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Topological response in Weyl semimetals and the chiral anomaly
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We demonstrate that topological transport phenomena, characteristic of Weyl semimetals, namely the
semiquantized anomalous Hall effect and the chiral magnetic effect (equilibrium magnetic-field-driven current),
may be thought of as two distinct manifestations of the same underlying phenomenon, the chiral anomaly. We
show that the topological response in Weyl semimetals is fully described by a θ term in the action for the
electromagnetic field, where θ is not a constant parameter, like, for example, in topological insulators, but is
a field, which has a linear dependence on the space-time coordinates. We also show that the θ term and the
corresponding topological response survive for sufficiently weak translational symmetry breaking perturbations,
which open a gap in the spectrum of the Weyl semimetal, eliminating the Weyl nodes.
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I. INTRODUCTION

Weyl semimetals have attracted attention recently as a
new kind of topologically nontrivial phase of matter: Weyl
semimetal is gapless in the bulk yet possesses protected
surface states and the corresponding topological transport
phenomena.1–19 Topological protection in this case results
from the separation of the individual Weyl band-touching
nodes with opposite topological charges in momentum space,
which makes it impossible to hybridize the nodes and produce
a fully gapped insulating state without violating translational
symmetry.20–23 Such separation requires breaking of either
time-reversal (TR) or inversion (I) symmetry, or both,24 as in
the presence of TR and I all bands are doubly degenerate by
Kramers theorem.

As has long been known in the quantum field theory context,
chiral Weyl fermions are associated with the phenomenon of
chiral anomaly.25–27 Chiral anomaly manifests in nonconser-
vation of the numbers of particles of a specific chirality in
the presence of topologically nontrivial configurations of the
background gauge field (electromagnetic field in our context),
even though these numbers are conserved classically (for
massless particles). This phenomenon plays an important role
in the standard model of particle physics.28,29 In the condensed
matter context, the 2 + 1-dimensional relative of the chiral
anomaly, the parity anomaly, has mainly been discussed, due to
its close relation to the quantum Hall effect.30–34 The discovery
of Weyl semimetals provides a concrete condensed matter
system, where 3 + 1-dimensional chiral anomaly and related
effects can be realized.11,13,14

In this paper we focus on a specific realization of a Weyl
semimetal in a magnetically doped multilayer heterostructure,
made of alternating layers of topological insulator35,36 (TI)
and normal insulator (NI) materials.4 This system realizes the
simplest possible kind of Weyl semimetal, with only two Weyl
nodes of opposite chirality, the smallest number allowed by the
Nielsen-Ninomiya theorem,37 in its band structure (identical
results are obtained by magnetically doping a bulk TI with
a small band gap). We have demonstrated before that such a
system possesses topologically nontrivial transport properties,
namely the semiquantized anomalous Hall effect4,5 and the
chiral magnetic effect (generation of equilibrium current by
magnetic field).6 The chiral magnetic effect has been known

for some time in the particle physics context13,38–41 and may
have recently been observed experimentally in relativistic
heavy ion collisions.42 Observation of this effect in Weyl
semimetals would be of significant interest.

In this work we demonstrate that both the quantum
anomalous Hall effect and the chiral magnetic effect in
Weyl semimetals are manifestations of the same underlying
phenomenon, the chiral anomaly. We show that opposite-
chirality Weyl nodes, separated in momentum space and in
energy, give rise to an induced θ term in the action of the
electromagnetic field

Sθ = e2

32π2

∫
dtdr θ (r,t)εμναβFμνFαβ, (1)

where h̄ = c = 1 units are used henceforth. θ (r,t) is an “axion”
field,43 which has the following form:

θ (r,t) = 2b · r − 2b0t, (2)

where 2b is the separation between the Weyl nodes in
momentum space and 2b0 is the separation between the nodes
in energy.

In the rest of the paper we will give a derivation of Eq. (1)
using Fujikawa’s method,28,29,44 which clearly demonstrates
the relation of the θ term to the chiral anomaly, and show
that both the anomalous Hall and the chiral magnetic effects
follow directly from Eq. (1). We will also demonstrate that,
somewhat contrary to the commonly expressed belief that
Weyl semimetal is only topologically stable in the presence
of translational symmetry, which prohibits the mixing of Weyl
nodes, the θ term in Eq. (1) in fact survives even when the
translational symmetry is broken and the Weyl nodes are hy-
bridized and gapped out, provided the translational symmetry
breaking is sufficiently weak. The quantum anomalous Hall
effect and the chiral magnetic effect are thus more robust than
the Weyl nodes themselves.

