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We present a general framework for analyzing fractionalized, time-reversal invariant electronic insulators in
two dimensions. The framework applies to all insulators whose quasiparticles have Abelian braiding statistics.
First, we construct the most general Chern-Simons theories that can describe these states. We then derive a
criterion for when these systems have protected gapless edge modes, that is, edge modes that cannot be gapped
out without breaking time-reversal or charge-conservation symmetry. The systems with protected edge modes
can be regarded as fractionalized analogues of topological insulators. We show that previous examples of 2D
fractional topological insulators are special cases of this general construction. As part of our derivation, we define
the concept of “local Kramers degeneracy” and prove a local version of Kramers theorem.
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I. INTRODUCTION

Recently, it was realized that there are two kinds of
two-dimensional (2D) time-reversal invariant band insulators:
topological insulators and trivial insulators. These two types
of insulators are distinguished by the fact that topological
insulators have robust gapless edge modes while trivial
insulators do not.1–4

While much of the work on topological insulators has
focused on noninteracting or weakly interacting systems, it
is natural to wonder whether similar physics can occur in
systems with strong interactions. Such strongly interacting
insulators can be divided into two classes: systems that can be
adiabatically deformed into (noninteracting) band insulators
without closing the bulk gap, and systems that cannot. At some
level the first case is understood: it is known5 that the gapless
edge modes of a topological insulator are stable to arbitrary
local interactions as long as time-reversal symmetry and charge
conservation are not broken (explicitly or spontaneously). Here
we will consider the second case: strongly interacting, time-
reversal invariant electron systems whose ground state cannot
be adiabatically connected to a band insulator. These systems
are typically fractionalized in the sense that they have quasipar-
ticle excitations with fractional charge and fractional statistics.

Previous work has focused on particular classes of these
fractionalized insulators. Reference 6 considered toy models3

where spin-up and spin-down electrons each form decou-
pled Abelian fractional quantum Hall states with opposite
chiralities.7 The authors showed that some of these systems
have protected edge modes, while some do not. More precisely,
the authors found that these models have a protected edge mode
if and only if σsH /e∗ is odd, where e∗ is the elementary charge
(in units of e) and σsH is the spin-Hall conductivity (in units
of e/2π ). The two kinds of insulators were dubbed “fractional
topological” and “fractional trivial” insulators by analogy to
noninteracting topological and trivial insulators. Along the
same lines, Refs. 8 and 9 considered generalizations of the
above toy models where spin-up and spin-down electrons
form correlated fractional quantum Hall states. Finally, Ref. 10
considered a somewhat different class of time reversal invariant
fractionalized insulators that were realized by exactly soluble
lattice models. In all these cases, it was found that some of

the fractionalized insulators have protected edge modes, while
some do not.

Taken together, these papers have analyzed a large class
of time-reversal invariant fractionalized insulators. However,
they have not exhausted all the possibilities. Here, we give
a more complete analysis of these systems. We consider
general time-reversal invariant 2D electronic insulators with
Abelian quasiparticle statistics. We then derive a criterion for
when these systems have protected gapless edge modes, that
is, edge modes that cannot be gapped out without breaking
time-reversal or charge-conservation symmetry, explicitly or
spontaneously. We call the states with protected edge modes
“fractional topological insulators,” following the terminology
of Ref. 6.

Our analysis proceeds in two steps. First, we find the most
general Chern-Simons theory that can describe a time-reversal
invariant, Abelian electronic insulator. Then, we investigate
the stability of the edge modes of these states, using both
a microscopic approach and a macroscopic flux insertion
argument. Much of the edge stability analysis can be regarded
as a direct generalization of the arguments of Ref. 6. However,
there are a number of additional features coming from the
more detailed exposition of this paper. In particular, we give a
precise definition of “local Kramers degeneracy” and a proof
of a local analog of Kramers theorem.

This paper is organized as follows. In Sec. II, we find a
Chern-Simons description of general time-reversal invariant
insulators with Abelian quasiparticle statistics. In Sec. III, we
analyze the stability of the edges of these insulators using a
microscopic approach. In Sec. IV, we analyze the edge stability
using a flux insertion argument and in the process give a proof
of a local analog of Kramers theorem. Appendixes contain
some of the more technical calculations.

II. CHERN-SIMONS THEORIES FOR TIME-REVERSAL
INVARIANT INSULATORS

A. The time-reversal breaking case

First, we review the Chern-Simons description for Abelian
insulators without time-reversal symmetry.11–13 In the next
section, we discuss how this formalism needs to be modified to
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describe the time-reversal symmetric case. To begin, recall that
a general Abelian insulator can be described by a p-component
U (1) Chern-Simons theory of the form

LB = KIJ

4π
ελμνaIλ∂μaJν − 1

2π
τI ε

λμνAλ∂μaIν, (1)

where K is a p × p symmetric, nondegenerate integer matrix
and τ is a p component integer vector. We will refer to K
as the “K matrix” and τ as the “charge vector.” The first
term in LB describes the different degrees of freedom in the
insulator, while the second term describes their coupling to
the electromagnetic vector potential Aλ. In general, LB can
also contain additional terms such as (∂μaIν − ∂νaIμ)2, but
these terms do not affect the basic topological features of the
insulator, our main interest here.

In this formalism, the quasiparticle excitations in the
insulator are described by coupling LB to bosonic particles
that carry integer gauge charge lI under each of the gauge
fields aI . Thus, each quasiparticle excitation corresponds to a
p component integer vector l. The physical electric charge of
each excitation is given by

ql = 1

2π
lT K−1τ, (2)

while the mutual statistics associated with braiding one particle
around another is given by

θll′ = 2πlT K−1l′. (3)

The statistical phase associated with exchanging two particles
is θl = θll/2. The quasiparticle excitations that are “local”—
that is, composed out of the constituent electrons—correspond
to vectors l of the form l = K
, where 
 is an integer p

component vector.
If we do not require time-reversal symmetry, the K

matrix and charge vector are unconstrained except for two
requirements. First, we must have

τI ≡ KII (mod 2). (4)

To derive this constraint, consider the statistics and charges
of the local excitations with l = K
. From Eqs. (2) and (3)
we can see that the excitation corresponding to l = K
 carries
electric charge 
T τ and has exchange statistics θ = π
TK
.
At the same time, we know that local excitations with even
charge must be bosons, while those with odd charge must be
fermions, since they are composed out of electrons. Combining
these two observations yields Eq. (4).

The second constraint on K,τ is that

gcd(τ1, . . . ,τp) = 1, (5)

where the notation “gcd” denotes the greatest common divisor
of these integers. This constraint follows from the requirement
that at least one local excitation has the charge of an electron.
[Readers familiar with the “strong pairing” fractional quantum
Hall state may worry that the condition (5) is too strict,
since this state is traditionally described using a Chern-
Simons theory withK = 8,τ = 2, apparently violating Eq. (5).
However, this state can be described equally well by the 3 × 3
K matrix with diagonal elements 8,1,−1, and the charge vector
τ = (2,1,1), thus satisfying Eq. (5). The same trick can be used

to find a Chern-Simons representation satisfying Eq. (5) for
any Abelian insulator built out of electrons].

B. Including time-reversal symmetry

We now show how to extend the above formalism to
describe Abelian insulators with the additional symmetry of
time reversal. The first step is to describe the action of time
reversal on the field theory (1). We will assume that the
time-reversal transformation T is of the form

aI → TIJ aJ ,

where T is an integer p × p matrix. More precisely, because
time reversal acts differently on spatial and temporal coordi-
nates, we will assume that

aIμ → ±TIJ aJμ, (6)

where the sign is + for μ = 1,2 and − for μ = 0. To see
where this transformation law comes from, recall that, in
our formalism, the quasiparticle excitations are described by
sources carrying integer gauge charge. Therefore integer gauge
charge must transform into integer gauge charge under time
reversal. Equation (6) follows immediately.

In order for the action (1) to be invariant under the time-
reversal transformation (6), we must have

T TKT = −K, (7)

T τ = τ. (8)

Similarly, the requirement that T 2 = (−1)Ne , where Ne is the
total number of electrons in the system, implies that

T 2 = 1P, (9)

where 1P is the p × p identity matrix.
We now come to an important point: Eq. (6) does not

completely specify the action of time reversal. The problem is
that Eq. (6) only tells us how time reversal acts on operators
like ελμν∂μaIν . These operators are all electrically neutral,
that is, they preserve the total electric charge in the system.
To complete our description of time reversal, we also have
to specify the transformation properties of charged operators,
like electron creation and annihilation operators.

