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Crystalline and magnetic anisotropy of the 3d-transition metal monoxides MnO, FeO, CoO, and NiO
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The magnetic-ordering and orbital-occupancy induced distortions of the rocksalt structure below the Néel
temperature are computed for antiferromagnetic MnO, FeO, CoO, and NiO by means of spin-polarized density
functional theory including generalized-gradient corrections and an on-site Coulomb repulsion U . The important
role of the occupation of the t2g minority-spin states is studied in detail for the occurring rhombohedral and
monoclinic distortions. The magnetic anisotropy energy is calculated to determine the orientation of the local
magnetic moments in the antiferromagnetic crystals. We take into account both the influence of spin-orbit
coupling and the transverse electron interaction. The spin-orbit interaction drives the magnetic anisotropy in
CoO and FeO due to the partially filled t2g subshell while transverse electron interaction plays an important
role for the magnetic anisotropy in MnO and NiO due to the completely empty or filled t2g subshell. The
results for the structural and magnetic anisotropies are discussed in the light of the available experimental
data.
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I. INTRODUCTION

In the paramagnetic phase, the transition-metal (TM)
monoxides MnO, FeO, CoO, and NiO crystallize in the rock-
salt (rs) structure. Below their respective Néel temperatures,
these oxides exhibit an antiferromagnetic ordering which is
usually denoted as AFM II.1 It can be regarded as a stacking
of ferromagnetic planes with alternating direction of the local
magnetic moments along the cubic [111] axis. The AFM II
ordering is stabilized by superexchange which is mediated
by the oxygen atoms.2,3 In MnO and NiO the magnetic
phase transition goes along with a structural distortion which
reduces the symmetry of the crystal from rocksalt structure to
a rhombohedral structure.1,4–6 In the case of FeO and CoO,
the rhombohedral distortion is superposed with a stronger
tetragonal1,7,8 or orthorhombic9 distortion, which is due to
an orbital-ordering induced Jahn-Teller effect and leads to
a further reduction of the crystal symmetry to a monoclinic
structure.1,7–9 For FeO, however, purely rhombohedral distor-
tions are also reported1,10 and, thus, the actual atomic geometry
is less clear than for the other transition-metal oxides (TMOs).
While the structural distortions are experimentally fairly well
established (aside from FeO), this is not the case for the
crystallographic direction of the local magnetic moments in
the antiferromagnetic phase. For MnO and NiO, measurements
agree on magnetic moments lying in the (111) plane.1,11–14

However, for FeO and CoO, various orientations have been
proposed over the last decades.1,7–10,13

Several attempts have been made to address individual
aspects of the structural distortions and to derive the
orientation of the magnetic moments in the TMOs by means
of ab initio15,16 as well as model17,18 calculations. In this paper
we calculate both the structural distortions that accompany the
magnetic phase transition and the orientation of the magnetic
moments in the crystal in a consistent and systematic way
from first principles for the whole series of oxides from MnO
to NiO.

It has been shown (see, e.g., Refs. 19, 20, and refer-
ences therein) that many structural, magnetic, and electronic
properties of the TMOs can be well described within density-
functional theory (DFT).21 For instance, lattice constants
and spin magnetic moments can be obtained in satisfying
quantitative agreement with experiments even in the local
spin-density approximation (LDA) or generalized-gradient
approximation (GGA).19,20,22,23 Other properties, such as band
gaps or photoemission spectra, can only be captured qualita-
tively or not at all with (semi)local exchange-correlation (XC)
functionals.19 This partial failure of LDA and GGA is due to the
strong localization of the TM 3d electrons. Various methods
have been suggested to overcome the deficiencies of the
local approaches: Some authors include terms that (partially)
remove the self-interaction inherent in LDA/GGA.24–26 Others
use more sophisticated hybrid functionals to describe the
nonlocal screened exchange.23,27,28 However, these methods
also do not predict all properties of the TMOs correctly as
has been shown recently for the energetic ordering of differ-
ent possible ground-state crystal structures for MnO.29 The
DFT+U approach, with U as an effective Coulomb repulsion
on the d shell, is a computationally cheaper alternative to the
hybrid functionals which captures the on-site interaction in an
approximate way.16,23,25,27,30,31

In this paper we perform collinearly spin-polarized
GGA+U calculations to determine the structural distortions
which are due to the partial filling of the t2g minority-spin
subshell and the unique axis along [111] that is introduced
by the magnetic ordering. The crystalline anisotropy tensor
is derived subsequently from the distorted unit cells and the
influence of the occupation of the t2g orbitals on the tensor
elements is discussed. Starting from the calculated distorted
structures, we compute the total magnetic moments, that
is, taking both orbital (if any) and spin contributions into
account, in a noncollinear calculation including spin-orbit
coupling (SOC). The magnetic anisotropy is dominated by
two contributions: First, the intricate interplay of spin and
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spatial degrees of freedom which is mediated by the SOC
term leads to an anisotropy of the total energy of the system
with respect to the spatial orientation of the local magnetic
moments. The second contribution related to the interaction
between the local magnetic moments becomes important only
if the SOC-induced magnetic anisotropy is small or vanishes.
We take both effects into account and derive the resulting
orientations and magnitudes of the total magnetic moments as
well as the anisotropy constants.

The computational details and applied methods are de-
scribed in Sec. II. In Sec. III we discuss the structural results,
while Sec. IV focuses on the magnetic anisotropy. In Sec. V a
brief summary and conclusions are given.

II. COMPUTATIONAL DETAILS

All DFT calculations21,32 have been performed using the
Vienna ab initio simulation package (VASP).33 The TM 3d,
TM 4s, O 2s, and O 2p electrons are considered as valence
states. The one-particle wave functions are expanded in a
basis set of plane waves up to a cutoff energy of 750 eV,
whereas the projector-augmented-wave (PAW) method34,35 is
applied to describe the wave functions in the core regions
with an accuracy comparable to all-electron calculations. The
huge plane-wave cutoff is necessary to converge the total
energies down to deviations smaller than 1 meV per formula
unit.

