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Spin-torque efficiency enhanced by Rashba spin splitting in three dimensions
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We examine a spin torque induced by the Rashba spin-orbit coupling in three dimensions within the Boltzmann
transport theory. We analytically calculate the spin torque and show how its behavior is related with the spin
topology in the Fermi surfaces by studying the Fermi-energy dependence of the spin torque. Moreover, we
discuss the spin-torque efficiency, which is the spin torque divided by the applied electric current in association
with the current-induced magnetization reversal. It is found that high spin-torque efficiency is achieved when the
Fermi energy lies on only the lower band and there exists an optimal value for the Rashba parameter, where the
spin-torque efficiency becomes maximum.
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I. INTRODUCTION

One of the purposes of spintronics is to control the
magnetization direction of a ferromagnet by using electric
currents instead of an external magnetic field. Recently, the
magnetization reversal due to spin-transfer-torque effect1,2 has
been intensively investigated, which requires multilayer struc-
tures such as spin valves, tunnel junctions, or domain walls.
On the other hand, another method to switch magnetization
direction, which is due to the spin-orbit coupling (SOC), was
suggested theoretically3–9 and verified experimentally.10,11 For
instance, a giant spin torque is observed in an asymmetric
ferromagnetic metal layer AlOx /Co/Pt, and a current-driven
magnetic field of 1 T for a driven current 108 A/cm2 is
reported.11

In the above systems, the Rashba-type spin splitting is
dominant owing to the interplay between the asymmetric
structure and a strong SOC derived from the Pt atom. Rashba
systems12 under an external electric field or a current injection
become spin polarized because the spin distribution on the
Fermi surfaces becomes imbalanced. In ferromagnetic metals,
on the other hand, there exists an exchange coupling between
conduction electron spins and localized spins. Under the
nonequilibrium state, magnetization in ferromagnetic Rashba
systems is macroscopically given a spin torque. Now, if we
assume a single-domain ferromagnet, the stability of magnetic
ordering is characterized by the anisotropy field. Thus, the
magnetization can be reversed when the spin torque overcomes
the anisotropy field. Contrary to a spin-transfer torque, there
is no transfer of spin angular momentum from outside.
Rather, orbital angular momentum in a crystal is converted
to spin angular momentum via the spin-orbit coupling, and
is transferred to the local magnetization. This mechanism
is intrinsic to the band structure and does not require two
noncollinear ferromagnets.

Moreover, it is theoretically reported that compared with
some systems with the spin-orbit coupling due to impurities
or Luttinger spin-orbit bands, the Rashba system presents a
giant spin torque to reverse the magnetization owing to the
inversion asymmetry.6 Therefore, a spin torque due to the
Rashba spin-orbit coupling attracts many interests as a realistic
candidate in spintronics applications.

In this paper, we explore the possibility of the
current-induced magnetization reversal by examining three-

dimensional models with the Rashba SOC (3D Rashba
models) theoretically, and compare the results with the two-
dimensional (2D) Rashba models. We focus on the low-density
regime where only the lower band lies on the Fermi energy.
This low-density regime has not been studied for 2D Rashba
models, either. This low-density regime becomes realistic
when the Rashba parameter is large, e.g., in the recent
discovery of the new bulk Rashba semiconductor BiTeI.13,14

In this material, the Rashba effect is induced by the structural
inversion asymmetry in the bulk crystal structure, and therefore
the Rashba SOC is much stronger than the typical value of the
Rashba SOC in 2D semiconductor heterostructures15 or that
in metal surfaces.16,17

As we vary the Fermi energy, the topology of the Fermi
surface changes. Correspondingly, we found that the spin
torque as a function of the Fermi energy EF behaves differently
between the both sides of the topological transition. Moreover,
we examine the spin-torque efficiency, which is the spin
torque divided by the applied electric current, in order to
discuss how to enhance the efficiency in association with the
current-induced magnetization reversal.