Unfortunately, the Chern-Simons theory is not a convenient
framework for describing these operators. The reason is that
these charged operators correspond to magnetic monopole
instantons in the gauge fields aI . Thus, if we want to complete
our description within the Chern-Simons theory, we need to
introduce additional notation and formalism to describe these
instantons and their transformation properties under T .

We can avoid these (technical) complications by instead
describing the action of time reversal at the edge. According to
the usual bulk-edge correspondence for Abelian Chern-Simons
theories, a valid edge theory for Eq. (1) is given by11,12

L = 1

4π
(KIJ ∂x�I∂t�J − VIJ ∂x�I∂x�J )

+ 1

2π
εμντI ∂μ�IAν, (10)

where V is a p × p velocity matrix. Here, we are using a
normalization convention where the quasiparticle excitations
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are of the form eilT �, where l is an integer p component vector.
Local operators (i.e., operators composed out of products of
electron creation and annihilation operators) are of the form
ei�(
) with �(
) ≡ 
TK� and 
 an integer vector.

Translating the transformation law (6) into the edge theory
language gives

T −1(∂x�I )T = TIJ ∂x�J , (11)

along with a similar expression for the temporal derivative
∂t�I . The missing component in our description is now clear:
Eq. (11) does not determine the transformation properties for
the local operators ei�(
), i.e., the creation and annihilation
operators for electrons.

We can see how to complete our description if we rewrite
Eq. (11) as

T −1�IT = TIJ �J + const.,

or equivalently

T −1�IT = TIJ �J + πK−1
IJ χJ , (12)

where χ is some p-component real vector. Clearly, in order to
complete our description of time reversal we need to specify
χ . We will refer to χ as the “time-reversal vector.”

Like T , the vector χ cannot be chosen arbitrarily: it is
constrained by the requirement that electron creation and
annihilation operators are odd under T 2. This requirement
implies that

T −2ei�(
)T 2 = ei�(
)(−1)

T τ , (13)

which is equivalent to the constraint that

(1 − T T )χ ≡ τ (mod 2). (14)

We note that Klein factors are not relevant to this discussion of
time-reversal properties and therefore we have dropped them
for clarity. In fact, we will see that Klein factors do not affect
our later analysis either and can be safely ignored throughout
this paper.

In summary, we have shown that a general Abelian time-
reversal invariant insulator is described by the data (K,τ,T ,χ ).
The K matrix K and charge vector τ specify the quasiparticle
braiding statistics and charges, while the time-reversal matrix
T and vector χ describe the action of time reversal. This data
must satisfy the conditions (4) and (5), (7)–(9), and (14) in
order to be self-consistent.

C. Explicit parametrization of time-reversal invariant Abelian
Chern-Simons theories

An important point is that not all (K,τ,T ,χ ) correspond
to physically distinct Chern-Simons theories. For example,
(K,τ,T ,χ ) is physically equivalent to

K′ = (U−1)TKU−1, τ ′ = (U−1)T τ,
(15)

T ′ = UT U−1, χ ′ = (U−1)T χ,

for any integer matrix U with determinant ±1. This equiv-
alence can be derived by making the change of variables

a′ = Ua, �′ = U� in the bulk/edge theories (1) and (10).
Another important equivalence is the one between χ and

χ ′ = χ + 1

π
K(1 − T )ξ (16)

for any real vector ξ , which follows from the field redefinition
�′ = � + ξ . A final example is that χ is physically equivalent
to

χ ′ = χ + 2v (17)

for any integer vector v. To see where this equivalence comes
from, note that the only place where χ enters into the physical
description of the edge is in the transformation law for ei�(
):

T −1ei�(
)T = ei�(T 
)−iπ
T χ . (18)

We can see that χ appears in the combination eiπ
T χ , which
only depends on the value of χ modulo 2.

We are now in a position to explicitly write down all time-
reversal invariant Abelian Chern-Simons theories. Indeed,
according to the above analysis, it suffices to find all (K,τ,T ,χ )
satisfying conditions (4), (5), (7)–(9). This problem can be
solved by straightforward linear algebra as we demonstrate in
Appendix A. We find that the most general solution, up to the
transformations (15)–(17), is of the form

K =

⎛
⎜⎜⎜⎝

0 A B B

AT 0 C −C

BT CT K W

BT −CT WT −K

⎞
⎟⎟⎟⎠, τ =

⎛
⎜⎜⎜⎝

0

t ′

t

t

⎞
⎟⎟⎟⎠, (19)

T =

⎛
⎜⎜⎜⎝

−1M 0 0 0

0 1M 0 0

0 0 0 1N−M

0 0 1N−M 0

⎞
⎟⎟⎟⎠, χ =

⎛
⎜⎜⎜⎝

x

0

0

t

⎞
⎟⎟⎟⎠. (20)

Here, the matrix A is of dimension M × M , while the matrices
B,C are of dimension M × (N − M). The matrices K,W are
both of dimension (N − M) × (N − M). Similarly, t ′ is of
dimension M and t is of dimension (N − M). Finally, the
vector x is some (N − M) dimensional vector of 1’s and 0’s.
We note that that the total dimension of K is 2N × 2N so
the above solution corresponds to p = 2N in our previous
notation.

There are only a few constraints on (A,B,C,K,W,t,t ′,x).
First, W must be antisymmetric: W = −WT . This requirement
follows from time-reversal invariance (7). Second, t ′ must be
even valued. This constraint comes from the condition (4) that
the insulator is composed out of electrons. For the same reason,
the parity of tI must match that of KII , but can be either even
or odd. Finally, the greatest common factor of {τI } must be 1
according to Eq. (5).

We would like to mention that while every time-reversal
invariant Abelian Chern-Simons theory can be written in the
form Eqs. (19) and (20), this representation is not unique in
general. In other words, different (A,B,C,K,W,t,t ′,x) may
correspond to physically equivalent Chern-Simons theories.
For this reason, more work is necessary to turn (19) and
(20) into a one-to-one classification of time-reversal invariant
Abelian insulators.
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D. Examples and physical realizations

In this section, we discuss special cases of the general
time-reversal invariant Chern-Simons theories (19) and (20).
A particularly simple case is when M = 0 and W = 0. In this
case, Eqs. (19) and (20) reduce to

K =
(

K 0

0 −K

)
, T =

(
0 1N

1N 0

)
, (21)

and

τ =
(

t

t

)
, χ =

(
0

t

)
. (22)

This theory can be physically realized in a toy model in
which spin-up and spin-down electrons each form completely
decoupled quantum Hall states with opposite chiralities: a
“fractional quantum spin Hall state”.3 This model, and in
particular the stability of the edge modes, was analyzed in
Ref. 6. It is also possible to construct models of the type (21)
from bosons.14 For example, we can imagine that bosons of
spin sz = ±1 form decoupled bosonic quantum Hall states
of opposite chiralities. In that case, K would have only even
numbers on the diagonal.

Similarly, one can consider the case where W = −WT �= 0,
so that

K =
(

K W

WT −K

)
. (23)

This theory, which was analyzed in Refs. 8 and 9, can
also be realized by a toy model in which spin-up and
spin-down electrons form quantum Hall states with opposite
chiralities. The main difference from the previous case is
that here the ground state contains correlations between the
two spin species. Obviously, the requirement W = −WT �= 0
necessitates at least a four-dimensional K.

Next, it is instructive to consider cases where M = N , so
that

K =
(

0 A

AT 0

)
, T =

(−1N 0

0 1N

)
, τ =

(
0

t ′

)
. (24)

In this case, K has only even numbers on the diagonal, so that
the insulators are bosonic. The best known examples of this
type have the matrix A being simply an integer number, m, and
t ′ = qB , where qB is the boson charge. For m = 1, this theory
describes a conventional bosonic Mott insulator. For m �= 1, it
describes a charge-conserving model of the “toric code”10,15

type, with “charge” excitations of electric charge qB/m, and
“flux” excitations which are neutral. These examples all have
the vector x = 0 in Eq. (20), so that χ = 0.