The antiferromagnetically ordered TMOs are represented
by rocksalt, rhombohedral, or monoclinic crystals with a
(magnetic) unit cell containing four atoms. The corresponding
Brillouin zones (BZ) are sampled by a mesh of 10 × 10 × 10
k points. Also the k-point set is well converged to yield total
energies with an accuracy of 1 meV per formula unit or
better. In order to allow for spontaneous symmetry breaking
due to orbital ordering, no symmetry constraints are applied
during the calculations, that is, the k-space summations are
not restricted to the irreducible part of the BZ. The internal
degrees of freedom are optimized by relaxation of the shape of
the unit cell as well as the atomic positions until the Hellmann-
Feynman forces are below 1 meV/Å. The equilibrium volume
V0, the total energy Etot, the isothermal bulk modulus B0,
and its pressure derivative B ′

0 are obtained by fitting the
energy versus volume curves to the Murnaghan36 equation of
state.

For the description of XC in the framework of collinear
spins, the GGA parametrization of Perdew, Burke, and
Ernzerhof37 (PBE) is applied. The limitations of the GGA
(or LDA) for the antiferromagnetic TMOs are at least twofold:
(i) It yields metallic ground states for FeO and CoO19 and
(ii) the energetic ordering of fourfold and sixfold coordinated
atomic geometries is wrong for MnO.29 Both deficiencies
of the functionals can be overcome by introducing a d-d
intra-atomic Coulomb energy U (and its exchange counterpart
J ). The present GGA+U calculations are based on the scheme
of Dudarev et al.,25 where only the difference between the
on-site repulsion and the exchange parameter U − J enters the
energy functional. Therefore, all values for U given throughout
this paper are effective values representing U − J . Many
different values between U = 0 and 8 eV have been used
in the literature to model different structural, magnetic, and

electronic properties of the TMOs.16,25,27,30,31 The value of U

is set to U = 4 eV for all TMOs throughout this article. For
instance, a localized Coulomb interaction on the d shell of
this magnitude gives rise to the correct energetic ordering
of crystal structures for MnO,29 opens gaps for FeO and
CoO,28 but does not destroy the energetic ordering of the
valence and conduction bands with respect to experiment
and more sophisticated quasiparticle calculations.28 Structural
parameters and the magnetic moment are rather insensitive to
variations of the U parameter by ±1 eV.29

Relativistic effects are taken into account on two different
levels as suggested by Koelling and Harmon.38 The Darwin
term and the relativistic mass correction, often referenced
as the scalar-relativistic contributions, are considered already
within the pseudopotential generation and are, thus, included
in all calculations. Computations with spin-orbit (SO) in-
teraction, however, need to treat noncollinear spin densities
and take into account the full vector of the magnetization
density.39 Other relativistic corrections originate from trans-
verse electron-electron interactions. They can be approxi-
mately described by magnetic dipole-dipole interactions.40 In
contrast to our approach, they are usually omitted in ab initio
calculations of solids because of their smallness.

III. CRYSTALLINE ANISOTROPY

A. General structural, elastic, and magnetic properties

For the type-II antiferromagnetically ordered 3d TMOs
with alternating magnetic moment directions of adjacent
ferromagnetic TM2+(111) planes (see Fig. 1) important
properties such as the atomic structure can be reasonably
well described within a collinear approximation for the
spin.29 All calculations in this section are, thus, performed
in the collinear framework allowing for a full relaxation
of both atomic positions and unit cell shape for a given
volume.

FIG. 1. (Color online) Illustration of the AFM II antiferromag-
netic ordering and the lattice parameters of the TMOs. TM ions with
opposite spins are indicated by large blue or green spheres while the
oxygen ions are given by small gray spheres. The arrows serve as a
guide to the eye to denote opposite magnetization directions and not
the actual orientation of the magnetization vector in the unit cell. In the
left image the pseudocubic angle α and the rhombohedral distortion
angle �α are defined. The right image shows the monoclinic unit cell
together with the definitions of the monoclinic angle β, the monoclinic
distortion angle �β, and the pseudo-orthorhombic lattice constants
a′, b′, and c′.
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TABLE I. Computed structural, elastic, and magnetic parameters for the distorted antiferromagnetic TMOs. MnO and NiO are distorted
rhombohedrally, whereas a monoclinic distortion is obtained for FeO and CoO. The rhombohedral distortion is characterized by the angular
deviation �α and the monoclinic distortion by �β as well as lattice constant ratios b′/a′ and c′/a′ (see Fig. 1). The computed values
are compared with available experimental data. The calculated magnetic moments given here are spin magnetic moments μs , whereas the
experimental values are total magnetic moments μ.

MnO FeO CoO NiO

GGA+U Expt. GGA+U Expt. GGA+U Expt. GGA+U Expt.

V0 (Å3) 22.6 21.7–21.8a−d 20.9 20.0–20.3d−f 19.7–20.3d,e,g−i 19.8 19.3d,j 18.5 18.1–18.2b,k

B0 (GPa) 143 144–159d,l−n 156 141–176d,e 141–176d,e 169 186d 186 187–238k,o,p

B ′
0 4.3 4.5 4.4 4.4

Distortion R3̄m R3̄ma−c C2/m C2/mf R3̄ma,h,i C2/m C2/ma,j,q R3̄m R3̄ma,b,r

�α (deg) 0.72 0.43–0.62a−c – – −0.45 to −0.56h,i – – 0.07 0.08–0.1b,r

�β (deg) – – −0.48 −0.62f – 0.80 0.30j – –
c′/a′ – – 1.025 1.023f – 0.976 0.988j – –
b′/a′ – – 0.975 0.991f – 0.985 0.999j – –
μ (μB ) 4.60 4.58b 3.69 4.0f 3.3–4.6a,i 2.68 3.8–3.98a,j,q 1.62 1.9b

aReference 1; bReference 5; cReference 6; dReference 43; eReference 44; fReference 9; gReference 45; hReference 46; iReference 10;
jReference 8; kReference 47; lReference 48; mReference 49; nReference 50; oReference 51; pReference 52; qReference 7; rReference 4.