II. 3D RASHBA MODEL

We calculate the spin torque on the magnetization of a
ferromagnet driven by the spin polarization of conduction
electrons in systems with a strong SOC. We consider three-
dimensional models with the Rashba effect, i.e., 3D Rashba
models.13,14 We take the direction of structural inversion
symmetry breaking as the z axis and conduction electrons
move in three dimensions. In our model, we also include
localized spins coupled to the conduction electrons via the
exchange coupling. Our Hamiltonian is thus described by

H= h̄2

2m∗
xy

(
k2
x + k2

y

) + h̄2

2m∗
z

k2
z +αRez · (k × σ ) − Jsd M · σ ,

(1)

where m∗
xy,m

∗
z represent the effective masses of conduction

electrons with the xy plane and along the z axis, respectively,
αR represents the Rashba parameter, Jsd is an exchange
coupling between conduction electrons and magnetization,
M = (cos ϕM, sin ϕM,0) is the direction of magnetization, and
σ = (σx,σy,σz) are the Pauli matrices. ez denotes the unit
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vector in the z direction. The eigenenergies and eigenstates
of the above Hamiltonian are, respectively, given by

Es(k) = h̄2

2m∗
xy

(
k2
x + k2

y

) + h̄2

2m∗
z

k2
z

+ s

√
(αRky − Jsd cos ϕM )2 + (αRkx + Jsd sin ϕM )2,

(2)

�k,s = 1√
2

(
seiγk

1

)
eik·r , (3)

where s is a band index with +1 for the upper band and −1
for the lower band and tan γk ≡ αRkx+Jsd sin ϕM

αRky−Jsd cos ϕM
. Equations (2)

and (3) look similar to 2D Rashba models, but the shape of
Fermi surfaces is nontrivial in 3D Rashba models as shown in
Fig. 1(a).

In the regime of strong exchange coupling, i.e., Jsd �
kF αR , the Fermi surfaces are mainly governed by the Zeeman
splitting, where kF denotes the Fermi wave number. When
the Fermi energy crosses both the upper and lower bands
(which we refer to as the high-density regime), the system
has a larger and a smaller ellipsoidal Fermi surface. When
the Fermi energy lies on only the lower band (which we
refer to as the low-density regime), the system has a single
ellipsoidal Fermi surface. In the regime of weak exchange
coupling, i.e., kF αR � Jsd , on the other hand, the Fermi
surfaces are mainly determined by the Rashba-type spin
splitting. In the high-density regime, applelike and lemonlike

FIG. 1. (Color online) Fermi surfaces in the 3D Rashba model and
their topological change. (a) Schematic figures of Fermi surfaces in
the limit of strong- (Jsd � kF αR), intermediate-, and weak-exchange
coupling regimes (kF αR � Jsd ), and in high- and low-density
regimes. (b) Phase diagram of the high- and low-density regimes
as a function of αR .

Fermi surfaces are obtained. In the low-density regime, we
obtain a donutlike Fermi surface and the distribution of the
spin density in the wave-number space is along the azimuthal
direction in the xy plane. From Fig. 1(a), we find that there
exists a topological transition of the Fermi surfaces, namely, a
Lifshitz transition18 in an intermediate value of the exchange
coupling. In the low-density regime, as Jsd/αR grows, the
topology of the Fermi surface changes from the torus T 2 to
the sphere S2. We remark that the topological transition occurs
on the curve E = Jsd − m∗

xyα
2
R/(2h̄2) (αR < h̄

√
Jsd/m∗

xy) =
h̄2J 2

sd/(2m∗
xyα

2
R) (αR � h̄

√
Jsd/m∗

xy), and the band bottom
is on the curve E = −Jsd − m∗

xyα
2
R/(2h̄2) as shown in

Fig. 1(b).

III. SPIN TORQUE

From the Heisenberg equation of motion for the
conduction-electron spin, the spin-continuity equation is
deduced:

d〈s〉
dt

+ ∇ · Js = −Jsd

h̄
M × 〈s〉 + αR

h̄
〈(k × σ ) × ez〉, (4)

where s refers to the spin-density operator,Js refers to the spin-
current tensor, and 〈. . .〉 denotes the quantum average. The first
term of the right-hand side in Eq. (4) means the current-induced
spin torque to the magnetization, and is denoted by T . The
second term of the right-hand side, on the other hand, means
the torque due to an effective magnetic field introduced by
the Rashba SOC. We calculate the spin polarization and the
electric current of conduction electrons under an electric field
using the Boltzmann equation of transport