We can also imagine the same class of bosonic insulators,
but with x = 1. The simplest case, m = 1 is already interest-
ing: this theory describes a new kind of bosonic Mott insulator.
This insulator can be distinguished from a conventional Mott
insulator by the fact that it has protected edge modes. To see
this, consider the edge stability criterion derived in the next
two sections. There, we show that the electronic insulators
(19) have protected edge modes if and only if 1

e∗ χ
TK−1τ

is odd, where e∗ is the smallest charged excitation of the
system in units of e. While our derivation focuses on electronic
insulators, the same analysis applies to bosonic insulators,

with the only difference being that we should measure the
elementary charge e∗ in units of the boson charge qB instead
of e. Applying this result to the case m = 1,x = 1,t ′ = qB ,
we find 1

e∗ χ
TK−1τ = 1, implying the existence of a protected

edge mode. Interestingly, this new kind of Mott insulator does
not have excitations with fractional charge or statistics. In
this sense, it is similar to a conventional topological insulator,
except that it is built out of bosons instead of fermions.
We expect that this “unfractionalized” bosonic topological
insulator is equivalent to the one proposed in Ref. 16.

Finally, we discuss examples where all parts of the matrix
(19) are at play. Recall that Ref. 10 constructed a 2D time-
reversal invariant lattice model built out of electrons described
by

K =

⎛
⎜⎜⎜⎝

0 m −k −k

m 0 0 0

−k 0 1 0

−k 0 0 −1

⎞
⎟⎟⎟⎠, T =

⎛
⎜⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠, (25)

and

τ =

⎛
⎜⎜⎜⎝

0

2

1

1

⎞
⎟⎟⎟⎠, χ =

⎛
⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎠. (26)

In this model, the upper-left quadrant of the matrix describes
bosons that form a charge-conserving toric code15 state, with
“charge” excitations that carry a charge 2/m and “flux”
excitations that are neutral. The off-diagonal quadrant (the −k

terms) couple the charge excitations with electrons to form
composite fermions whose electric charge is 1 + 2k/m. The
right-bottom quadrant then describes how these fermions form
a quantum spin Hall state of ν = ±1.

In this example, we can see that the role played by the matrix
B in Eq. (19) is to couple the two types of charge excitations
to one another. In order to be symmetric to time reversal,
this coupling must be identical for the two spin directions of
the electrons. In a similar fashion, the matrix C in Eq. (19)
couples electrons to flux excitations of the bosonic system. In
this case, in order for the coupling to preserve the symmetry
to time reversal, the flux excitations couple oppositely to the
two spin directions of the electrons.

III. STABILITY OF THE EDGE: MICROSCOPIC ANALYSIS

An important question is to determine which of the Abelian
insulators described by Eqs. (19) and (20) have protected
gapless edge modes, that is edge modes that cannot be gapped
out without breaking time-reversal or charge-conservation
symmetry, explicitly or spontaneously. In the next two sections
we show that these systems have protected edge modes if and
only if the quantity 1

e∗ χ
TK−1τ is odd. Here, e∗ is the smallest

charged excitation in the system (in units of e). Formally, e∗ is
defined by

e∗ = minl(l
TK−1τ ), (27)

where l ranges over all integer vectors.
This criterion was previously derived in Refs. 6, 8, and 10

for the three special cases (21), (23), and (25). In these cases,
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the criterion can be rephrased in more physically transparent
language, assuming that the system conserves the total electron
spin sz. To be specific, in these cases, we can identify the
quantity 1

e∗ χ
TK−1τ with −σsH/e∗, where σsH is the spin-Hall

conductivity in units of e/2π . Thus the criterion reduces to
the statement that these systems have protected edge modes if
and only if σsH/e∗ is odd.6 More generally, this reformulation
in terms of σsH/e∗ is valid for any sz conserving insulator
for which χ ≡ τ↓ (mod 2), where τ↓ is the charge vector
corresponding to the spin-down electrons (see Appendix B).
Physically, the condition χ ≡ τ↓ (mod 2) is equivalent to the
requirement that the excitations of the insulator have a “local
Kramers degeneracy” (see Sec. IV D) if and only if they
carry half-integer spin. This connection between spin and time
reversal is what allows us to reformulate the edge stability
criterion in terms of σsH.

A. Basic setup

We derive the 1
e∗ χ

TK−1τ criterion in two steps. First, we
use a microscopic approach to explicitly show that when
1
e∗ χ

TK−1τ is even, the edge can be gapped out without
breaking any symmetries (explicitly or spontaneously). We
also show that there is an obstruction to gapping out the
edge when 1

e∗ χ
TK−1τ is odd. Then, in Sec. IV, we complete

the derivation by giving a general argument that the edge is
protected when 1

e∗ χ
TK−1τ is odd.

Our analysis closely follows that of Ref. 6. Our starting
point is the edge theory (10), which we reprint below for
convenience:

L = 1

4π
(KIJ ∂x�I∂t�J − VIJ ∂x�I∂x�J )

+ 1

2π
εμντI ∂μ�IAν.

We recall that operators of the form ei�(
), with �(
) ≡

TK�, are local in the sense that they correspond to products
of electron creation and annihilation operators.

This edge theory has 2N gapless edge modes, N for each
chirality. Our goal is to find the conditions under which
these modes can be gapped out by charge conserving, time
reversal symmetric perturbations. We focus on a general class
of scattering terms of the form

U (x) cos[�(
) − α(x)], (28)

where 
 is a 2N -dimensional integer valued vector. Imposing
charge conservation leads to the requirement 
T τ = 0. As for
time reversal, we note that Eq. (12) implies that � transforms
under time reversal as

T �(
)T −1 = �(−T 
) − Q(
)π, (29)

where

Q(
) ≡ −
T χ. (30)

Thus one can construct scattering terms that are even/odd under
time reversal by defining

U±(
) = U (x){cos[�(
) − α(x)]

± (−1)Q(
) cos[�(−T 
) − α(x)]}. (31)

In general, we should include Klein factors in the definition of
U±(
) to ensure that these terms obey the correct commutation
relations, i.e., these terms should commute with each other
when they act at spatially separated points. However, in
the analysis below, we only consider sets of {
i} satisfying

T

i K
j = 0. This condition guarantees that the ei�(
) oper-
ators automatically commute with one another, without any
need for Klein factors.17 Thus the Klein factors can be safely
ignored, and we will drop them for clarity.

We now examine whether time-reversal symmetric terms of
the type U+ (31) can gap the spectrum without spontaneously
breaking time-reversal symmetry. Importantly, it will not
matter to us whether these terms are relevant or irrelevant
in the renormalization group sense. One reason is that we are
interested in whether any term can gap out the edge, including
those with large coefficients. Thus the perturbative stability of
the edge is not our concern here. Another reason is that we
can always make the {U+(
)} terms relevant by appropriately
tuning VIJ —at least when {
i} satisfy 
T

i K
j = 0, as
assumed below.

Before tackling the general case, we first warm up with two
simple examples. Both examples were discussed (briefly) in
Ref. 6.

B. Example 1: Laughlin quantum spin Hall state

In this section, we analyze the stability of the edge for the
case

K =
(

k 0

0 −k

)
, T =

(
0 1

1 0

)
, τ =

(
1

1

)
, χ =

(
0

1

)
. (32)

Physically, this case can realized by a toy model in which the
spin-up and spin-down electrons each form ν = 1/k Laughlin
states with opposite chiralities.

We note that the elementary charge is

e∗ = minl(l
TK−1τ ) = 1

k
, (33)

while the quantity χTK−1τ is given by

χTK−1τ = −1

k
. (34)

In particular, we have 1
e∗ χ

TK−1τ = −1 for all k. Thus,
according to the general criterion, all of these states have
protected edge modes.

To see how this stability manifests itself in a microscopic
analysis, note that the only charge conserving vectors are
of the form 
 = (n,−n). The corresponding perturbation
U (x) cos[�(n,−n) − α(x)] is even under time reversal for
even n and odd for odd n. Thus time-reversal symmetry
requires even n, say n = 2. Adding such a perturbation
will indeed open a gap in the spectrum, at least for large
U . However, hand in hand with gapping out the spectrum,
this perturbation also spontaneously breaks time-reversal
symmetry. To see this, note that when the perturbation gaps out
the edge, it “freezes” the value of �(n,−n). As a result, it also
freezes the value of �(1,−1). But then cos[�(1,−1) − α]—an
operator which is odd under time reversal—acquires a nonzero
expectation value. It follows that time-reversal symmetry is
broken spontaneously. In this way, we see that none of these
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perturbations can gap the two edge modes without breaking
time reversal symmetry, either explicitly or spontaneously.