In Table I the equilibrium volume V0, the isothermal bulk
modulus B0, its pressure derivative B ′

0, and the local (spin)
magnetic moment μs per TM ion are listed. In general, the
computed parameters agree well with available experimental
values. Of course, the volumes V0 per cation-anion pair are
slightly overestimated by 3% (or less) due to the use of
the GGA. The computed inverse compressibilities B0 are
in agreement with the lowest measured values. Thereby, the
clear chemical trend of decreasing volumes and increasing
bulk moduli along the row MnO, FeO, CoO, and NiO is
confirmed. For MnO, the spin magnetic moment μs agrees
with the measured total magnetic moment. However, for the
other three TMOs an underestimation has to be stated, in
agreement with the findings of other computations within
spin-polarized DFT.20,28,41,42 This is due to the neglect of
orbital contributions. The overall excellent agreement between
the structural and elastic properties from our GGA+U cal-
culations, all calculated with the same U = 4 eV, and the
experimental results throughout the whole series of the late
3d TMOs confirms that small variations of U are of minor
importance for finding structural results and spin magnetic
moments in good agreement with measured data.

B. Lattice distortions and strain tensor

In the paramagnetic phase the 3d TMOs crystallize in
an ideal rocksalt structure with space group Fm3̄m (O5

h).
However, due to the antiferromagnetic ordering AFM II and
the partial occupancy of the TM 3d states distortions of the
ideal rocksalt geometry occur. During the structural relaxation
the symmetry of MnO and NiO is reduced to a rhombohedral
structure with space group R3̄m (D5

3d ) in full agreement with
experimental findings1,4–6 and other theoretical works.20,27,53

Goodwin et al.14 also report a monoclinic distortion with
C2 (C3

2 ) symmetry for MnO, but interpret the observed
distortion to be due to a “frozen-in” phonon. For FeO and
CoO, the symmetry is reduced to a monoclinic structure with
space group C2/m (C3

2h) during our calculations. Also this

finding agrees well with experimental results.1,7–9 However,
for nonstoichiometric FeO also rhombohedral distortions are
observed.1,10,46

We characterize the distortions of the ideal rocksalt geome-
try due to the AFM II ordering and the orbital occupancy by the
rhombohedral distortion angle �α or the monoclinic distortion
angle �β, and the (pseudo-)orthorhombic distortions c′/a′

and b′/a′, respectively. The angles �α and �β are defined in
Fig. 1 as the deviations of the distorted angle from the value
of the respective angle in the ideal rs structure. Thereby, �α

is derived from the lattice parameters of a deformed face-
centered cubic lattice, while �β, c′/a′, and b′/a′ follow from
the nonprimitive unit cell of a monoclinic lattice described
within the ideal rs structure.

The structural distortions of the rs geometry can also
be characterized by the volume-conserving monoclinic strain
tensor

ε̂ =

⎛
⎜⎝

− t
2

e
2 + r r

e
2 + r − t

2 r

r r t

⎞
⎟⎠ (1)

with Tr(ε̂) = 0, which relates the distorted to the undistorted
simple-cubic lattice vectors a′

i = (1 + ε̂) ai , with i = 1, 2, 3.
Three special cases may be discussed in more detail: (i) For
e = t = 0, ε̂ describes a rhombohedral distortion in the [111]
direction and the rhombohedral distortion angle �α is given
by �α ≈ −2r . (ii) In the case r = 0, the strain tensor ε̂

describes an orthorhombic distortion with the principal axes
along x ′ = [110], y ′ = [1̄10], z′ = z = [001]. The relative
changes of the lattice constants along the principal axes are
then b′/a′ ≈ 1 − e and c′/a′ ≈ 1 + (3t − e)/2, with a′, b′,
and c′ along the principal axes. (iii) Finally, a purely tetragonal
distortion along the [001] direction is obtained if e = r = 0.
The relative change of the lattice constant along the [001]
direction is then c/a = (c′/a′)e=0 ≈ 1 + 3t/2.
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TABLE II. Computed components of the strain tensor ε̂ for the
3d TMOs in GGA+U with U = 4 eV in units of 10−2. Values in
parentheses have been computed in GGA, that is, U = 0.

r e t

MnO −0.63 (−1.44) – –
FeO 0.14 2.53 2.51
CoO 0.11 1.51 −1.10
NiO −0.06 (−0.25) – –

The different distortions have been obtained by full relax-
ation fixing the volume to its equilibrium value V0 (see Table I).
The values of the components of the strain tensor ε̂ for the four
TMOs are compiled in Table II, while �α, �β, c′/a′, and b′/a′
are listed in Table I. We discuss the distortions in dependence
on the gradual occupation of the minority-spin t2g shell from
MnO to NiO in the following.

C. Rhombohedral distortion: MnO and NiO

In the case of MnO and NiO, the components t and e of the
calculated strain-tensor ε̂ vanish and, thus, a purely rhombohe-
dral distortion along the [111] direction is obtained. The values
for r listed in Table II are negative. They indicate a small reduc-
tion of the distances between the (111) planes of magnetic ions
together with an increase of the atomic distances within the
planes to guarantee volume conservation. The rhombohedral
strain significantly decreases with the filling of the minority-
spin channel t2g states. For MnO the value of r obtained within
GGA agrees well with that given in the literature obtained
within both LDA and GGA.20 The earliest attempt for an
interpretation of this rhombohedral distortion in MnO and NiO
has been made by Greenwald and Smart in terms of exchange
striction.54 The driving forces are divided into an elastic and
an exchange contribution.20 The latter part can be reasonably
understood in terms of a Heisenberg model Hamiltonian.29

Within the GGA+U approach we find the rhombohedral
distortion angle to be �α = 0.72◦ and �α = 0.07◦ for MnO
and NiO, respectively. Both the direction of the distortion as
well as the actual value agree excellently with experimental
findings.1,4–6 Our results also agree well with other calculations
utilizing exchange and correlation by GGA+U and hybrid
functionals27 or neglecting correlation completely within older
Hartree-Fock calculations.53 The excellent agreement between
experiment and GGA+U for �α is a consequence of the better
description of exchange and correlation and the use of an
appropriate U parameter.