− e

h̄
E · ∂f 0

k,s

∂k
=

∑
k′,s ′

Wss ′
kk′(fk,s − fk′,s ′ ), (5)

where e represents the electric charge, E =
(E sin θE cos ϕE,E sin θE sin ϕE,E cos θE) is an external
electric field, and f 0

k,s = 1/(eβ(Es−μ) + 1) is the Fermi
distribution function with band index s. Within the Boltzmann
transport theory, the electric current and the spin density,
respectively, read as j3D = − e

V

∑
k,s=±1 fk,svk,s , where

h̄vk,s = ∂Es

∂k = ( h̄2

m∗
xy

kx + sαR sin γk,
h̄2

m∗
xy

ky + sαR cos γk,
h̄2

m∗
z
kz)

and 〈s〉 = 1
V

∑
k,s=±1 fk,s sk,s , where sk,s = �

†
k,s s�k,s =

s(cos γk, − sin γk,0). Under the short-range impurity
potential V (r) ≡ V δ(r), the scattering probability reads as

Wss ′
kk′ = πni

h̄
V 2[1 + ss ′ cos(γk − γk′)]δ[Es(k) − Es ′ (k′)],

(6)

where ni is the impurity concentration.
In this study, we adopt the approximation of a constant

relaxation time and discuss effects beyond the present approx-
imation later. In the following, we consider the two limiting
cases of Jsd � αRkF and αRkF � Jsd , and calculate the spin
torque in high- and low-density regimes for each limiting case.
We emphasize that in the 2D Rashba models, the Rashba
SOC is typically small, and only the high-density regime is
considered in general; in contrast, in the 3D Rashba models
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FIG. 2. (Color online) Strong-exchange-coupling regime of the
3D Rashba model. (a) Schematic of the band structure, (b) Fermi-
energy dependence of the spin torque, (c) the electric conductivity,
and (d) the spin-torque efficiency. In each plot, the results for 2D
Rashba models are shown for comparison. The dotted lines refer to
a topological change of Fermi surfaces. The insets in (a) represent
the Fermi surfaces and the spin density in the kxky plane (kz = 0)
in the low- and high-density regimes. The arrows are parallel to
the magnetization vector of the ferromagnet. Here, the respective
quantities are shown as ratios to these at the topological transition
EF = Jsd , i.e., T 3D

0 ≡ 4
3π2

eτ

h̄5 m∗
xy

√
m∗

zαRJ
3/2
sd , T 2D

0 ≡ 1
π

eτ

h̄4 m∗αRJsd ,

σ
‖
3D,0 ≡ 4

3π2
e2τ

h̄3

√
m∗

zJ
3/2
sd , and σ

‖
2D,0 ≡ 1

π

e2τ

h̄2 Jsd .

such as BiTeI, the Rashba SOC is strong and the low-density
regime is significant for experiments.

A. Strong-exchange-coupling regime

We consider the regime of a strong exchange coupling,
i.e., Jsd � kF αR . For simplicity, we retain up to the first
order in kF αR/Jsd , that is, Es(k) 
 h̄2

2m∗
xy

(k2
x + k2

y) + h̄2

2m∗
z
k2
z +

s[Jsd + 1
2αR(kx sin ϕM − ky cos ϕM )]. Up to the first order in

kF αR/Jsd , we have

cos γk 
 − cos ϕM + αR

Jsd

(ky sin2 ϕM + kx sin ϕM cos ϕM ),

(7)

sin γk 
 sin ϕM + αR

Jsd

(kx cos2 ϕM + ky sin ϕM cos ϕM ). (8)

Fermi surfaces change topologically when EF = Jsd as shown
in Fig. 2(a).

In the high-density regime (Jsd < EF ), by integrating over
the Fermi surfaces, the spin torque and the electric conductivity
for the xy-plane projective and z-axis direction are calculated

as

T 3D =
√

2

3π2

eτ

h̄5
αRm∗

xy

√
m∗

z [(EF − Jsd )3/2 − (EF + Jsd )3/2]

×E‖ cos(ϕM − ϕE)ez, (9)

σ
‖
3D =

√
2

3π2

e2τ

h̄3

√
m∗

z [(EF − Jsd )3/2 + (EF + Jsd )3/2], (10)