C. Example 2: Two-component fractional quantum
spin Hall state

In this section, we analyze the stability of the edge for the
case

K =
(

K 0

0 −K

)
, T =

(
0 1

1 0

)
,

τ T = (1,1,1,1), χT = (0,0,1,1), (35)

where K is a 2 × 2 matrix. Physically, this case can be realized
by a toy model in which the spin-up and spin-down electrons
each form two component quantum Hall states with opposite
chiralities.

In this case, there are two pairs of counter-propagating edge
modes, so we need to fix the value of two different �(
)’s
to gap out the edge. The simplest way to do this is to add
a perturbation of the form U+(
) (31) where 
,−T 
 are
linearly independent and charge conserving. We write this
term as

U (x){cos[�(
1) − α(x)] + (−1)Q(
1) cos[�(
2) − α(x)]},
(36)

where 
1 ≡ 
 and 
2 ≡ −T 
.
According to Haldane’s null vector criterion,18 such a

perturbation can gap out the four edge modes if 
1 and 
2

satisfy


T
1 K
1 = 
T

2 K
2 = 
T
1 K
2 = 0. (37)

The origin of this criterion is that it guarantees that one can
make a linear change of variables from � to �′ such that the
action for �′ will be that of two decoupled nonchiral Luttinger
liquids. The two terms in Eq. (31) will then gap the spectrum of
these two liquids by freezing the values of �(
1) and �(
2).
We review this result in Appendix C.

We now turn to search for charge conserving 
1 and 
2

such that 
2 = −T 
1, and such that 
1 and 
2 satisfy the
condition (37). It is convenient to parameterize the matrix K
as

K =

⎛
⎜⎜⎜⎝

b + us b 0 0

b b + vs 0 0

0 0 −b − us −b

0 0 −b −b − vs

⎞
⎟⎟⎟⎠ (38)

with b,u,v,s integers and u and v having no common factor.
In terms of these parameters, the elementary charge is

e∗ = minl(l
TK−1τ ) = 1

(u + v)b + uvs
. (39)

Also, the quantity χTK−1τ is given by

χTK−1τ = − u + v

(u + v)b + uvs
. (40)

The ratio 1
e∗ χ

TK−1τ is then (u + v), so according to the
general criterion, the parity of u + v determines whether the
spectrum can be gapped.

When u + v is odd, it is indeed impossible to find

1 and 
2 that do not spontaneously break time reversal
symmetry. Imagine one had such a solution and define 
± =

1 ± 
2. Then,

T 
− = 
−, Q(
−) = 0, (41)

so 
T
− must be an integer multiple of (1,−1,1,−1). Also,

T 
+ = −
+, 
T
−K
+ = 0, (42)

so 
T
+ must be an integer multiple of (v,u,−v,−u). But

cos[�(v,u,−v,−u) − α] is odd under time reversal, according
to Eq. (29). This means that the perturbation (36) will sponta-
neously break time-reversal symmetry: the scattering term (36)
freezes the value of �(
1), �(
2) and therefore also freezes
the value of �(
1) + �(
2) and hence �(v,u,−v,−u). It
follows that cos[�(v,u,−v,−u) − α] acquires an expectation
value, spontaneously breaking time-reversal symmetry.

On the other hand, when u + v is even (so that both u,v are
odd), the above analysis suggests an obvious solution (
1,
2).
We can take


T
− = (1,−1,1,−1), (43)


T
+ = (v,u,−v,−u), (44)

so that


T
1 = 1

2 (1 + v,−1 + u,1 − v,−1 − u) ,
(45)


T
2 = 1

2 (−1 + v,1 + u,−1 − v,1 − u) .

To complete the analysis, we need to check that the
perturbation (36) corresponding to 
1 and 
2 does not
spontaneously break time-reversal symmetry. The only way
that time-reversal symmetry (or any other symmetry) can
be spontaneously broken is if, for some a1 and a2 with no
common factors, the linear combination a1
1 + a2
2 is
nonprimitive, that is, a1
1 + a2
2 = k
, where 
 is an
integer vector, and k is an integer larger than 1. If such
an a1, a2, and 
 exist, then when the perturbation freezes
the value of �(
i) it will also freeze the value of �(
),
which may lead to spontaneous symmetry breaking, as in
the discussion after Eq. (42). Conversely, if all such linear
combinations are primitive, then the perturbation does not
break any symmetries when it freezes �(
i). Thus we can
be assured that no symmetries are broken spontaneously, as
long as we choose the 
’s so that all linear combinations
a1
1 + a2
2 are primitive.

It is possible to show that such a nonprimitive a1
1 + a2
2

exists if and only if the six 2 × 2 minors generated from the
4 × 2 matrix with columns 
1 and 
2 have a common factor
(see Appendix D). We now check this condition explicitly.
Writing out the 4 × 2 matrix corresponding to Eq. (45) gives

1

2
·

⎛
⎜⎜⎜⎝

1 + v −1 + v

−1 + u 1 + u

1 − v −1 − v

−1 − u 1 − u

⎞
⎟⎟⎟⎠. (46)
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We can see that the minor corresponding to the first two rows
is given by

1

4
[(1 + v)(1 + u) − (−1 + v)(−1 + u)] = u + v

2
, (47)

while the minor corresponding to the second and third rows is

1

4
[(−1 + u)(−1 − v) − (1 + u)(1 − v)] = v − u

2
. (48)

Clearly these two minors have no common factor since u,v

have no common factor. We conclude that there are no
nonprimitive linear combinations a1
1 + a2
2 and therefore
the perturbation does not break time-reversal symmetry (or
any other symmetry) spontaneously.

D. Microscopic analysis in general case

In this section, we analyze the edge stability of the general
Abelian insulators described by Eqs. (19) and (20). The
simplest way to gap the edge in the general case is to add
several perturbations of the form U+(
) (31) each with a
different 
. In general, these perturbations can be divided
into two different classes: perturbations where 
,−T 
 are
linearly independent and perturbations where T 
 = ±
.
Perturbations of the first type can gap out two pairs of edge
modes while perturbations of the second type can gap out a
single pair of edge modes. Therefore, in order to gap out all N

pairs of edge modes, we need k perturbations of the first type
and l perturbations of the second type, where 2k + l = N .

We can describe the sum of all these perturbations by
listing all the linearly independent 
’s that appear in the
various cosine terms. All together, we will have 2k + l = N

different 
’s since the first type of perturbation involves two

’s (namely, 
,−T 
), while the second type of perturbation
involves one 
. We will label the 
’s by 
1, . . . ,
N .

Just like the example discussed in the previous section, the
perturbations corresponding to 
1, . . . ,
N can gap the edge
if the {
i} satisfy Haldane’s null vector condition18


T
i K
j = 0. (49)

This condition guarantees that we can make a change of
variables from � to �′ such that (a) the resulting action consists
of N decoupled nonchiral Luttinger liquids, and (b) the cosine
terms correspond to backscattering terms for each of these
decoupled liquids. (For an example, see Appendix C.)

We now turn to search for charge conserving {
i} satisfying
these conditions. It is convenient to define a vector


c = 1

e∗K
−1τ. (50)

We note that the definition of e∗, see Eq. (27), implies that 
c

is an integer vector and that the greatest common divisor of
{
ci} is 1. According to our criterion, the edge is protected
if and only if the quantity χT 
c is odd. We now verify this
claim.

When χT 
c is odd, it is indeed impossible to find {
i}
that satisfy Eq. (49) and that do not spontaneously break
time-reversal symmetry. The reason is that one can always
find a linear combination of 
i , which is a multiple of 
c, as
we prove in the next paragraph. But cos[�(
c) − α] is odd
under time reversal according to Eq. (29). It then follows that

the perturbations corresponding to {
i} will spontaneously
break time-reversal symmetry: these perturbations will freeze
the values of �(
i) and therefore also �(
c), thus giv-
ing an expectation value to the time-reversal odd operator
cos[�(
c) − α].