II. θ TERM IN WEYL SEMIMETALS

We start from a specific realization of a Weyl semimetal
in a TI-NI multilayer heterostructure.4 The advantage of
this system is its simplicity (and, perhaps, simplicity of
experimental realization as well), as the Weyl semimetal
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realized in this system contains only two Weyl nodes in its
band structure, that is, the minimal number, required by the
fermion-doubling theorem.37 The Hamiltonian, describing the
multilayer system, is given by

H =
∑
k⊥,ij

[
vF τ z(ẑ × σ ) · k⊥δi,j + mσzδi,j + �Sτ

xδi,j

+ 1

2
�Dτ+δj,i+1 + 1

2
�Dτ−δj,i−1

]
c
†
k⊥ick⊥j . (3)

The first term in Eq. (3) describes the two (top and bottom)
surface states of an individual TI layer. vF is the Fermi velocity,
characterizing the surface Dirac fermion, which we take to be
the same on the top and bottom surfaces of each layer. k⊥
is the momentum in the 2D surface Brillouin zone (BZ). σ is
the triplet of Pauli matrices, acting on the real spin degree of
freedom, and τ are Pauli matrices, acting on the which surface
pseudospin degree of freedom. The indices i,j label distinct TI
layers. The second term describes exchange spin splitting of
the surface states, which is induced by doping the sample with
magnetic impurities. The remaining terms in Eq. (3) describe
tunneling between top and bottom surfaces within the same
TI layer (the term, proportional to �S), and between top and
bottom surfaces of neighboring TI layers (terms, proportional
to �D). Diagonalizing Eq. (3) one finds, when (�S − �D)2 <

m2 < (�S + �D)2, two Weyl nodes, separated along the z axis
in momentum space by a wave vector of magnitude

2b = 2

d
arccos

(
�2

S + �2
D − m2

2�S�D

)
, (4)

where d is the multilayer period.
The multilayer model Eq. (3) possesses inversion symmetry

with respect to an inversion center, placed midway between
the surfaces of any TI or NI layer. This symmetry guarantees
that the two Weyl nodes occur at the same energy as the
corresponding symmetry operation interchanges the nodes
with opposite chirality. In a real multilayer, this symmetry
will likely not be present, and can in fact also be removed
on purpose by making the top and bottom surfaces in each TI
layer distinct by, for example, creating a potential drop between
them. In the absence of the inversion symmetry, the Weyl nodes
of opposite chirality will then be shifted with respect to each
other in energy, as well as in momentum.6 This is achieved by
a spin-orbit interaction term λτyσ z, which is allowed by the
broken inversion symmetry. Adding this term to the multilayer
Hamiltonian Eq. (3), leads to the energy separation between
the Weyl nodes of magnitude6

2b0 = λ

�Dm

√(
m2

c2 − m2
)(

m2 − m2
c1

)
, (5)

where m2
c1 = (�S − �D)2 and m2

c2 = (�S + �D)2.
To generalize and simplify the subsequent considerations,

we will move away from the microscopic model of TI-NI
multilayer Eq. (3) and introduce a corresponding low-energy
model, obtained by expanding the microscopic multilayer
Hamiltonian around the location of the Weyl nodes. The
justification for this is that we want to describe universal
phenomena, which depend only on the number and energy-
momentum separation between the Weyl nodes of opposite
chirality, but not on any other details of the energy spectrum

away from the Weyl nodes. It can be demonstrated by an
explicit calculation4,6 that the properties of interest to us do
not change if a fully microscopic model is used.

We then obtain a generic low-energy model of two Weyl
nodes of opposite chirality, separated in momentum space and
in energy, described by the momentum-space Hamiltonian

H = τ zσ · k + τ zb0 + σ · b, (6)

where we have absorbed the Fermi velocity (in general
different in different directions) in the definition of momentum.
The operators τ and σ now have a meaning, different from
Eq. (3). τ now describes the node degree of freedom, while
σ describes the conduction-valence band degree of freedom
(nondegenerate conduction and valence bands touch at the
Weyl nodes). Finally, we couple the electrons to an external
electromagnetic field, and represent the system in terms of the
imaginary time action

S =
∫

dτdr ψ†[∂τ + ieA0 + b0τ
z

+ τ zσ · (−i∇ + eA + bτ z)]ψ, (7)

where Aμ = (A0,A) is the electromagnetic gauge potential
and ψ†,ψ are the four-component spinor Grassman field
variables. We have suppressed all explicit spinor indices in the
Grassmann variables for brevity. We now make the following
observation that will play a crucial role in our analysis. The
imaginary time action Eq. (7) possesses a chiral symmetry