In GGA (U = 0 eV), on the other hand, we find �α = 1.64◦
and �α = 0.29◦ for MnO and NiO, respectively, and, thus, an
overestimation of the rhombohedral distortion by roughly a
factor of 2–3 for MnO or even a factor of 4 for NiO. The results
found here are in full agreement with earlier LSDA/GGA
calculations.20,30 In a previous paper about the energetic
ordering of various crystal structures of magnetically ordered
MnO,29 we also studied the deviations from the ideal rocksalt
geometry as a function of the U parameter. We found that
there is in general a strong dependence of the rhombohedral
distortion on the value of U , which is most significant in the

“low-U” regime with U = 0–2 eV, but becomes less important
for higher U values. The small differences of the values
presented here from the ones given in Ref. 29 are related
to the change of the GGA parametrization from PW9155,56

to PBE.37

D. Monoclinic distortion: FeO and CoO

In comparison to MnO and NiO the situation for FeO and
CoO is more intricate. Since all components of the strain tensor
(1) listed in Table II are different from zero, the symmetry
of the distorted cell is monoclinic for both materials. The
monoclinic distortion can be described as a superposition of a
rhombohedral and an orthorhombic distortion as can be seen
from the strain tensor (1). The two orthorhombic contributions
e and t are an order of magnitude larger than the rhombohedral
contribution r and give rise to the relative changes c′/a′ and
b′/a′ of the lattice constants along the principal axes of the
distortion. The actual values obtained for c′/a′ and b′/a′ after
self-consistent calculation of the relaxed crystal structure are
listed in Table I.

For both materials we find good agreement with experi-
mental observations. In FeO, the unit cell is stretched by about
2.5% (GGA+U ) or 2.3% (experiment, Ref. 9) along the [001]
axis (c′/a′ > 1) and compressed by about 2.5% (GGA+U )
or 0.9% (experiment, Ref. 9) along the [1̄10] direction
(b′/a′ < 1). However, stoichiometric FeO samples are difficult
to prepare experimentally; usually, Fe1−xO occurs together
with Fe and Fe3O4 phases.9,10,46 This may be the reason why
other experimental results claim FeO to be rhombohedrally
elongated.1,10,46 The ratio of c′/a′ < 1 obtained for CoO
agrees qualitatively with experimental observations1,8 and
corresponds to a compression along the [001] direction of 2.4%
(GGA+U ) or 1.2% (experiment, Refs. 1,8). Similar to FeO, for
CoO a compression along the [1̄10] direction is also obtained
(b′/a′ < 1) with a magnitude of 1.5%. Experimentally this
contraction is observed as well, yet, with a magnitude of
only 0.1%.8 The different deviations c′/a′ > 1 (c′/a′ < 1) for
FeO (CoO) are also apparent in the signs of the monoclinic
distortion angles �β in Table I. Taking into account the
sensitivity of �β with respect to the intricate interplay of all
the tiny structural distortions, our values for �β are in good
agreement with experimental findings.8,9

The orthorhombic distortion in FeO and CoO is due to
the partial filling of the minority-spin t2g subshell in the
octahedral crystal field of the ideal rocksalt geometry. The
system gains energy by reducing the symmetry and, thus,
lifting the degeneracy between the empty and filled t2g levels,
indicating a Jahn-Teller mechanism.57,58 In the case of FeO,
the only minority-spin t2g electron occupies an eigenstate given
by a linear combination of TM 3d orbitals, 1√

2
(|dxz〉 − |dyz〉).

In CoO, on the other hand, the two occupied electronic states
are given by the linear combinations 1√

2
(|dxz〉 + |dyz〉) and

|dxy〉. The symmetry breaking induced by the occupied orbitals
is clearly visible in Fig. 2, where the spin-down densities
are displayed for the two monoxides. Their different shape,
especially their extension in the z direction and in the xy plane,
change the wave-function overlap along the orthorhombic
principal axes and, hence, induce the orthorhombic distortion.
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FIG. 2. (Color online) Spin density distribution for (a) FeO and
(b) CoO in the magnetic unit cell. The spin densities shown here
correspond to the minority-spin densities of the TM atoms and clearly
show the partial occupancy of the minority-spin t2g states. The red
spheres indicate the positions of the oxygen ions in the distorted
octahedron.

Figure 3 illustrates how the total energy of the system is
minimized for the orthorhombic distortion with c′/a′ > 1
(c′/a′ < 1) for FeO (CoO).

E. Influence of hydrostatic pressure

There are experimental studies of TMOs (e.g. MnO) under
strong hydrostatic pressure59 which indicate several pressure-
induced phase transitions between phases of different crystal
structure, magnetic ordering, or even electronic structure. Here
we investigate the low-pressure regime in order to understand
the influence of a volume change on the structural deviations
from the rs geometry. We restrict ourselves to relative volume
changes smaller than 10% so that no pressure-induced phase
transitions59 or even the magnetic collapse60 occurs. The
hydrostatic pressure p associated with a volume V is calculated
according to the Murnaghan equation of state

p = B0/B
′
0[(V0/V )B

′
0 − 1],

with V0, B0, and B ′
0 listed in Table I.