σ z
3D = m∗

xy

m∗
z

σ
‖
3D, (11)

where E‖ represents the external electric field along the xy

plane. In Eq. (9), the first and second terms come from
the upper and lower bands, respectively. We can see that
these contributions to T 3D partially cancel each other. We
also calculate the spin torque in 2D Rashba models for
a comparison between 3D and 2D Rashba models. The
Hamiltonian in 2D is described by H2D = h̄2

2m∗ (k2
x + k2

y) +
αRez · (k × σ ) − Jsd M · σ . In a similar way, we obtain the
spin torque as T 2D = − 1

π

eτE‖
h̄4 m∗αRJsd cos(ϕM − ϕE)ez and

the electric conductivity as σ
‖
2D = 1

π
e2τ

h̄2 EF .
In the low-density regime (−Jsd < EF < Jsd ), on the other

hand, the electric current and the spin density, respectively,
read as j3D = − e

V

∑
k fk,−1vk,−1 and 〈s〉 = 1

V

∑
k fk,−1sk,−1.

With a similar calculation, we obtain

T 3D = −
√

2

3π2

eτ

h̄5
αRm∗

xy

√
m∗

z (EF + Jsd )3/2

×E‖ cos(ϕM − ϕE)ez, (12)

σ
‖
3D =

√
2

3π2

e2τ

h̄3

√
m∗

z (EF + Jsd )3/2, (13)

σ z
3D = m∗

xy

m∗
z

σ
‖
3D. (14)

In 2D Rashba models, the spin torque is T 2D =
− 1

2π

eτE‖
h̄4 m∗αR(EF + Jsd ) cos(ϕM − ϕE)ez and the electric

conductivity is σ
‖
2D = 1

2π
e2τ

h̄2 (EF + Jsd ).

B. Weak-exchange-coupling regime

Let us consider the regime of a weak exchange coupling,
i.e., αRkF � Jsd . Up to the zeroth order in Jsd/kF αR , Es(k) 


h̄2

2m∗
xy

(k‖ + sk0)2 + h̄2

2m∗
z
k2
z − E0, cos γk 
 ky/k‖, and sin γk 


kx/k‖, where k‖ ≡
√

k2
x + k2

y , k0 ≡ αRm∗
xy

h̄2 , and E0 ≡ α2
Rm∗

xy

2h̄2 .
The eigenvector given in the present approximation has the
same form as that of 3D Rashba Hamiltonian and therefore the
spin density of the total Hamiltonian is the spin polarization
induced by only 3D Rashba SOC. As shown in Fig. 3(a),
the low-density regime is given by −E0 < EF < 0 and Fermi
surfaces change topologically at EF = 0.

In the high-density regime (0 < EF ), the spin torque and
the electric conductivity are thus obtained as

T 3D = − 1

2π2

eτ

h̄4

√
m∗

xym
∗
zJsd

[
(EF + E0) arcsin

(√
E0

EF + E0

)
+

√
E0EF

]
E‖ cos(ϕM − ϕE)ez, (15)
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σ
‖
3D = 1

2π2

e2τ

h̄4

√
m∗

xym
∗
zαR

[
(EF + E0) arcsin

(√
E0

EF + E0

)
+

(
4

3
EF + E0

)√
EF

E0

]
, (16)

σ z
3D = 1

π2

e2τ

h̄4

m∗
xy

m∗
z

√
m∗

xym
∗
zαR

[
(EF + E0) arcsin

(√
E0

EF + E0

)
+

(
2

3
EF + E0

) √
EF

E0

]
. (17)

Like the strong-exchange-coupling regime, only E‖ con-
tributes to the spin torque. This is because the direction of
spatial inversion symmetry breaking is the z axis, which im-
plies the nature of 3D Rashba-type SOC. In 2D Rashba models,
the spin torque reads as T 2D = − 1

2π

eτE‖
h̄4 m∗αRJsd cos(ϕM −

ϕE)ez and the electric conductivity reads as σ
‖
2D = 1

π
e2τ

h̄2 (EF +
E0).