ψ → e−iτ zθ/2ψ, (8)

which expresses an apparent separate conservation of the
number of fermions of left and right chirality. This suggests
that the terms τ zb0 and σ · b in Eq. (7) can be eliminated by a
gauge transformation:

ψ → e−iτ zθ(r,τ )/2ψ, ψ† → ψ†eiτ zθ(r,τ )/2, (9)

where θ (r,τ ) = 2b · r − 2ib0τ and one should keep in mind
that ψ and ψ† are not complex conjugates of each other, but
are independent variables in the fermion path integral. The
imaginary time action then becomes

S =
∫

dτdr ψ†[∂τ + ieA0 + τ zσ · (−i∇ + eA)]ψ, (10)

which describes two Weyl nodes of opposite chirality, existing
at the same point in momentum space and in energy. This
argument then leads one to the conclusion that the system of
Weyl nodes, separated in energy and momentum, is equivalent
to the system of two degenerate Weyl nodes and thus does
not possess any special transport properties, which we know
is incorrect. The missing link in the above naive argument is
precisely the chiral anomaly: While the imaginary time action
Eq. (7) does indeed possess the chiral symmetry, the gauge
transformation of Eq. (9) changes not only the action itself,
but also the measure of the path integral, representing the
partition function of the system

Z =
∫

Dψ†Dψe−S[ψ†,ψ], (11)

where we assume, for simplicity, that the electromagnetic
field does not fluctuate (our results do not depend on this
assumption, as will be clear from the derivation below). As

115133-2



TOPOLOGICAL RESPONSE IN WEYL SEMIMETALS AND . . . PHYSICAL REVIEW B 86, 115133 (2012)

we will demonstrate, the change in the path integral measure,
induced by the chiral gauge transformation Eq. (9), gives rise
precisely to the additional θ term in the action, given, after
Wick rotation to real time, by Eq. (1).

To derive the θ term we will use a simple modification of the
Fujikawa’s method,28,29,44 used originally to derive the chiral
anomaly in the path integral language. We will provide all
details of the derivation for readers which may not be familiar
with the method. For a related application of this method to
3D TI see Ref. 45.

To begin, it is convenient to rewrite the imaginary time
action Eq. (7) in the standard “relativistic” notation. We
introduce Dirac γ matrices as

γ 0 = τ x, γ μ = iτ yσμ, γ 5 = −iγ 0γ 1γ 2γ 3 = τ z. (12)

Further defining γ 4 = −iγ 0, we can rewrite Eq. (7) as

S =
∫

d4x ψ̄ iγ μ(∂μ + ieAμ + ibμγ 5)ψ, (13)

where μ = 1, . . . ,4, ψ̄ = ψ†γ 0, b4 = −ib0, and
∫

d4x de-
notes integral over the four-dimensional Euclidean space-time.
We note that all matrices γ μ are anti-Hermitian, while γ 5 is
Hermitian, and γ 5 anticommutes with γ μ.

To eliminate the bμ term from Eq. (13) we will apply an
infinite sequence of infinitesimal chiral gauge transformations

ψ → e−ids θ(x)γ 5/2ψ, ψ̄ → ψ̄e−ids θ(x)γ 5/2, (14)

where θ (x) = 2bμxμ and the sign of the exponential in the
second line above follows from the fact that γ 5 anticommutes
with γ 0. The variable s ∈ [0,1], whose differential ds appears
in the infinitesimal gauge transformation above, parametrizes
the infinite sequence of the chiral gauge transformations of
Eq. (14).

We need to find how the infinitesimal transformation
Eq. (14) changes the path integral measure Dψ̄Dψ . Following
Fujikawa44 we consider the 3 + 1-dimensional Dirac operator,
taken at stage s of the sequence of infinitesimal chiral
transformations

/D = γ μ[∂μ + ieAμ + ibμ(1 − s)γ 5]. (15)

Since γ μ are anti-Hermitian, /D is a Hermitian operator. Sup-
pose we can solve the eigenvalue problem for the Hermitian
operator /D,

/Dφn(x) = εnφn(x), (16)

where εn are real eigenvalues and φn(x) are four-component
spinor eigenfunctions (we suppress the spinor indices for
brevity). We assume that φn(x) wave functions can be
normalized to unity (this requires assuming a finite space-time
volume and taking the volume to infinity at the end)∫

d4x φ∗
n(x)φm(x) = δnm. (17)