In Fig. 4 the dependence of the distortions from the
ideal rs structure on the hydrostatic pressure is plotted.
We discuss the rhombohedral distortion present in MnO
and NiO in terms of the rhombohedral distortion angle �α

[Fig. 4(a)] and the monoclinic distortion present in FeO and
CoO in terms of the monoclinic distortion angle �β and the
orthorhombic distortions c′/a′ − 1 and b′/a′ − 1 [Fig. 4(b)].
As shown in Fig. 4(a) the application of hydrostatic pressure
to MnO and NiO goes along with a considerable increase
in the rhombohedral distortion, especially for MnO. In the
considered pressure range the rhombohedral distortion angle
�α increases linearly with the applied pressure by a factor of
2 for both materials. This may be due to the superexchange,
which is the driving force behind the rhombohedral distortion.
An increase in pressure is equivalent to a decrease of the bond
length and, thus, enhances the overlap between oxygen p and
TM 3d orbitals. It leads to an increase of the inter-atomic
exchange and, thus, of the antiferromagnetic coupling as

FIG. 3. (Color online) Level splittings and occupation of the
3d states due to the octahedral crystal field with the dominating
orthorhombic distortions (schematically). Only the minority-spin
channel is described. (a) Fe2+, (b) Co2+.

shown by studying the volume dependence of the magnetic
coupling constants in Ref. 29.

For FeO and CoO the situation is different. While the
application of hydrostatic pressure has almost no influence on
b′/a′, we find a large (small) decrease of the absolute values
of c′/a′ for FeO (CoO). For vanishing hydrostatic pressure
we identified the dominating contribution to the monoclinic
distortion to be orthorhombic with a minor rhombohedral
distortion resulting in an elongation along [111] and �β to
be mainly influenced by the deviation c′/a′ (see Sec. III D).
Consequently, the absolute value of �β decreases with
increasing pressure for FeO, while it is almost constant for
CoO over the whole studied pressure range. The driving force
behind the distortions in FeO and CoO is the Jahn-Teller effect
due to the different orbital occupancies.

Despite the strong pressure dependence of the different
lattice distortions we find the local magnetic moments of the
respective TM ions to be almost independent of the applied
hydrostatic pressure and to vary only by a few percent in
agreement with other theoretical studies.41,61 This behavior is
due to the fact that the local magnetic moments are determined
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FIG. 4. (Color online) Pressure dependence of the distortion
angles. (a) The rhombohedral distortion angle �α for MnO (black
solid line and circles) and NiO (red solid line and circles).
(b) The monoclinic distortion angle �β (solid lines and circles),
the orthorhombic distortions b′/a′ − 1 (dotted lines and diamonds),
and c′/a′ − 1 (dashed lines and squares) are depicted for FeO (green)
and CoO (blue).

mainly by intra-atomic exchange, which is much stronger
than the inter-atomic interactions responsible for the lattice
distortions. The intra-atomic exchange is, however, rather
independent of the actual volume.

IV. MAGNETIC ANISOTROPY

A. General considerations

Various sources contribute to the magnetic anisotropy in
crystals. The strongest influence, however, is related to the
relativistic motion of the electrons in the periodic potential
of the atomic cores.62 Since the orientation of the local total
angular momenta governs the magnetic anisotropy, spin has
to be treated in a noncollinear approximation. A correct
description of a many-body system of relativistic electrons
requires the solution of a Dirac-like equation including the
microscopic electromagnetic field generated by the moving
electrons themselves which leads to an additional transversal
electron-electron interaction beyond the “ordinary” longi-
tudinal Coulomb interaction. In lowest nonvanishing order

of v/c (v is electron velocity, and c is speed of light)
the electronic retardation correction may be approximately
taken into account by the Breit term.63 Indeed, expanding
the Hamiltonian up to quadratic terms v2/c2, one obtains a
Pauli-like Hamiltonian, except from additional terms related to
the Breit interaction.64 The electric fields entering the Darwin
and the spin-orbit coupling term also include contributions
arising from the electron-electron Coulomb interaction, that is,
Hartree and XC terms.64 Jansen40 has shown that a Hartree-like
approximation for the current densities in the Hamiltonian
including the Breit term leads to an ordinary magnetic dipole
interaction term. Since relativistic corrections to XC are
small, the electric field is replaced by the gradient of an
effective one-electron potential including XC (i.e., in DFT
the Kohn-Sham potential) in all practical computations.

Since VASP, as practically all DFT codes only includes the
mass correction, the Darwin term, and the spin-orbit coupling,
we study the magnetic anisotropy in a two-step procedure.
In the first step we only consider spin-orbit coupling effects
on the magnetic anisotropy as directly included in the code.
The calculations are based on the distorted rocksalt structures
obtained in Sec. III. In the second step we investigate the
influence of the relativistic Breit corrections by means of a
model dipole-dipole interaction term40 using the total magnetic
moments μ obtained in the first step of the procedure. Instead
of the distorted rocksalt geometries obtained in Sec. III,
however, we use undistorted rocksalt geometries with lattice
constants leading to the same equilibrium volumes as given
in Sec. III. This approximation is justified as the lattice
distortions are small. While monoclinic lattice distortions only
lead to small higher-order anisotropy constants beyond the
ones calculated here, rhombohedral lattice distortions do not
break the symmetry of the magnetic ordering AFM II and,
thus, only change the magnitude of the calculated anisotropy
constant slightly.

B. Spin-orbit coupling

In order to investigate the magnetic anisotropy effects aris-
ing from spin-orbit coupling, we perform fully self-consistent
calculations within the GGA+U approach, but allowing for
noncollinear magnetism. We use the wave functions obtained
within the collinear approximation as the starting point for
the subsequent noncollinear calculations. Since the entire
magnetization density vector m(r) has to be computed, one
expands the two spin densities (n↑, n↓), which are sufficient for
a collinear description of the system, into a 2 × 2 spin-density
matrix (n↑, n↓, n+, n−). This is done by an initial alignment
of the two collinear spin densities (n↑, n↓) along a certain
discretization axis S. The off-diagonal components (n+, n−)
of the full 2 × 2 spin-density matrix are initially set to zero.
During the self-consistent calculation an orbital moment might
be induced on the 3d shell along a certain direction, so that
the energy gain due to the spin-orbit coupling operator is
maximized. The spin-density matrix is allowed to change until
a (local) minimum of the total energy is reached, possibly
accompanied by a rotation of the total magnetic moment into
the easy direction S0 away from the initial discretization axis S.