For the low-density regime (−E0 < EF < 0), on the other
hand, we obtain

T 3D = − 1

4π

eτ

h̄4

√
m∗

xym
∗
zJsd (EF + E0) E‖ cos(ϕM − ϕE)ez,

(18)

σ
‖
3D = 1

4π

e2τ

h̄4

√
m∗

xym
∗
zαR(EF + E0), (19)

σ z
3D = 2m∗

xy

m∗
z

σ
‖
3D. (20)

FIG. 3. (Color online) Weak-exchange-coupling regime of the 3D
Rashba model. (a) Schematic of the band structure, (b) Fermi-energy
dependence of the spin torque, (c) the electric conductivity, and (d) the
spin-torque efficiency. In each plot, the results for 2D Rashba models
are shown for comparison. The dotted lines refer to a topological
change of Fermi surfaces. The insets in (a) represent the Fermi
surfaces and the spin density in the kxky plane (kz = 0) in the low- and
high-density regimes. The arrows are along the Fermi surfaces. Here,
the respective quantities are shown as ratios to these at the topo-
logical transition EF = 0, i.e., T 3D

0 ≡ 1
4π

eτ

h̄4

√
m∗

xym
∗
zJsdE0, T 2D

0 ≡
1√
2π

eτ

h̄3

√
m∗Jsd

√
E0, σ

‖
3D,0 ≡

√
2

4π

e2τ

h̄3

√
m∗

zE
3/2
0 , and σ

‖
2D,0 ≡ 1

π

e2τ

h̄2 E0.

In 2D Rashba models, the spin torque is T 2D =
− 1√

2π

eτ

h̄3 E‖
√

m∗Jsd

√
EF + E0 cos(ϕM − ϕE)ez and the elec-

tric conductivity is σ
‖
2D = 1√

2π

e2τ

h̄3

√
m∗αR

√
EF + E0.

C. Discussion

We show the Fermi-energy dependence of the spin torque,
the electric conductivity, and the spin-torque efficiency,
defined as the ratio between the spin torque and the
electric-current density in Figs. 2(b)–2(d) and 3(b)–3(d).
Here, we set ϕM = ϕE for simplicity. Let E

(0)
F denote the

value of the Fermi energy, where the topology of the Fermi
surface changes. This is the Fermi energy which differentiates
between the low- and high-density regimes. In these figures,
we scale the respective quantities by their values at EF = E

(0)
F .

As a result, each quantity is represented as a dimensionless
value, which facilitates comparison between various cases.

As one can see for both limits, the slope of the spin
torque shown in the low-density regime is suppressed in the
high-density regime [Figs. 2(b) and 3(b)], while the slope
of the electric conductivity in the low-density regime is
enhanced in the high-density regime [Figs. 2(c) and 3(c)].
The reason is because within our analysis, the spin torque is
proportional to the spin-density component perpendicular to
the magnetization, and the spin distribution in the upper band
is opposite to that in the lower band. Since the topology of the
Fermi surface in the low-density regime differs from that in
high-density regime, the behaviors are different between both
regimes. The spin torque as well as the electric conductivity
is different in 3D and in 2D Rashba models due to the
difference in dimensionality such as the density of states. If
we assume that m∗

xy,αR,τ in 3D are equal to m∗,αR,τ in 2D,
the ratio between |T 3D| and |T 2D| in the low-density regime is
proportional to the square root of m∗

z and Fermi energy from
the bottom of the conduction band. This is asymptotically true
in the limiting case of EF � Jsd,kF αR .

We also find that within the present approximation, the
spin-torque efficiency |T |/j ‖ is a constant in the low-density
regime [Figs. 2(d) and 3(d)]. In the high-density regime, on the
other hand, the spin-torque efficiency decreases monotonically
both in 2D and in 3D. For generic types of spin-split bands,
we can draw analogy from the present simple models. The
spin-torque efficiency is expected to be larger, when only one
of the spin-split bands lies at the Fermi energy. When the Fermi
energy becomes larger and crosses both of the spin-split bands,
their contributions are expected to cancel partially.

Now, we have assumed the constant relaxation-time ap-
proximation for both limiting regimes. Since the relaxation
time generally depends on the Fermi energy, the relaxation
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times τ in the expressions of the spin torque and the electric
conductivity are replaced by τs(EF ). However, the spin-
torque efficiency is independent of the Fermi energy in the
low-density regime because the spin torque and the electric
current are both proportional to the relaxation time τ−(EF ).
In particular, the spin-torque efficiency in the low-density
regime does not alter for the above replacement τ → τs(EF ).
According to the formalism by Schliemann and Loss,19 on the
other hand, the effects of the anisotropic scattering due to the
SOC are expressed in the distribution function

fk,s = f 0
k,s + e

h̄

τ
‖
k,s

1 + (τ ‖
k,s/τ

⊥
k,s)