Given a complete set of eigenfunctions φn(x), we can expand
the Grassmann variables ψ and ψ̄ in the path integral as

ψ(x) =
∑

n

φn(x)cn, ψ̄(x) =
∑

n

φ∗
n(x)c̄n, (18)

where cn and c̄n are the new Grassmann variables. Analo-
gously, we can expand the transformed Grassmann fields

ψ ′(x) = e−ids θ(x)γ 5/2ψ(x)

= [1 − ids θ (x)γ 5/2]
∑

n

φn(x)cn =
∑

n

φn(x)c′
n,

(19)
ψ̄ ′(x) = ψ̄(x)e−ids θ(x)γ 5/2

=
∑

n

φ∗
n(x)c̄n[1 − ids θ (x)γ 5/2] =

∑
n

φ∗
n(x)c̄′

n.

Defining the infinitesimal chiral transformation operator as

Unm = δnm − ds
i

2

∫
d4x φ∗

n(x)θ (x)γ 5φm(x), (20)

we obtain

c′
n =

∑
m

Unmcm, c̄′
n =

∑
m

Umnc̄m. (21)

This immediately gives us the path integral Jacobian, corre-
sponding to the chiral gauge transformation

J = det(U−2) = eln det(U−2) = e−2Tr ln(U )

= eids
∫
d4x

∑
nφ

∗
n (x)θ(x)γ 5φn(x). (22)

Consider the quantity appearing in the exponential in Eq. (22),

I (x) =
∑

n

φ∗
n(x)γ 5φn(x). (23)

To understand the meaning of this quantity, we note that γ 5

anticommutes with the Dirac operator /D. This means that if
φn(x) is an eigenfunction of /D with an eigenvalue εn, then
γ 5φn(x) is an eigenfunction of /D with eigenvalue −εn. It
follows that since the eigenvectors of a Hermitian operator /D,
corresponding to nondegenerate eigenvalues, are orthogonal,
only zero eigenmodes contribute to

∫
d4xI (x). Then we obtain∫

d4x I (x) = n+ − n− = ind( /D), (24)

where n± is the number of zero-mode eigenstates with positive
(negative) eigenvalue of γ 5 (i.e., chirality). Thus, with a slight
abuse of terminology, we can call I (x) a “local index” or
“index density” of the Dirac operator /D, in the sense that the
integral of I (x) over the 3 + 1-dimensional space-time gives
the analytical index of /D.

To evaluate I (x) explicitly we use the standard method of
heat kernel regularization.29 The regularization is necessary,
because, as written in Eq. (23), I (x) is poorly defined since a
finite result is obtained due to mutual cancellation of divergent
contributions. We have

I (x) = lim
M→∞

∑
n

φ∗
n(x)γ 5e−ε2

n/M2
φn(x)

= lim
M→∞

∑
n

φ∗
n(x)γ 5e− /D

2
/M2

φn(x). (25)

The square of the Dirac operator in the exponential is given by

/D
2 = −DμDμ − (1 − s)2bμbμ + ie

4
[γ μ,γ ν]Fμν

+ i(1 − s)[γ μ,γ ν]bμDνγ
5, (26)
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where Dμ ≡ ∂μ + ieAμ and we have used

[Dμ,Dν] = ie(∂μAν − ∂νAμ) = ieFμν. (27)

Substituting this into Eq. (25), and using the completeness relation∑
n

φ∗
n(x)φn(y) = δ(x − y), (28)

we obtain

I (x) = lim
M→∞

∫
d4k

(2π )4
trγ 5e−ikxe− /D

2
/M2

eikx

= lim
M→∞

∫
d4k

(2π )4
trγ 5 exp

[
(ikμ + Dμ)2

M2
+ (1 − s)2bμbμ

M2
− ie

4M2
[γ μ,γ ν]Fμν − i(1 − s)

M2
[γ μ,γ ν]bμ(ikν + Dν)γ 5

]
. (29)

Rescaling momentum integration variable kμ → Mkμ and
leaving only terms that survive the limit M → ∞ and the
trace operation (which must contain four γ matrices and be
proportional to 1/M4), we finally obtain

I (x) = − e2

32
trγ 5[γ μ,γ ν][γ α,γ β]FμνFαβ

= e2

32π2
εμναβFμνFαβ. (30)