To complete the argument, we explain why one can always
find a linear combination of {
i} which is a multiple of

c. First, we note that 
T

i K
c = 0 for all i, by charge
conservation. At the same time, we can see that the set of all
vectors satisfying {
T

i K
 = 0} has dimension N , since these
relations describe N equations in 2N unknowns. Combining
this observation with the fact that the {
i} themselves provide
N linearly independent solutions to these equations, we deduce
that 
c cannot be linearly independent from {
i}. Hence, there
must be a linear relation of the form ac
c + ∑

ai
i = 0 with
all the a’s being integers. Intuitively, the basic point of this
argument is that one cannot gap the edge without gapping
the “charge mode” �(
c), and this mode is protected by
time-reversal symmetry whenever χT 
c is odd.

On the other hand, if 
T
c χ is even, then the edge can be

gapped out, as we now show. It is convenient to work in a
basis where t = (1,1, . . . ,1) and t ′ = (2,2, . . . ,2). Using the
fact that T 
c = −
c, we can see that 
c is of the form


T
c = (w,0M,u,−u), (51)

where w = (w1, . . . ,wM ) is an M component integer vector,
u = (u1, . . . ,uN−M ) is an N − M component integer vector,
and 0M denotes an M component vector of 0’s.

It is convenient to divide our analysis into two cases:
either (a) the vector w has at least one odd entry or (b)
the vector w only has even entries. We begin with case (a).
First, we introduce some notation. We define N − M vectors
e1, . . . ,eN−M , each with N − M components, by

e1 = (1,0,0, . . . ,0),

e2 = (0,1,0, . . . ,0), (52)

e3 = (0,0,1, . . . ,0),
...

and M vectors f1, . . . ,fM , each with M components, by

f1 = (1,0,0, . . . ,0),

f2 = (1, − 1,0, . . . ,0), (53)

f3 = (1,0, − 1, . . . ,0).
...

We then define N − 1 vectors �1, . . . ,�N−1, each with 2N

components by

�i = (0M,fi+1,0N−M,0N−M ), 1 � i � M − 1,
(54)

�i = (0M,f1, − ei−M+1, − ei−M+1), M � i � N − 1.

These vectors obey the conditions T �i = �i , and
�T

i K�j = 0. Furthermore, since these vectors are charge
conserving, we have �T

i K
c = 1
e∗ �

T τ = 0. Therefore, if we
define 
1 = 
c,
2 = �1,
3 = �2, etc., we will have a set
of N vectors satisfying condition (49).

To complete the argument, we need to check that
these perturbations do not spontaneously break time-reversal
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symmetry. Like the example discussed in the previous section,
it is sufficient to show that for any set of ai , which have no
common factor, the linear combination

∑
i ai
i is always

primitive. This is turn reduces to the question of showing
that the ( 2N

N ) N × N minors of the matrix with columns 
i

have no common factors (see Appendix D). This property
can be established straightforwardly, using the fact that the
greatest common divisor of {
ci} is 1. For a simple example,
see Eqs. (47) and (48).

We now consider case (b): the vector w has only even
entries. In this case, we define a vector


T
n = (0M,αtot · f1,−α,−α), (55)

where α = (α1, . . . ,αN−M ), αtot = ∑
i αi , and αi is 0 or 1

depending on whether ui (50) is even or odd.
We then let


1 = 1
2 (
c + 
n), 
2 = 1

2 (
c − 
n). (56)

Just as before, one can check that these two vectors obey the
condition 
T

1 K
1 = 
T
2 K
2 = 
T

1 K
2 = 0. Thus we now
have two vectors satisfying condition (49).

To fully gap out the edge, we need to find N − 2 more
vectors. These can be obtained as follows. Consider the N − 1
vectors �i (54). These vectors obey the conditions T �i = �i ,
and �T

i K�j = 0. Furthermore, by the same reasoning as
above, we have �T

i K
1 = �T
i K
2 = 0. Therefore, if we

define 
3 = �1,
4 = �2, . . ., we will have a set of N + 1
vectors satisfying condition (49). The only problem is that
these vectors are not all linearly independent since 
n =∑

i αi�i+M−1. Hence, we need to drop an appropriate one of
the �i’s. Once we do this, we will have the required set of N

vectors. As in case (a), we can verify that these perturbations do
not spontaneously break time-reversal symmetry by showing
that the ( 2N

N ) N × N minors of the matrix with columns 
i

have no common factors.
Strictly speaking, we are not quite finished, since we

implicitly assumed that M �= 0. If M = 0, our construction
of the scattering terms 
i needs to be slightly modified. In this
case, we define


T
n =

(
N∑

i=2

αi,−α2, . . . ,−αN,

N−1∑
i=2

αi,−α2, . . . ,−αN

)
.

(57)

Also, we define �1, . . . �N−1 by

�1 = (1,−1,0,0, . . . ,1,−1,0,0, . . .),

�2 = (1,0,−1,0, . . . ,1,0,−1,0, . . .), (58)

�3 = (1,0,0,−1, . . . ,1,0,0,−1, . . .).
...

We then define 
1 and 
2 as in Eq. (56) and take 
3 =
�1,
4 = �2, . . . as above. The remainder of the analysis is
identical to case (b), studied above.

IV. STABILITY OF THE EDGE MODES:
FLUX INSERTION ARGUMENT

In the previous section, we found that when 1
e∗ χ

TK−1τ

was odd, there was no simple way to gap out the edge
modes without breaking time-reversal or charge-conservation
symmetry. However, that analysis does not rule out the possi-
bility of gapping out the edge using other, more complicated,
perturbations. In this section, we fill in this hole: we give
a general argument proving that it is impossible to gap the
edge when 1

e∗ χ
TK−1τ is odd. Combining this result with

the conclusions of Sec. III completes our proof that Abelian
time-reversal invariant insulators have protected gapless edge
modes if and only if the quantity 1

e∗ χ
TK−1τ is odd.

The argument we present is very similar to the one given in
Ref. 6, which is in turn a generalization of the flux insertion
argument of Ref. 5. The statement we prove is as follows: we
consider one of the insulators (19) and (20) in a cylindrical
geometry with an even number of electrons and zero flux
through the cylinder. We also assume that the ground state
is time-reversal invariant and has short range correlations.
Assuming that the quantity 1

e∗ χ
TK−1τ is odd, we prove that

the system always contains at least one low lying excited state,
that is, an excited state whose energy gap vanishes in the
thermodynamic limit. Furthermore, this excited state has the
important property that it is in the same “topological sector” as
the ground state (as will be explained below). We interpret this
low lying state as evidence for a protected gapless edge mode.

A. Integer case

We begin by explaining the argument in a simple case. To be
specific, we consider a noninteracting toy model where spin-up
and spin-down electrons each form ν = k integer quantum Hall
states with opposite chiralities. [This example corresponds to
the quantum spin Hall state (21) with K = 1k.] As mentioned
above, we consider this model in a cylindrical geometry with an
even number of electrons and zero flux through the cylinder.
We assume that the ground state is time-reversal invariant
and has short range correlations. We will show that if k is
odd there is always at least one low lying excited state, that
is a state whose energy gap vanishes in the thermodynamic
limit. Furthermore, this state is robust if we add arbitrary time-
reversal invariant, charge conserving local perturbations to
the Hamiltonian, as long as we do not close the bulk gap
or spontaneously break one of the symmetries.

To begin, we consider the ground state |�0〉 of the toy model
at zero flux and imagine adiabatically inserting �0/2 = hc/2e

flux through the cylinder. Let us call the resulting state |�1〉.
Similarly, we let |�2〉 be the state obtained by adiabatically
inserting −�0/2 flux (see Fig. 1). We note that |�1〉,|�2〉 are
time reversed partners: |�2〉 = T |�1〉. The remainder of the
argument can be divided into two parts. In the first part, we
show that when k is odd, |�1〉 has a Kramers degeneracy at
the two ends of the cylinder (a precise definition of this notion
of “local Kramers degeneracy” is given in Sec. IV D). In the
second part, we use this Kramers degeneracy to prove that
there is a robust low-lying excited state at zero flux.