Spin-orbit coupling stabilizes a finite orbital moment. If
it is energetically favorable, a considerable on-site electron
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redistribution may occur which might influence the structural
distortions. However, since the lattice distortions obtained
within the collinear approximation are in good agreement with
experimental findings, we fix both volume and distorted crystal
structure to the respective parameters in Table I. These a priori
constraints have a posteriori been proven to be reasonable for
all calculations, as the occurring electron redistributions are
small and the calculated stress tensors deviate only slightly
from uniformity.

As a consequence, the dependence of the total energy E =
E(S) on the direction S of the discretization axis is extremely
small. In order to study this weak dependence we characterize
the direction S by the polar angles θ and φ. We chose the angles
such that θ = 0 if S is parallel to the cubic [111] direction and
φ = 0 if S lies in the (11̄0) plane. Then, the total energy can
be divided according to

E(θ,φ) = E(0,0) + �E(θ,φ)

in a large, direction-independent contribution E(0,0) and a
small angular-dependent variation �E(θ,φ) whose minimum
with respect to θ and φ coincides the easy axis S0 of the total
magnetization.

We find the angular dependence of �E(θ,φ) to vanish
identically for MnO and calculate a small maximum variation
�E(θ,φ) of 15 μeV for NiO. For FeO and CoO the variation
of �E(θ,φ) is about two orders of magnitude stronger and the
results are plotted in Fig. 5. It has been shown for systems with
rhombohedral or monoclinic symmetry62 that the anisotropy
energy can be fitted to trigonometric functions according to

�E(θ,φ) = sin2(θ − θ0){K + K ′ cos[2(φ − φ0)]}, (2)

with the two magnetic anisotropy constants K and K ′. The
polar angles θ0 and φ0 define the easy axis S0. The easy axis
S0 as well as the values for K and K ′ are listed in Table III.

Since �E(θ,φ) vanishes for MnO, no easy axis can be
determined from spin-orbit interaction and, consequently, K

and K ′ vanish as well. For FeO (CoO) we obtain an easy
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FIG. 5. (Color online) Magnetic anisotropy energy �E(θ,φ) for
FeO (a) and CoO (b). Results are shown for two angles φ = 0◦ (red
circles) and φ = 90◦ (black squares). The values obtained by ab initio
calculations are fitted to Eq. (5) (red solid and black dashed lines).
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FIG. 6. (Color online) Orbital contribution μl(θ,φ) to the total
magnetic moment for FeO (green), CoO (blue), and NiO (red). Circles
(squares) indicate φ = 0◦ (φ = 90◦).

axis approximately along [110] ([1̄1̄7]) and related anisotropy
constants K and K ′ of the order of 1 meV. For FeO experiments
indicate an easy axis along or close to the [111] direction.1,9

However, one has to keep in mind that nonstoichiometric FexO
samples were measured in those experiments. While the easy
axis in CoO agrees well with the observations of Roth,1 other
authors propose directions different from this result.7,8 The
values of K and K ′ are small for NiO due to the weak variation
of �E(θ,φ), but seem to indicate an easy axis along [1̄10]
in agreement with the observations of Roth.11 Other authors
propose a possible easy axis along [1̄1̄2].12,13

In order to understand the orientation of the easy directions
S0 and the anisotropy constants K and K ′ obtained above,
we also investigate the angular dependence of the total
magnetic moments μ(θ,φ) and their respective spin and orbital
contributions μs(θ,φ) and μl(θ,φ). The spin contribution is
independent of the orientation of the discretization axis S for all
studied TMOs. However, the orbital magnetic moment μl(θ,φ)
displayed in Fig. 6 differs a lot between FeO, CoO, and NiO.
The orbital moment vanishes exactly for MnO, while it is
finite but almost angular independent for NiO. Consequently,
for both materials the spin-orbit coupling-induced anisotropy
energies �E(θ,φ) either vanish or are independent of θ and
φ. The variation of μl(θ,φ) is much stronger in FeO and
CoO and, thus, explains the significant variation of �E(θ,φ).
The minimum of �E(θ,φ) coincides approximately with the
maximum of μl(θ,φ) for FeO. For CoO, the minimum of
�E(θ,φ) is close to the local minimum of μl(θ,φ) within
the (1̄10) plane. Thus, we conclude that in CoO, where
two electrons populate the minority-spin t2g states, not only
spin-orbit coupling but also exchange and correlation play an
important role for the determination of the easy axis.

The absolute values of the total magnetic moments μ along
the easy axis and the respective spin and orbital contributions
μs and μl obtained from the noncollinear calculations are
compiled in Table III. The result that the total magnetic
moment in MnO is solely spin derived, μ = μs , is fully
supported by experimentally observations.5 The vanishing
orbital contribution is due to the fact that the minority-spin
channel is completely empty. For NiO we obtain a small, yet
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TABLE III. Calculated easy axes, local magnetic moments, and magnetic anisotropy constants. Besides the direction of the easy axis S0

also its angle with the [001] direction γ is given. Furthermore, besides the norm of the total local magnetic moment (μ), the norms of the spin
(μs) and orbital (μl) contributions are specified separately. The computed values are compared to experimental results.

MnO FeO CoO NiO

GGA+U Expt. GGA+U Expt. GGA+U Expt. GGA+U Expt.