As pointed out by Fujikawa,44 Eqs. (24) and (30) can be
thought of as a local version of the Atiyah-Singer index
theorem.29 When integrated over space-time, Eq. (30) connects
the analytical index of the Dirac operator /D with its topological
index.46

Substituting Eq. (30) back into the expression for the
Jacobian of the infinitesimal chiral gauge transformation at
“time” s, we obtain

J = e−ids
∫

d4xθ(x)I (x). (31)

To get the total contribution to the action from the Jacobian
after the bμγ 5 term has been fully eliminated from Eq. (13)
we integrate over the variable s,

Sθ = i

∫ 1

0
ds

∫
d4x θ (x)I (x)

= ie2

32π2

∫
d4x θ (x)εμναβFμνFαβ. (32)

The dependence of the imaginary time action of the system
on bμ has thus been fully transferred to Sθ , which describes
completely the topological electromagnetic response of Weyl
semimetal. After analytical continuation to real time τ → it ,
we obtain Eq. (1). Topological response of Weyl semimetals is
thus described by an axion-type action, with the “axion field”
θ (r,t), which depends linearly on the space-time coordinates.
It is useful to compare this with the θ term in the action of the
electromagnetic field, characteristic of TIs. In that case θ = π ,
which is the only nonzero value, consistent with TR symmetry.
The type of Weyl semimetal we are considering in this paper
can be thought of as being obtained from a TI in which both
TR and I symmetries have been broken.4,6 It is easy to see
that broken TR allows for a nontrivial dependence of θ on the
spatial coordinates, while broken I allows for a nontrivial time

dependence. Weyl semimetal can thus be thought of as being
characterized by a θ term with the simplest nontrivial space
and time dependence of the axion field θ .

Integrating by parts and eliminating a total derivative term,
we can rewrite Eq. (1) in the Chern-Simons form47

Sθ = − e2

8π2

∫
dtdr ∂μθεμναβAν∂αAβ. (33)

Varying Eq. (33) with respect to the vector potential, we obtain
the following expression for the current:

jν = e2

2π2
bμεμναβ∂αAβ, μ = 1,2,3, (34)

and

jν = − e2

2π2
b0ε

0ναβ∂αAβ. (35)

It is easy to see that Eq. (34) represents the anomalous Hall
effect,4 while Eq. (35) the chiral magnetic effect,6,40 that is,
generation of equilibrium current in response to an applied
magnetic field.

It is worth noting that the chiral magnetic effect and the
anomalous Hall effect are closely related to the topological
magnetoelectric effect, characterizing TR-invariant topologi-
cal insulators.48 Indeed, we can rewrite Eq. (35) as

j = − e2

4π2
∂tθ B. (36)

Using j = ∂tP, where P is the electric polarization, that is,
identifying j with the polarization current (one of two types of
currents, which may exist in the bulk of an insulator), we have

∂tP = − e2

4π2
∂tθ B, (37)

which gives

P = − e2

4π
B (38)

in the TR-invariant case, when θ = π , which is precisely
the quantized topological magnetoelectric effect.48 In a Weyl
semimetal sample the chiral magnetic effect can also be
measured as charge polarization (voltage), arising in response
to an applied external magnetic field (the voltage will of course
not be universal in this case).
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The anomalous Hall effect can similarly be related to
another, equivalent, form for the topological magnetoelectric
effect. Indeed, Eq. (34) can be written as

j = e2

4π2
∇θ × E. (39)

Identifying j with the magnetization current, j = ∇ × M
(second kind of current, possible in the bulk of an insulator),
we obtain

M = e2

4π
E, (40)

which is an equivalent form of the topological magnetoelectric
effect.

III. EFFECT OF SPECTRAL GAP

It is often stated that Weyl semimetal is a topologically
stable phase, but only provided translational symmetry is
preserved. Indeed, any potential (even random, but with a
nonvanishing mean value) that can scatter electrons between
the Weyl nodes will open up a gap and eliminate the nodes.
Even more alarmingly, in the presence of a nonvanishing chiral
chemical potential b0, which shifts the left and right nodes
in opposite directions in energy and thus creates perfectly
nested electron and hole Fermi surfaces, the translational
symmetry will be broken spontaneously due to the formation
of an excitonic condensate for arbitrarily weak electron-
electron interactions. Thus, in this case, Weyl semimetal,
strictly speaking, is never a ground state, and exists only
at temperatures above the excitonic condensation transition
temperature (which is most likely very low). In this section
we show that topological transport properties of the Weyl
semimetal, which, as we have demonstrated in the previous
section, are closely related to the chiral anomaly, in fact survive
even when a spectral gap is opened due to either an external
potential, or spontaneously, as a result of electron-electron
interactions, provided the gap is small enough.