We begin with the first part—establishing that |�1〉 has a
Kramers degeneracy at the two ends of the cylinder. Here, we
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0 /2−Φ Φ0 /2
Φ

Ψ0

Ψex

E

Δ

Φ

Ψ1Ψ2

FIG. 1. The flux insertion argument for the ν = k toy model: we
start with the ground state �0 and adiabatically inset ±�0/2 flux
through the cylinder, obtaining two states �1 and �2. If k is odd,
then �1 has a Kramers degeneracy at the two ends of the cylinder,
and is therefore degenerate in energy with three other states, one of
which is �2. If we start in one of these three degenerate states and
then adiabatically reduce the flux to 0, we obtain an excited state �ex

whose energy gap � vanishes in the thermodynamic limit.

give an intuitive argument; we derive this claim rigorously
(and in greater generality) in Sec. IV D. It is useful to start
with the ν = 1 case. Consider the ν = 1 toy model in the
Landau gauge. The single particle eigenstates for spin-up and
spin-down electrons are then Landau orbitals, localized in the
longitudinal direction and delocalized in the periodic direction.
Each spin-up orbital has a corresponding time-reversed spin-
down partner. These pairs are equally occupied with spin-up
and spin-down electrons in the ground state |�0〉, since by
assumption, |�0〉 is time-reversal invariant [see Fig. 2(a)]. If
we now adiabatically insert �0/2 flux, each spin-up orbital
shifts to the right by half of the interorbital spacing, while each
spin-down orbital shifts to the left. The resulting state |�1〉
has one unpaired spin-up electron on the right edge and one
unpaired spin-down electron on the left edge [see Fig. 2(b)].
More generally, for the ν = k toy model, one finds that |�1〉
has k unpaired spins on the two edges. We can now see that

Ψ1(b)

Ψ4(e)Ψ3(d)

0Ψ(a)

Ψ2(c)

FIG. 2. (a) A schematic portrait of the ground state �0 of the
ν = 1 toy model. Working in the Landau gauge, the single-particle
states consist of spin-up and spin-down Landau orbitals. In the time-
reversal invariant ground state, the spin-up and spin-down orbitals
are equally occupied. After inserting �0/2 flux, the spin-up and spin-
down orbitals shift in opposite directions, resulting in the state �1.
(b) The state �1 has a Kramers degeneracy on both ends of the
cylinder and is therefore degenerate with its time-reversed partner
(c) �2 as well as two other states, (d) �3, and (e) �4.

when k is odd, |�1〉 has an odd number of electrons localized
near the two edges. On an intuitive level, this property implies
our result: |�1〉 has a Kramers degeneracy at each of the two
ends of the cylinder.

We now explain the second part of the argument: why
the Kramers degeneracy at half a flux quantum implies that
there is a robust low-lying excited state at zero flux. The
basic point is very simple: as long as the two ends of the
cylinder are well separated, Kramers theorem guarantees that
|�1〉 is part of a multiplet of four states, which are nearly
degenerate in energy [see Figs. 2(b)–2(e)]. We note that |�2〉
is one of these degenerate states, as it is the time reversed
partner of |�1〉. We now imagine starting at �0/2 flux and
then adiabatically reducing the flux to 0. If we start with the
state |�1〉, then adiabatic flux removal takes us to the ground
state |�0〉. However, if we start with |�2〉, or one of the other
two states degenerate with |�1〉, the result is an eigenstate |�ex〉
of the zero flux Hamiltonian which is distinct from |�0〉 (see
Fig. 1). At the same time, it necessarily has low energy since
the energy change � associated with an adiabatic insertion of
flux through a cylinder must vanish in the thermodynamic limit
(assuming charge conservation is not broken spontaneously).
In this way, we can construct a low-lying excited state |�ex〉
whose energy gap vanishes in the thermodynamic limit.

To complete the argument, we now imagine adding an
arbitrary local, time reversal invariant, charge conserving
perturbation to the system (for example, we could add short-
ranged interactions between the electrons). As long as the
perturbation does not close the bulk gap, the above picture must
stay the same: the local Kramers degeneracy between |�1〉,
|�2〉 must remain intact, and hence |�ex〉 must continue to be
low in energy. We conclude that the system always contains
at least one low-lying excited state |�ex〉 whose energy gap
vanishes in the thermodynamic limit.

B. Topological order and ground-state degeneracy on a cylinder

One of the main complications in extending the flux
insertion argument to the general case is that the more general
states (19) and (20) have “topological order,”11,12 that is, they
support quasiparticle excitations with fractional statistics. An
important consequence of this is that these systems typically
have multiple degenerate ground states when defined in a
topologically nontrivial geometry, such as a torus.11,12,19 This
ground-state degeneracy is very robust and cannot be split by
any local perturbation (in the thermodynamic limit).

Similar low-lying states can occur in a cylindrical geometry:
the geometry of interest here.20 As an example, consider a
toy model where spin-up and spin-down electrons each form
ν = 1/3 Laughlin states with opposite chiralities (this model
corresponds to the case (21) with K = 3). This model has
three protected low-lying states in a cylindrical geometry.
The first low-lying state is the ground state |�0〉. The
other two states can be obtained by starting with |�0〉 and
adiabatically inserting either �0 flux, yielding a state |� ′

0〉,
or 2�0 flux, yielding |� ′′

0 〉. We know that these states are
(nearly) degenerate in energy, since the energy change �

associated with inserting a fixed amount of flux must vanish in
the thermodynamic limit (assuming that charge conservation
is not broken). At the same time, we can see that they are
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orthogonal to one another since the insertion of a flux quantum
transfers a spin-up e/3 quasiparticle from the left edge to the
right edge, and a spin-down e/3 quasiparticle from the right
edge to the left edge. Given that the states differ in the amount
of spin on the two edges, they must be orthogonal.

In fact, the three states are not only orthogonal, but they
belong to different “topological sectors.” That is, they cannot
be coupled together by any O, which is a finite product of local
operators:

〈�0|O|� ′
0〉 = 〈�0|O|� ′′

0 〉 = 〈� ′
0|O|� ′′

0 〉 = 0. (59)

On an intuitive level, these matrix elements vanish because an
e/3 quasiparticle is a fractionalized excitation with nontrivial
statistics, so no local operator composed out of electron
creation and annihilation operators can create or destroy such
an excitation. (Instead, a “stringlike” operator is required to
move such an excitation from one edge to another.) A more
precise way to argue this is to note that if one takes a pair
of states, say |�0〉 and |� ′

0〉, and measures the Berry phase
associated with moving an e/3 spin-up quasiparticle around
the cylinder, one gets a different result for the two states (with
the difference given by the statistical phase 2θex = 2π/3). No
local operator (or finite product of local operators) can change
this relative Berry phase and hence no term of this kind can
connect the two states.

C. General case: Outline of the argument

As explained above, when a topologically ordered system
is defined in a cylindrical geometry, one typically finds
multiple low-lying states, each one belonging to a different
topological sector. Because of this phenomenon, we will raise
our standards for the flux insertion argument. It is not enough
to just show that there are low-lying states at zero flux; this is
(nearly) always the case in topologically ordered systems and
does not constitute evidence for a protected gapless edge mode,
even at a heuristic level. Instead, we will show that there is a
low-lying state in the same topological sector as the ground
state. This will establish the existence of an “unexpected”
low-lying state, which can plausibly be taken as evidence for
a gapless edge mode.

Because we want to establish this stronger claim, the
generalized flux insertion argument begins by inserting not
±�0/2 flux but ±�0/2e∗ flux where e∗ is the smallest charged
excitation, in units of e. By inserting this (larger) amount of
flux, we guarantee that the resulting states, |�1〉,|�2〉 lie in the
same topological sector.6,20 To see this, note that |�1〉 can be
obtained from |�2〉 by inserting �0/e

∗ flux. This flux insertion
process changes the Berry phase associated with braiding a
quasiparticle around the cylinder by

�θ = 2πq
1

e∗ , (60)

where q is the charge of the quasiparticle (in units of e). By
construction q

e∗ is always an integer so that �θ is a multiple
of 2π for every quasiparticle. Hence |�1〉 and |�2〉 have the
same Berry phases with respect to all quasiparticles, implying
that they belong to the same topological sector.

Other than this small modification, the argument proceeds
as in the integer case. In the first step, we show that the

state |�1〉 has a Kramers degeneracy near the two ends of the
cylinder as long as 1

e∗ χ
TK−1τ is odd. In the second step, we

use this Kramers degeneracy to construct a protected low-lying
excited state |�ex〉 at zero flux. Similarly to the integer case,
we construct |�ex〉 by starting with |�2〉 and adiabatically
inserting −�0/2e∗ flux. Importantly, |�ex〉 is guaranteed to be
in the same topological sector as the ground state |�0〉, since
|�1〉,|�2〉 are in the same topological sector. In this way, we
see that if 1

e∗ χ
TK−1τ is odd, then the system has a protected

low-lying state in the same topological sector as the ground
state. This is exactly what we wanted to show.