S0 (111) (111)a ≈[110] ≈[1.0,1.8,1.4]b ≈[−1,−1,7.2] ≈[−1,−1,7.1]a [1̄10] (111)a,c

≈[−1,−1,3.9]/≈[110]d,e [1̄10]f

≈[−1,−1,2.8]g [1̄1̄2]h

γ (deg) – – −90.3 −56.5b,i 11.1 11.3a 90.0 –
≈20/≈ −90d,e

27g

μs (μB ) 4.60 – 3.69 – 2.68 – 1.62 –
μl (μB ) 0.00 – 0.12 – 0.25 – 0.17 –
μ (μB ) 4.60 4.58j 3.81 4.0b 2.93 3.8a,g, 3.98d 1.79 1.9j

K (meV) 0.000 – 1.518 – 1.243 – −0.013 –
K ′ (meV) 0.000 – −0.342 – −0.818 – 0.003 –
Kd (meV) −0.278 – −0.202 – −0.126 – −0.050 –

aReference 1; bReference 9; cReference 65; dReference 8; eUnclear in which direction the angle is measured; fReference 66; gReference 7;
hReference 12; iS0 not in (11̄0) plane; jReference 5.

finite orbital moment contribution of μl ≈ 0.17 μB . Together
with the spin contribution μs ≈ 1.62 μB a total magnetic
moment μ ≈ 1.79 μB is obtained. This moment is in good
agreement with the experimental value of μ ≈ 1.9 μB .5 In
contrast to MnO, the Ni minority-spin 3d shell is populated by
three electrons.

The small yet finite orbital moment is a consequence of the
mixing of t2g and eg states in the presence of SO coupling. In
the limit of an infinitely large crystal-field splitting, this mixing
would vanish and the orbital moment would be completely
quenched in NiO. The crystal-field splitting between t2g and
eg states, however, is of the order of ≈1 eV. Thus, the admixture
of a small fraction of eg states allows for a small orbital
moment.

For FeO (CoO), an orbital moment of μl ≈ 0.12 μB

(0.25 μB) is obtained along the respective easy axis. The
resulting total magnetic moments are μ ≈ 3.81 μB (2.93 μB)
for FeO (CoO). These values are in agreement with the results
obtained by Tran et al.23 within the LDA and GGA approach,
but are considerably smaller than the values obtained with
other XC functionals. For CoO, Solovyev et al.15 found an
orbital moment contribution of μl = 1 μB within LDA+U .
Comparing with experiments, the total magnetic moment of
FeO is close to the value of 4.0 μB measured by Fjellvåg et al.9

for monoclinic FeO and lies well within the range of values
obtained experimentally for rhombohedrally distorted FeO by
other authors.1,46 For CoO, the agreement with experimental
results is poorer. Despite the small orbital contribution, the
total magnetic moment of 2.93 μB is still smaller than the
experimentally observed values ranging from 3.8 to 3.98.1,7,8

In both materials, FeO and CoO, the minority-spin t2g subshell
is only partially occupied by one or two electrons. Thus, a
maximum orbital moment of 1 μB is possible. However, the
computed values in Table III are significantly smaller. The
reason is that the level occupation depends on the energy gain
due to spin-orbit coupling, whether or not it can overcome
other concurring driving forces related to the longitudinal

electron-electron interaction in Hartree energy and exchange
and correlation. Apparently this is not the case in our GGA+U

description. According to the results of Solovyev et al.,15 one
might argue that the gradient corrections present in a GGA+U

approach in the vicinity of the Fe2+ and Co2+ ions tend to
reduce the effect of the spin-orbit coupling.

C. Magnetic dipole-dipole interaction

A further relativistic correction to the total energy due to the
transversal electron-electron interaction can be described by
an effective magnetic dipole interaction. The corresponding
energy contribution can be rewritten as a classical dipole
interaction energy40

Ed = − 1

2

μ0

4π

∫∫
d3r1d

3r2

× 3 [m(r1) · r12] [m(r2) · r12] − m(r1) · m(r2)r2
12

r5
12

,

(3)

with r12 = r1 − r2, r12 = |r12|, and the magnetization density
m(r). As a second-order relativistic correction, the magnetic
dipole-dipole interaction yields only a small contribution to
the total energy. Therefore, we treat it in an approximate
way. First, we omit the small deviations of the actual crystal
structure from the ideal rs structure. Second, we replace
the magnetization density around each TM atom by a local
dipole with magnetic moment μi located at the center ri

of the respective atom since the magnetization density is
well localized at the TM atoms, which themselves are well
separated from each other. The oxygen atoms do not contribute
since their total magnetic dipole moment vanishes exactly. The
local moments μi = μm̂i at different TM sites i possess the
same absolute value μ but alternating orientations m̂i = σiS,
due to the antiferromagnetic ordering. Here S represents
a certain discretization axis and σi the relative orientation
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(+ or −) along this axis. The total magnetic dipole-dipole
interaction energy per TM atom is then approximately given
by a sum over all TM sites in the crystal,

Ed = −1

2

μ0μ
2

4πr3
1

∑
i

σi[3 (S · r̂i)
2 − 1]

(
r1

ri

)3

, (4)

with r1 = a0/
√

2 as the material-dependent distance between
neighboring TM atoms and S · r̂i the direction cosine of
the discretization axis S with the direction (unit) vector r̂i

of the ith atom. While the prefactor of the sum in Eq. (4)
contains the material-dependent parameters μ and r1, the sum
itself depends only on the crystal structure and the magnetic
ordering.

The rocksalt crystal structure together with the antiferro-
magnetic ordering AFM II has rhombohedral symmetry and
is, thus, uniaxial in the [111] direction. In such systems, the
magnetic anisotropy contribution to the total dipole effect can
be written into the form62

�Ed = Kd sin2 θ, (5)

where Kd is the anisotropy constant and θ the angle of
the discretization axis with the unique axis, here [111]. A
positive anisotropy constant Kd corresponds to an easy axis
along the unique axis, while a negative Kd leads to an
easy plane perpendicular to the unique axis as illustrated in
Fig. 7.