We will focus on the case of the spectral gap resulting
from the Coulomb interaction-driven formation of an excitonic
condensate in the presence of nonzero chiral chemical potential
(the final result should not depend on the origin of the gap).
Let us first briefly demonstrate that nonzero chiral chemical
potential b0 leads to the spontaneous breaking of translational
symmetry in the presence of electron-electron interactions.

Adding electron-electron interactions to the Hamiltonian
Eq. (6), restricting ourselves to the lowest-energy degrees
of freedom near the nested electron and hole Fermi sur-
faces, enclosing the right (R) and left (L) Weyl nodes
correspondingly, and eliminating the b · σ term by the chiral
gauge transformation, discussed above, we obtain a BCS-like
effective Hamiltonian

H =
∑

k

[(k − b0)c†kRckR + (−k + b0)c†kLckL]

+ U

V

∑
k,k′

c
†
kRc

†
k′LckLck′R. (41)

Here U is the screened Coulomb interaction potential, whose
approximate value can be estimated as

U � lim
q→0

4πe2

q2 + 2g(b0)4πe2
= 1

2g(b0)
, (42)

where g(ε) = ε2/2π2 is the density of states of a single Weyl
cone and the factor of 2 in the denominator in Eq. (42)
comes from the two Weyl nodes. Introducing excitonic order
parameter

� = U

V

∑
k

〈c†kRckL〉, (43)

and decoupling the interaction term in Eq. (41) in the Hartree-
Fock approximation, we obtain the standard BCS equation
for �,

1 = Ug(b0)

2

∫ ξc

0
dξ

tanh(
√

ξ 2 + �2/2T )√
ξ 2 + �2

, (44)

where ξc is a cutoff of the order of �S,D in Eq. (3). This gives
the critical temperature of the excitonic condensation

Tc ∼ ξce
−2/Ug(b0) � ξce

−4, (45)

which can, in principle, be quite significant.
We will now demonstrate that the spectral gap, which opens

as a result of spontaneous, as described above, or due to an
external potential, translational symmetry breaking, does not
affect the induced θ term in the action of the electromagnetic
field and thus does not affect the topological response of the
Weyl semimetal. A note of caution is in order here. The above
statement is of course only true provided the gap is much
smaller than the high-energy cutoff scale ξc, that is, the energy
scale at which the Weyl node dispersion starts significantly
deviating from linearity. Once the gap becomes comparable to
ξc, our conclusions, based on a low-energy model of a Weyl
semimetal with linear Weyl node dispersion, can no longer be
expected to hold.

We introduce a fluctuating field �(r,τ ) in the imaginary
time action of the Weyl semimetal

S =
∫

dτdr ψ†
[
∂τ + ieA0 + b0τ

z + τ zσ · (−i∇ + eA

+ bτ z) − 1

2
�(r,τ )τ+ − 1

2
�∗(r,τ )τ−

]
ψ. (46)

�(r,τ ) has the following form:

�(r,τ ) = �0(r,τ )e−2ib·r, (47)

where �0(r,τ ) is a slowly varying envelope function. The field
�(r,τ ) arises from Hubbard-Stratonovich (HS) decoupling of
the electron-electron interaction term in Eq. (41) (we will leave
out the term quadratic in �, for brevity, but it is implicitly
understood to be present). Rewriting the action in relativistic
notation, we obtain

S = i

∫
d4xψ̄

[
( /DL + i�∗)

1 − γ 5

2
+ ( /DR + i�)

1 + γ 5

2

]
ψ,

(48)

where /DR,L = γ μ[∂μ + ieAμ ± ibμ(1 − s)].
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As before, we want to extract the term, proportional to bμ,
from the action, by a sequence of infinitesimal chiral gauge
transformations (14). Following the same procedure as before,
we consider the operator

D = ( /DL + i�∗)
1 − γ 5

2
+ ( /DR + i�)

1 + γ 5

2
. (49)

This operator is clearly not Hermitian. We can, however,
construct two Hermitian operators

D†D = [
/D

2
L + iγμ∂μ�∗ − �∗γ μbμ(1 − s)

]1 − γ 5

2

+ [
/D

2
R − iγ μ∂μ� − �γ μbμ(1 − s)

]1 + γ 5

2
+ �∗�

(50)

and

DD† = [
/D

2
L − iγμ∂μ�∗ + �∗γ μbμ(1 − s)

]1 + γ 5

2

+ [
/D

2
R − iγ μ∂μ� − �γ μbμ(1 − s)

]1 − γ 5

2
+ �∗�.