The only piece of the argument which is missing is the
proof that |�1〉 has a Kramers degeneracy near the two ends
of the cylinder whenever 1

e∗ χ
TK−1τ is odd. We now establish

this fact. The first step is to explain more precisely what it
means to have a Kramers degeneracy near the two ends of the
cylinder.

D. Local Kramers degeneracy and a local analog
of Kramers theorem

In this section, we give a precise definition of “local
Kramers degeneracy.” We also use this definition to state
and prove a local analog of Kramers theorem. We start by
reviewing the usual (global) notion of Kramers degeneracy.
Recall that a quantum many-body state |v〉 is said to be
“Kramers degenerate” with its time reversed partner |v′〉 =
T |v〉 if |v〉 contains an odd number of electrons, or equivalently
T 2|v〉 = −|v〉. The motivation for this terminology is that, if
v,v′ are of this form, then it follows that

〈v′|O|v〉 = 0, 〈v|O|v〉 = 〈v′|O|v′〉 (61)

for any Hermitian time-reversal invariant operator O. In
particular, |v〉 and |v′〉 are guaranteed to be orthogonal and
degenerate in energy for any time-reversal invariant Hamilto-
nian H . The result (61) is known as Kramers theorem.

Now suppose that |v〉 is a quantum many body state with
an even number of electrons. In this case, |v〉 does not satisfy
the requirements for the usual global Kramers degeneracy.
However, |v〉 may still exhibit a “local Kramers degeneracy.”
Imagine, for example, we take a time-reversal invariant
insulator and insert two additional electrons, trapping them
in widely separated potential wells. Let us denote the position
of the two potential wells by a,b. We expect intuitively that
we can treat the two regions near a,b as two separate systems,
each with an odd number of electrons and a corresponding
local Kramers degeneracy. Moreover, we expect that this local
Kramers degeneracy guarantees that the ground state is part of
a multiplet of four degenerate states; two states coming from
each region.

We now formalize this intuition. First, we give a definition
of local Kramers degeneracy; afterwards we state a local
analog of Kramers theorem. All proofs are given in the
Appendixes.

First, we need to define the notion of a “local operator”:
we will say that an operator is local if it can be written as a
sum of terms, each of which is a product of an even number
of electron creation and annihilation operators acting in some
finite sized region. One implication of this definition is that
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local operators always commute if they act on nonoverlapping
regions.

We are now ready to define “local Kramers degeneracy”.
Let |v〉 be a quantum many body state with an even number of
electrons. Suppose v has short range correlations. That is,

〈v|O1O2|v〉 = 〈v|O1|v〉〈v|O2|v〉 (62)

for any two widely separated local operators, O1 and O2. We
will say that |v〉 has a local Kramers degeneracy in regions
a and b if:

(1) The state |v〉 satisfies

T |v〉 = SaSb|v〉 (63)

for some local operators Sa and Sb acting on regions a and b.
We will assume Sa,Sb are normalized so that ‖Sav‖ =
‖Sbv‖ = 1.

(2) The state |v〉 satisfies

T 2
a |v〉 = T 2

b |v〉 = −|v〉, (64)

where Ta ≡ T Sb, Tb ≡ T Sa .
We now explain the physical meaning of these conditions.

The first condition (63) is essentially the statement that |v〉 is
time-reversal invariant away from regions a and b. The second
condition (64) formalizes the notion of having an odd number
of electrons localized in regions a and b. The basic idea is that
the two antilinear operators Ta and Tb implement a local time-
reversal symmetry transformation in the two regions a and b.
The condition T 2

a |v〉 = −|v〉 is then analogous to the usual
requirement for Kramers theorem, T 2|v〉 = −|v〉.

A useful fact, proved in Appendix E, is that if |v〉 satisfies
Eqs. (62) and (63), then either

T 2
a |v〉 = T 2

b |v〉 = +|v〉 or T 2
a |v〉 = T 2

b |v〉 = −|v〉. (65)

The two cases correspond (roughly speaking) to having either
an even or odd number of electrons localized near regions
a and b. (Not surprisingly, local Kramers degeneracies always
come in pairs, since we have assumed that the total number of
electrons is even.)

To get a feeling for this definition, it is useful to think about
the above example of a time reversal invariant insulator state
|v〉, with two additional electrons localized near points a and b.
Intuitively, |v〉 has a local Kramers degeneracy near a and b.
At the same time, |v〉 satisfies the above conditions, as we
now show. To establish the first condition (63), let us assume
without loss of generality that the two electron spins point
in the +ẑ direction. Then, we have T |v〉 = σx

a σ x
b |v〉, where

σx
a ,σ x

b are spin-flip operators acting on the spins localized
near a and b. Hence, we can take Sa = σx

a , Sb = σx
b . As for

the second condition (64), this relation follows from the fact
that T σx

b T = −σx
b so that T 2

a |v〉 = (T σx
b )2|v〉 = −|v〉 (and

similarly for T 2
b |v〉). Finally, we note that Ta does in fact

implement a local time-reversal transformation near region a:
Ta|v〉 is a state where the spin near b points in the +ẑ direction
and the spin near a points in the −ẑ direction—the “local time
reverse” of |v〉.

To complete our discussion, we now state a local analog of
Kramers theorem (61) based on this definition. The proof of
this result is given in Appendix F.

Local Kramers theorem: Let |v〉 be a quantum many-body
state satisfying conditions (62)–(64) so that |v〉 has a local

Kramers degeneracy in regions a and b. Let |v′〉 = Ta|v〉. Then
|v〉 and |v′〉 satisfy

〈v′|O|v〉 = 0, 〈v|O|v〉 = 〈v′|O|v′〉 (66)

for any O which is a finite product of local, Hermitian, time-
reversal invariant operators.

In order to understand the implications of this result,
suppose that |v〉 is a ground state of a time-reversal invariant
Hamiltonian H with a finite energy gap. We can see from
Eq. (66) that |v′〉 = Ta|v〉 is orthogonal to |v〉 and degenerate
in energy. In other words, Eq. (66) guarantees that H has
a twofold ground-state degeneracy. In addition, Eq. (66)
implies that if we add an arbitrary local time-reversal invariant
perturbation to H then the degeneracy between |v〉 and |v′〉
does not split to any finite order in perturbation theory: at each
order, the off-diagonal matrix elements vanish, while the two
diagonal elements are identical. In this way, Eq. (66) implies
the existence of a robust ground state degeneracy which is
analogous to the usual Kramers degeneracy.

It is worth mentioning that while the above theorem focuses
entirely on the Kramers degeneracy in region a, there is an
identical twofold degeneracy coming from region b. Thus there
are four degenerate states altogether: |v〉,|v′〉 = Ta|v〉,|v′′〉 =
Tb|v〉,|v′′′〉 = T |v〉. This entire multiplet of four states obeys
the analog of Eq. (66), as can be shown using arguments similar
to the ones given in Appendix F.

E. Establishing that |�1〉 has a local Kramers degeneracy

We now fill in the missing piece of the flux insertion
argument from Sec. IV C: we show that if 1

e∗ χ
TK−1τ is odd,

then |�1〉 has a local Kramers degeneracy near the two ends
of the cylinder. The first step is to understand the relationship
between the two states |�1〉 and |�2〉. Recall that these states
are obtained by starting in the state |�0〉 and adiabatically
inserting ±�0/2e∗ flux. Therefore, if we start in |�1〉 and then
insert −�0/e

∗ flux, we obtain |�2〉.
We next use the edge theory (10) for the two edges of the

cylinder to analyze the effect of this flux insertion process.
A simple calculation (see Appendix G) shows that the effect
of the flux insertion process is given by applying an operator
Sl Sr to |�1〉, where Sl acts on the left edge and Sr acts on the
right edge:

|�2〉 = SlSr |�1〉. (67)

Here, Sl and Sr are given by

Sl = �l(
c), Sr = �r (−
c) (68)

with

�l(
) ≡
∫

dx√
L

ei�l (
) (69)

and similarly for �r . The vector 
c is defined by 
c =
1
e∗ K−1τ .

