in

(
k′

e ke

i ′ i

)
=

∑
k′′

e i
′′
λ

(
k′

e k′′
e

i ′ i ′′

)
ξ

(
k′′

e ke

i ′′ i

)
, (B14)

ξ out

(
k′

e ke

i ′ i

)
=

∑
k′′

e i
′′
ξ

(
k′

e k′′
e

i ′ i ′′

)
λ

(
k′′

e ke

i ′′ i

)
. (B15)

Using Fig. 5, we find that the “in” exchange scattering is given
by

ξ in

(
k′

e ke

i ′ i

)
=

∑
q �=0

Vq

∑
peph

[〈i ′|ke − q,ph〉

− 〈i ′|ke − q,ph + q〉]〈phpe|i〉. (B16)

If we now write the exciton i as (νi,Qi), Fig. 6 gives
this “in” exchange scattering as

∑
Vq〈νi ′ |p′〉〈p|νi〉 provided

that the (p,p′) momenta are such that k′
e = p + αeQi + q,

p′ + αeQi ′ = ke − q, and −p′ + αhQi ′ = −p + αhQi for the
electron-electron part, while we must have k′

e = p + αeQi ,

p′ + αeQi ′ = ke − q, and −p′ + αhQi ′ = −p + αhQi + q for
the electron-hole part. This ultimately leads to

ξ in

(
k′

e ke

i ′ i

)
= δQi′ +k′

e,Qi+ke

∑
q

Vq〈νi ′ |ke − q − αeQi ′ 〉

× [〈k′
e − q − αeQi |νi〉 − 〈k′

e − αeQi |νi〉].
(B17)

These two exchange-Coulomb scatterings are related to the
dimensionless Pauli scattering for electron exchange through

(
Ek′

ei
′ − Ekei

)
λ

(
k′

e ke

i ′ i

)

= ξ in

(
k′

e ke

i ′ i

)
− ξ out

(
k′

e ke

i ′ i

)
, (B18)

as easy to show by calculating 〈v|ak′
e ;sBi ′;sHB

†
i;sa

†
ke ;s |v〉 with

H acting either on the left or on the right.

APPENDIX C: SCHRÖDINGER EQUATION FOR THE
ELECTRON-EXCITON PAIR

For H being the Hamiltonian of a system with arbitrary
numbers of electrons and holes, we get, using Eqs. (B10) and
(B11),

HB
†
i;s ′a

†
ke ;s |v〉

= ([H,B
†
i;s ′ ] + B

†
i;s ′H )a†

ke ;s |v〉

= Eke,ia
†
ke ;sB

†
i;s ′ |v〉 +

∑
k′

ei
′
ξ

(
k′

e ke

i ′ i

)
a
†
k′

e ;sB
†
i ′;s ′ |v〉. (C1)

From this equation, it is possible to show that the |�(T )
S,Sz=s+s ′ 〉

state in Eq. (9) is an eigenstate of the Hamiltonian H with
energy E(T ,S) provided that

0 =
∑
kei

[ (
Eke,i − E(T ,S))φ

(T ,S)
ke,i

+
∑
k′

ei
′
ξ

(
ke k′

e

i i ′

)
φ

(T ,S)
k′

e,i
′

⎤
⎦ a

†
ke ;sB

†
i;s ′ |v〉. (C2)

(i) Let us first consider s = −s ′ = 1/2. The projection of
the above equation onto 〈v|Bj ;−1/2ape ;1/2 readily gives, using
Eq. (B9),

0 = (
Epe,j − E(T ,S)

)
φ

(T ,S)
pe,j

+
∑
k′

ei
′
ξ

(
pe k′

e

j i ′

)
φ

(T ,S)
k′

e,i
′ . (C3)
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If instead, we project Eq. (C2) onto 〈v|Bj ;1/2ape ;−1/2, we get a
somewhat more complicated equation, namely,

0 =
∑
kei

λ

(
pe ke

j i

) [ (
Eke,i − E(T ,S)

)
φ

(T ,S)
ke,i

+
∑
k′

ei
′
ξ

(
ke k′

e

i i ′

)
φ

(T ,S)
k′

e,i
′

]
, (C4)

which also reads as

0 =
∑
kei

[
λ

(
pe ke

j i

)
(Eke,i − E(T ,S))

+ ξ in

(
pe ke

j i

)]
φ

(T ,S)
ke,i

, (C5)

where the exchange-Coulomb scattering ξ in( pe ke

j i
) is defined

in Eq. (B14) and shown in the diagram of Fig. 5. It is
actually possible to show that Eq. (C5) follows from Eq.
(C3) by using the parity condition (12). Indeed, Eq. (12)

allows us to transform the right-hand side of Eq. (C3)
into

(−1)S
∑
kei

[(
Epe,j − E(T ,S))λ (

pe ke

j i

)

+ ξ out

(
pe ke

j i

) ]
φ

(T ,S)
ke,i

, (C6)

where ξ out( pe ke

j i
) is defined in Eq. (B15). Using Eq. (B18)

for the link between ξ in and ξ out, we then find that the φ
(T ,S)
ke,i

prefactors in Eqs. (C5) and (C6) are indeed equal.
(ii) We now consider Eq. (C2) for s = s ′ and project it

onto 〈v|Bj ;sape ;s . According to Eq. (B9), we get two terms.
These two terms just correspond to the right-hand side of Eqs.
(C3) and (C4), so that we again end up with φ

(T ,S)
pe,j

fulfilling
Eq. (C3) for Sz = ±1 also. This is fully reasonable because
Eq. (C3) holds for triplet and singlet trions made of opposite
spin electrons, while the three triplet states [S = 1,Sz = (0,

±1)] are degenerate. So, they must obey the same Schrödinger
equation.
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