(51)

The two operators have identical nonnegative eigenvalues, but
different eigenfunctions

D†Dφn(x) = ε2
nφn(x), DD†φ̃n(x) = ε2

nφ̃n(x). (52)

We then expand the transformed Grassmann variables ψ ′(x)
and ψ̄ ′(x) with respect to the complete sets φ(x) and φ̃(x)
correspondingly and obtain the following expression for the
transformation Jacobian:

J = eids
∫
d4x[I (x)+Ĩ (x)]/2, (53)

where

I (x) =
∑

n

φ∗
n(x)θ (x)γ 5φn(x)

= lim
M→∞

∑
n

φ∗
n(x)θ (x)γ 5e−D†D/M2

φn(x) (54)

and

Ĩ (x) =
∑

n

φ̃∗
n(x)θ (x)γ 5φ̃n(x)

= lim
M→∞

∑
n

φ̃∗
n(x)θ (x)γ 5e−DD†/M2

φ̃n(x). (55)

Performing exactly the same manipulations as in Eqs. (26)–
(30), it is then straightforward to show that the infinitesimal
chiral transformation Jacobian has exactly the same form as in
Eqs. (30) and (31), that is, the spectral gap term in Eq. (48) does
not contribute to the chiral-transformation-induced θ term in
the action. The reason for this is easy to understand. The terms
that can contribute to I (x) and Ĩ (x) in the limit M → ∞ must
be proportional to the product of four γ matrices, multiplied by
the factor 1/M4, as all other terms get nullified by multiplying
them with the γ 5 matrix and taking the trace. By examining
Eqs. (50) and (51) it is easy to convince oneself that such a
term can only arise from the /D

2
R,L part, as only these contain

two γ matrices.

The HS terms in Eq. (48) explicitly break the chiral
symmetry of the action by mixing the left and right fermions.
This means that the HS terms themselves change under the
chiral transformation Eq. (14). Indeed, the imaginary time
action after the chiral transformation is given by

S = Sθ + i

∫
d4x ψ̄

[
/D + i�∗

0e
−2ib4x4

1 − γ 5

2

+ i�0e
2ib4x4

1 + γ 5

2

]
ψ, (56)

where /D = γ μ(∂μ + ieAμ). Thus, in principle, while the de-
pendence on b has indeed been eliminated from the fermionic
part of the action, the dependence on b4 (i.e., b0) remains,
and could contribute to the electromagnetic part of the action
after fermions are integrated out. It is easy to see, however,
that this does not happen. Indeed, focusing on the fermionic
part of the action in Eq. (56), and integrating out fermions, we
simply obtain the Ginzburg-Landau action for the excitonic
order parameter �0, which must, based on symmetry and
gauge invariance considerations, have the following general
form:

SGL =
∫

d4x(� ∂μ�∗
0∂μ�0 + r|�0|2 + u|�0|4), (57)

where the coefficients �, r , and u depend on the gauge potential
only through the field invariant FμνF

μν since the excitonic
order parameter �0 is charge neutral, and r ∼ (T − Tc)/Tc,
with Tc given by Eq. (45). This clearly implies that the θ term
in (57) is not renormalized by the excitonic part of the action.
Physically this happens due to the fact that the gap opening due
to � is a low-energy phenomenon, while the θ term contains
the contribution of all filled states and thus cannot be affected
by �. The only way � could affect the θ term is through the
chiral anomaly, which, as we have demonstrated above, also
does not happen.

IV. DISCUSSION AND CONCLUSIONS

We will now provide a less formal explanation of the above
results, which helps to understand the physical origin of the
insensitivity of topological response in Weyl semimetals to
opening up a spectral gap due to broken translational sym-
metry. Consider the low-energy Weyl semimetal Hamiltonian
Eq. (6), to which we will add the node-mixing potential term
later. We assume, for concreteness, that the vector b is along
the ẑ direction, b = bẑ. We will also assume that an external
orbital magnetic field B is applied to the system, along the
ẑ direction as well, B = Bẑ. For clarity of the presentation
we will separately consider two cases: b �= 0, b0 = 0 and the
general case b �= 0, b0 �= 0.