Without restricting the generality we calculate the
anisotropy constant from Kd = Ed ([112̄]) − Ed ([111]), with
Ed according to Eq. (4). The sum over i is independent of the
TMO and contains only information about the crystal structure
and the antiferromagnetic ordering AFM II. By summation
over the first 1000 shells we find the sum over i in (4) to be
approximately 5.113, yielding

Kd ≈ −3

2

μ0μ
2

4πr3
1

× 5.113

≈ −1.163 meV

(
μ

μB

)2 (
a0

Å

)−3

.

Since Kd is always negative, the pure magnetic dipole-dipole
interaction leads to an easy plane for all TMOs as depicted in
Fig. 7.

The anisotropy constants listed in Table III have been
computed using the total magnetic moments μ calculated in
Sec. IV B and the cubic lattice constants a0 = 4.490, 4.375,
4.291, and 4.200 Å of MnO, FeO, CoO, and NiO, respectively.
The material dependence of the anisotropy constants is given
by the factor μ2/a3

0 . Consequently, we observe a strong
decrease of the anisotropy constants Kd along the row MnO,
FeO, CoO, and NiO, because of the strong decrease in the local
magnetic moment due to the progressive filling of the 3d

t2g shell, which is not compensated by the decrease in the
lattice constant a0. The absolute magnitude of the Kd values
illustrates the insignificance of the anisotropy effects due to the
magnetic dipole interaction compared to the SO contribution
for FeO and CoO. Thus, the resulting anisotropy energies �Ed

are also relatively small. For that reason the magnetic dipole
interaction acts as a driving force which moves the SO-induced

FIG. 7. (Color online) Isosurface of the magnetic anisotropy
energy (5) for (a) Kd > 0 (yielding an easy axis) and (b) Kd < 0
(yielding an easy plane). (c) Visualization of the magnetic anisotropy
energy obtained from SO coupling for FeO, CoO, and NiO together
with the magnetic anisotropy obtained from the magnetic dipole
interaction. The anisotropy of the energy �E(θ,φ) is shown in a polar
plot where the distance of each point to the origin of the coordinate
system indicates the magnitude of �E(θ,φ) in that direction. The
blue unit spheres are normalized to the maximum anisotropy energy
(|K| + |K ′| = 1 and |Kd | = 1, respectively).

magnetization axis somewhat towards the (111) plane for FeO
and CoO.

For NiO we find that the anisotropy constant Kd related
to magnetic dipole interaction is somewhat larger than the
anisotropy constants K and K ′ due to spin-orbit coupling.
The easy axis indicated by K and K ′ along [1̄10], however,
lies within the (111) plane. It is, thus, only affected by the
anisotropy due to magnetic dipole interaction in the sense
that any possible easy direction within the (111) plane is
further stabilized with respect to an out-of-plane torsion of
the magnetization vector. Finally, in MnO the magnetic dipole
energy is the only contribution to the magnetic anisotropy
and determines the (111) plane to be the easy plane. This
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result agrees well with the fact that even experimentally
only an easy plane without specification of a certain easy
axis within this plane has been observed.1,6 More recent
experiments indicate, after all, a possible but weak preference
of the [1̄1̄2] direction within the (111) plane.14 Such higher
order effects can, however, not be covered by magnetic dipole
interactions alone. A similar model approach has been used
by Kaplan17 and Keffer and O’Sullivan18 based on earlier
results of McKeehan67 for the calculation of dipole magnetic
anisotropy constants for MnO. They showed that higher order
contributions may fix a special easy axis within the easy plane
or lead to a tilting of the easy axis out of the easy plane.

V. SUMMARY AND CONCLUSIONS

We have investigated the distortions of the ideal rocksalt
structure which occur in the antiferromagnetic TMOs MnO,
FeO, CoO, and NiO below the Néel temperature by means of
spin-polarized DFT in the GGA+U approach. The rhombohe-
dral (MnO and NiO) or monoclinic (FeO and CoO) distortions
are explained in terms of the antiferromagnetic stacking
along the [111] direction and the gradual occupation of the
minority-spin t2g subshell from MnO to NiO. The computed
distortions are not only in qualitative but also quantitative
agreement with experimental findings.

The occupation of the t2g levels also determines the
magnetic anisotropy. In the case of MnO, the orbital moment
of the minority-spin t2g shell vanishes. Thus, the magnetic
anisotropy arises solely from the magnetic dipole interaction

and the (111) plane is the easy plane. In NiO the magnetic
dipole interaction anisotropy is of the same order of magnitude
as the SO-coupling induced anisotropy since the angular
variation of the orbital magnetic moment is small. Both effects
lead to magnetic moments lying in the (111) plane and indicate
an easy direction along [1̄10] in agreement with experiment.
In FeO and CoO the magnetic anisotropy is dominated by
the strongly direction-dependent contribution of the local
orbital moment. Even though an easy axis in agreement with
experiment has been found for CoO, the magnitude of the
orbital magnetic moment appears to be too small. In FeO,
on the contrary, the magnitude of the orbital moment agrees
well with measurements in contrast to the derived easy axis.
The apparent underestimation of the orbital magnetic moment
for CoO asks for an improved description of exchange and
correlation in the energy functional.
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Mackrodt, and E. Aprà, Phys. Rev. B 50, 5041 (1994).
54S. Greenwald and J. S. Smart, Nature (London) 166, 523

(1950).
55J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.

Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671
(1992).

56J. P. Perdew, in Electronic Structure of Solids ’91, edited by
P. Ziesche and H. Eschrig (Akademie, Berlin, 1991), p. 11.

57H. A. Jahn and E. Teller, Proc. R. Soc. London Ser. A 161, 220
(1937).

58H. A. Jahn, Proc. R. Soc. London Ser. A 164, 117 (1938).
59C. S. Yoo, B. Maddox, J.-H. P. Klepeis, V. Iota, W. Evans,

A. McMahan, M. Y. Hu, P. Chow, M. Somayazulu, D. Häusermann
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