2
E · ∂f 0

k,s

∂k

+ e

h̄

τ⊥
k,s

1 + (τ⊥
k,s/τ

‖
k,s)

2
(ez × E) · ∂f 0

k,s

∂k
, (21)

where τ
‖
k,s and τ⊥

k,s denote the longitudinal and the trans-
verse relaxation times, respectively. For the strong-exchange-
coupling regime, the distribution function has a simple form

fk,s = f 0
k,s + e

h̄
τs(EF )E · ∂f 0

k,s

∂k owing to an isotropic scattering
probability. For the weak-exchange-coupling regime, the
scattering probability becomes anisotropic, but τ⊥

k,s vanishes
within the zeroth order in Jsd/kF αR , and the distribution
function has a similar form with the case of isotropic
scattering.5 Therefore, we can ignore anisotropic scattering
effects due to the SOC for both limits.

IV. ENHANCEMENT OF SPIN-TORQUE EFFICIENCY

To realize magnetization-switching devices, it is indispens-
able to enhance the spin-torque efficiency in order to minimize
the threshold electric current for the magnetization reversal.
So far, we have found that the spin-torque efficiency in the
low-density regime is a constant, both for the weak- and strong-
exchange-coupling regimes. On the other hand, by numerical
analysis in the intermediate-exchange-coupling regime, the
spin-torque efficiency as a function of EF is not a constant in
the low-density regime. As shown in Fig. 4(a), when EF goes to
the band bottom, the spin-torque efficiency is largely enhanced
in a nonmonotonic fashion. The spin-torque efficiencies in the
low-density regime also depend on m∗

xy , αR , and Jsd . Let us
consider how to optimize the spin-torque efficiency by varying
αR . From Eqs. (12) and (13) for Jsd � kF αR , and Eqs. (18)
and (19) for kF αR � Jsd , the spin-torque efficiencies read as,
for the low-density regime,

|T 3D|/j ‖
3D = m∗

xy

eh̄2 αR : Jsd � kF αR, (22)

|T 3D|/j ‖
3D = 1

e

Jsd

αR

: kF αR � Jsd . (23)

When Jsd is kept constant and αR is varied, the spin-torque
efficiency increases linearly in αR for Jsd � kF αR and
decreases inversely linear in αR for kF αR � Jsd . Thus, it
implies that the spin-torque efficiency becomes maximum at
an intermediate value of αR . From these asymptotics (22) and
(23), we find that the optimal condition is expected to be
αR ∼ h̄

√
Jsd/m∗

xy , i.e., 2E0 ∼ Jsd . Namely, the spin-splitting
energy E0 by the SOC is comparable to the exchange energy

(a)

(b) (c)

(d)

(e)

FIG. 4. (Color online) Numerical results for the spin-torque
efficiency. (a) Spin-torque efficiency for various values of αR as a
function of EF . The crosses denote topological changes of the Fermi
surfaces. (b) Spin-torque efficiency at the topological transition as a
function of αR , and (c) that as a function of Jsd . In (a) and (b), EF ,
αR , and the efficiency are plotted as a unit of 2Jsd , h̄

√
2Jsd/m∗

xy ,
and

√
2Jsdm∗

xy/eh̄, respectively. Jsd and the efficiency in (c) are
plotted as a unit of 4α2

Rm∗
xy/h̄

2 and 2m∗
xyαR/eh̄2, respectively.

(d) Spin-torque efficiency as a function of αR and Jsd at the topological
transition, and (e) that at the band bottom. In (d) and (e), we
adopted m∗

xy/h̄
2 = 0.014 eV Å2, m∗

z/m∗
xy = 0.5, and ϕE = ϕM . The

spin-torque efficiencies in (d) and (e) are plotted as a unit of e.
The broken curves in (b) and (c) represent the asymptotic forms
of the spin-torque efficiency for Jsd � kF αR and kF αR � Jsd . The
white broken curves in (d) and (e) represent the optimal condition
2E0 ∼ Jsd and the dotted-dashed curve in (e) denotes the modified
optimal condition 2E0 ∼ 9Jsd .