In the first case we obtain

H = τ z(σxπx + σyπy) + τ zσ zkz + bσ z, (58)

where π = −i∇ + eA is the kinetic momentum in magnetic
field. Introducing Landau level ladder operators a = �B(πx −
iπy)/

√
2 and a† = �B(πx + iπy)/

√
2, where �B = 1/

√
eB is

the magnetic length, we obtain

H = ωB√
2
τ z(σ+a + σ−a†) + σ z(b + τ zkz), (59)
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kz

Ε kz

kz

Ε kz

FIG. 1. (Color online) Landau level dispersion for b �= 0 (top)
and b = 0 (bottom) cases. It is clear that in the b �= 0 case there is
an extra field-dependent electron density in the n = 0 Landau level,
given by Eq. (62).

where ωB = 1/�B . This is easily diagonalized and we obtain
the Landau level dispersion as

εnsα = s

√
2ω2

Bn + (αkz + b)2, n � 1, (60)

where s,α = ±, while the n = 0 Landau level dispersions are
given by

εnα = −(αkz + b). (61)

As obvious from Eq. (59), the n = 0 Landau levels are
polarized downwards. Since the n � 1 Landau levels are
particle-hole symmetric, they do not contribute to the anoma-
lous Hall conductivity. The contribution of the n = 0 levels
can be deduced using Středa formula.49 We note that the n = 0
Landau levels give an extra field-dependent electron density,
compared to the b = 0 case (see Fig. 1), given by

δn(B) = 2b

2π

1

2π�2
B

= eb

2π2
B. (62)

The anomalous Hall conductivity can then be calculated as

σxy = lim
B→0

e
∂δn(B)

∂B
= e2b

2π2
. (63)

Now suppose we turn on a weak periodic potential at wave
vector Qz = 2b, hybridizing the Weyl nodes. In this case we
need to fold Landau level dispersion to the reduced first BZ
−b � kz < b. Focusing on the n = 0 levels, the effect of the
periodic potential will be to open a gap at the BZ boundary. It is
clear, however, that the Hall conductivity remains unchanged
since δn(B) remains unchanged after folding into the reduced
BZ and gap opening. The expression for the Hall conductivity
Eq. (63) can now be interpreted as conductance quantum e2/h

per period π/b of the Weyl node-hybridizing potential.

Let us now consider the general case b �= 0, b0 �= 0. In this
case we can remove the term bσ z from the Hamiltonian by
the chiral gauge transformation (14), which gives rise to the
corresponding θ term in the action, and focus on the effect of
the b0τ

z term. In the presence of the magnetic field in the ẑ

direction and an uniform time-independent node-hybridizing
potential �, the Hamiltonian is given by

H = ωB√
2
τ z(σ+a + σ−a†) + τ zσ zkz + τ zb0 − �τx. (64)

Diagonalizing this we obtain the following Landau level
dispersions:

εnsα = s

√(√
2ω2

Bn + k2
z + αb0

)2 + �2, n � 1, (65)

while the n = 0 Landau level dispersions are given by

ε0α = α
√

(kz − b0)2 + �2, (66)

where s,α = ±, as before. We can now calculate the current
in response to the applied magnetic field (chiral magnetic
effect)40

jz = − e

2π�2
B

∫ �

−�

dkz

2π

d

dkz

(
ε0− +

∞∑
n=1

∑
α=±

εn−α

)
, (67)

where dεn/dkz is the ẑ component of the electron velocity in
the n th Landau level and � is a cutoff momentum, which
we will take to infinity at the end. Since εnsα for n � 1 are
even functions of kz, only the n = 0 Landau level actually
contributes to jz. Then we obtain

jz = − e

2π�2
B

∫ �

−�

dε0−
dkz

= −e2B

4π2
[ε0−(�) − ε0−(−�)]

= e2B

4π2
(� − b0 − � − b0) = −e2b0

2π2
B, (68)

where the second line is true in the limit �/� → ∞. This
coincides with Eq. (35). Note that, in agreement with our
previous discussion, the large-momentum states are important
for this effect, which makes it insensitive to low-energy
phenomena, such as the presence of the gap �.

In conclusion, in this work we have explicitly demonstrated
that topological transport phenomena in Weyl semimetals are
distinct manifestations of a single underlying phenomenon,
the chiral anomaly, and are described by a θ term in the
action for the electromagnetic field, given by Eq. (1). We
have demonstrated that the θ term is insensitive to opening
a gap in the spectrum of the Weyl semimetal due to broken
(either by an external potential or spontaneously) translational
symmetry, provided the gap is sufficiently small.
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