Jsd with the localized spins. The maximum spin-torque
efficiency is k0/e, proportional to the Rashba momentum. To
confirm our expectations, we show the αR dependence of the
spin-torque efficiency at the topological transition EF = E

(0)
F

in Fig. 4(b). The spin-torque efficiency becomes maximum
near αR ∼ h̄

√
Jsd/m∗

xy , which confirms our expectation. When
αR is kept constant and Jsd is varied, on the other hand, the
spin-torque efficiency increases linearly in Jsd for kF αR � Jsd
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FIG. 5. (Color online) Candidate geometry for the magnetization
reversal by spin torque from 3D Rashba system BiTeI. Bulk BiTeI
is sandwiched between ferromagnets (FMs), similar to a Rashba
semiconductor doped with a ferromagnet.

and goes to a constant k0/e for Jsd � kF αR as shown in
Fig. 4(c). Using realistic parameters, we numerically show
the spin-torque efficiency as a function of αR and Jsd at the
topological transition and at the band bottom in Figs. 4(d) and
4(e), respectively. At the band bottom, the broken curve in
Fig. 4(e) shows that the optimal condition is largely shifted
to the larger value of αR , roughly given by 2E0 ∼ 9Jsd .
This shift comes from the large enhancement of spin-torque
efficiency at the band bottom for larger αR , shown in
Fig. 4(a).

Finally, we suggest methods to realize the magnetization
reversal in 3D Rashba systems experimentally. One way
is to synthesize ferromagnetic bulk Rashba semiconductors
by doping magnetic impurities into bulk materials with a
strong SOC, e.g., BiTeI. Nevertheless, synthesis of a new
ferromagnetic semiconductor is quite difficult, which would
be a challenging and promising issue for materials science. On
the other hand, it is known that wide-gap semiconductors such
as Mn-doped GaN, Co-doped ZnO, and V-doped ZnO present
ferromagnetism even over the room temperature.20–22 GaN
and ZnO have wurtzite-type crystalline structure and are con-
ventional Rashba semiconductors. Since these semiconductors
present much smaller Rashba spin splitting (about αR =
1.1 meV Å in ZnO and αR = 9 meV Å in GaN),23,24 BiTeI
is suitable for demonstrating the magnetization reversal to
fabricate ferromagnetic Rashba semiconductors. Another way
is to fabricate layered materials with a Rashba semiconductor
film and a ferromagnetic metal as shown in Fig. 5. These
materials are considered to be similar to a magnetically doped
Rashba semiconductor macroscopically. We also remark
that in conventional ferromagnetic two-dimensional electron
gases (2DEGs), only the magnetization near the interface is

switched, while in ferromagnetic 3D Rashba semiconductors,
the magnetization of the whole crystal is switched.

Let us evaluate the physical quantities using realistic
parameters. We take BiTeI doped with magnetic element as an
example, and use the values αR = 3.85 eV Å and m∗

xy/h̄
2 =

0.014/eV Å2 for BiTeI.13 For numerical estimates, we assume
Mn as dopant, and take the saturation magnetization Ms =
104 J/T m3 and the anisotropy field HK = 200 Oe adopted
from Mn-doped semiconductors.5 The estimated maximum
spin-torque efficiency is k0/e ∼ 3 × 1027 C m for the low-
density regime, which is realized for the optimal condition
Jsd � 20 meV if the Fermi energy lies in the vicinity of the
band bottom. Therefore, the critical electric current density
is evaluated as jc ∼ 6 × 104 A cm2, which is much lower than
that observed in the 2D Rashba system such as the Pt/Co/AlOx

junction.11

V. SUMMARY

We have investigated a spin torque and its efficiency
induced by the Rashba spin-orbit coupling in three dimensions
using the Boltzmann transport theory. It was shown that in
the high-density regime, the increase of the spin torque as
a function of the Fermi energy is slower than that in the
low-density regime. It is because in the high-density regime,
there occurs cancellation between the two spin-split bands. We
also found that high spin-torque efficiency is achieved when
the Fermi energy lies on only the lower band and there exists
an optimal value for the Rashba parameter. The spin-torque
efficiency becomes maximum when the Rashba spin-splitting
energy is comparable to the exchange energy with the localized
spins, and then its maximum values are determined by the
Rashba momentum. Such optimization might be useful for the
magnetization reversal.
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