We can now identify Sl and Sr with the Sa and Sb operators
from the definition of local Kramers degeneracy. With this
identification, Eq. (67) immediately establishes one of the
conditions (63) for local Kramers degeneracy. All that remains
is to prove the relation (64). In other words, we need to show
T SlT Sl|�1〉 = −|�1〉. To this end, note that according to
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Eq. (29), �l(
c) transforms under time reversal as

T −1�l(
c)T = �l(−
c)eiπχT 
c . (70)

Then, since χT 
c = 1
e∗ χ

TK−1τ is odd, we have

T −1�l(
c)T = −�l(−
c). (71)

It follows that

T SlT Sl|�1〉 = −�l(−
c)�l(
c)|�1〉
= −�1 (72)

as required.

V. CONCLUSION

In this work, we have investigated the properties of general
time-reversal invariant insulators with Abelian quasiparticle
statistics. First, we constructed all possible Chern-Simons
theories that can describe such insulators. Second, we derived
a general criterion for when such states have protected edge
modes—that is, edge modes that cannot be gapped without
breaking time-reversal or charge-conservation symmetry, ex-
plicitly or spontaneously. Finally, we gave a precise definition
of “local Kramers degeneracy” and we proved a local analog
of Kramers theorem, the important concepts in the theory of
topological insulators.

A number of questions remain open. First, we do not yet
have microscopic realizations of all the Chern-Simons theories
discussed here. In particular, we do not have any examples
where the vector x in the definition of χ (20) is nonzero.
Such examples would be particularly interesting because, in
their simplest form, they would give microscopic models for
bosonic topological insulators without fractionalization (see
Sec. II D for a brief discussion). These bosonic topological
insulators were conjectured to exist in Ref. 16, but have not
yet been studied in the context of concrete microscopic models.

Another issue is that we have focused entirely on insu-
lators with Abelian statistics. Yet it is not hard to construct
microscopic models for non-Abelian time-reversal invariant
insulators. For example, one can imagine toy models, similar
to those discussed in Ref. 6, where the spin-up and spin-down
electrons each form non-Abelian fractional quantum Hall
states with opposite chiralities. It would be interesting to
analyze the stability of the edge modes in this case. This
stability question was partially addressed by the flux insertion
argument in Ref. 6. However, the analysis in Ref. 6 is not
yet complete since the flux insertion argument only allows
us to prove that the edge modes are protected when σsH/e∗
is odd; it does not prove that the edge modes can be gapped
out when σsH/e∗ is even. Completing this analysis requires a
microscopic investigation of the stability of the edge modes,
and is an interesting question for future research.

Finally, it would be interesting to generalize the approach
presented here to the three dimensional case. We now have
a number of examples10,21,22 of three dimensional fractional
topological insulators, but these constructions almost certainly
do not exhaust all the possibilities. It would be interesting
to develop a general classification scheme for 3D fractional
topological insulators analogous to the one discussed here.
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APPENDIX A: GENERAL TIME-REVERSAL INVARIANT
CHERN-SIMONS THEORIES

In this section, we find the most general p × p integer
matrices, K, T , and p component vectors τ, χ satisfying

T TKT = −K, (A1)

T 2 = 1, (A2)

T τ = τ, (A3)

(1 − T T )χ ≡ τ (mod 2). (A4)

We show that the most general solutions to these consistency
conditions are of the form Eqs. (19) and (20), up to the
equivalence transformations (15)–(17).

To begin, we note that Tr(T ) = 0. We can derive this fact by
multiplying both sides of (A1) on the right by TK−1 and taking
the trace. Next, we note that T has eigenvalues ±1 since T 2 =
1. Combining this with the fact that Tr(T ) = 0, we conclude
that T has an equal number of +1 and −1 eigenvalues. Let the
number of +1 eigenvalues be N , so that p = 2N . Interestingly,
we can already see that p must be even.

In the third step, we choose a basis {v1, . . . ,vN } for the
+1 eigenspace of T . We choose this basis so that the vi are
integer vectors. This is always possible since this eigenspace is
spanned by the columns of 1 + T , a matrix with integer entries.
In fact, we will go a step further and choose the basis so that the
N × N minors of the matrix with columns {v1, . . . ,vN } have
no common factor. This property guarantees that we can extend
{v1, . . . ,vN } to an integer basis {v1, . . . ,vN ,w1, . . . ,wN } for
the whole p = 2N dimensional space, such that the matrix
with columns {v1, . . . ,vN ,w1, . . . ,wN } has determinant ±1.

We next make a change of basis to {v1, . . . ,

vN ,w1, . . . ,wN }. Equivalently, we make a transformation
T → UT U−1 (15), where U−1 is the matrix with columns
{v1, . . . ,vN ,w1, . . . ,wN }. After this change of basis, T is of
the form

T =
(

1N F

0 G

)
, (A5)

where F and G are of dimensions N × N .
In the fifth step, we use T 2 = 1 to deduce that G2 = 1. We

also have Tr(G) = Tr(T ) − N = −N . Combining these two
facts, we conclude that all the eigenvalues of G are equal to
−1 so that G = −1N. Hence T is of the form

T =
(

1N F

0 −1N

)
. (A6)
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The sixth step is to make another transformation T →
UT U−1 (15), where U is an integer matrix of the form

U =
(

U1 0

0 U2

)
(A7)

and det(U1) = det(U2) = ±1. Under this transformation,
F → U1FU−1

2 . By choosing U1and U2 appropriately we can
make F a diagonal matrix: this follows from the Smith normal
form23 for integer matrices.

The seventh step is to make another transformation T →
UT U−1 (15), where U is of the form

U =
(

1N Y

0 1N

)
. (A8)

Under this transformation, F → F − 2Y . By choosing Y

appropriately, we can guarantee that F has only 0’s and 1’s on
the diagonal. Hence, we can assume without loss of generality
that F is of the form

F =
(

1N−M 0

0 0

)
, (A9)

where M � N . Putting this all together, we conclude that T

can be written in the form

T =

⎛
⎜⎜⎜⎝

1N−M 0 1N−M 0

0 1M 0 0

0 0 −1N−M 0

0 0 0 −1M

⎞
⎟⎟⎟⎠. (A10)

The final step is to make yet another transformation T →
UT U−1 (15), where U is of the form

U =

⎛
⎜⎜⎜⎝

1N−M 0 0 0

0 1M 0 0

1N−M 0 1N−M 0

0 0 0 1M

⎞
⎟⎟⎟⎠. (A11)

This transformation changes T to

T =

⎛
⎜⎜⎜⎝

0 0 1N−M 0

0 1M 0 0

1N−M 0 0 0

0 0 0 −1M

⎞
⎟⎟⎟⎠. (A12)

After reordering the rows and columns, we arrive at

T =

⎛
⎜⎜⎜⎝

−1M 0 0 0

0 1M 0 0

0 0 0 1N−M

0 0 1N−M 0

⎞
⎟⎟⎟⎠. (A13)

Using the relations (A1) and (A3), we then deduce that K,τ

must be of the form

K =

⎛
⎜⎜⎜⎝

0 A B B

AT 0 C −C

BT CT K W

BT −CT WT −K

⎞
⎟⎟⎟⎠, τ =

⎛
⎜⎜⎝

0

t ′
t

t

⎞
⎟⎟⎠, (A14)

where matrix A is of dimension M × M , K and W = −WT

are of dimension (N − M) × (N − M) and the matrices B,C

are of dimension M × (N − M). Also, t ′ is an M component
integer vector and t is an (N − M) component integer vector.
In fact, it follows from condition (4) that t ′ is an even vector.

As for χ , it is not hard to see that we can put χ in the form

χ =

⎛
⎜⎜⎝

y1

0

0
y2

⎞
⎟⎟⎠ (A15)

using an appropriate transformation χ → χ + 1
π
K(1 − T )ξ

(16). Then, using the relation (A4), we deduce that

y2 ≡ t (mod 2) (A16)

and y1 is an integer vector. Finally, we use the equivalence
χ → χ + 2v (17) to set y2 = t , and to change y1 into a vector
of 1’s and 0’s. This completes our derivation of Eqs. (19)
and (20).

APPENDIX B: REFORMULATION OF EDGE MODE
CRITERION IN TERMS OF SPIN-HALL CONDUCTIVITY

According to the results in Secs. III and IV, the insulators
described by Eqs. (19) and (20) have protected edge modes
if and only if 1

e∗ χ
TK−1τ is odd. In this section, we show

that this criterion can be reformulated in simpler language
for a large class of sz conserving insulators. To be specific, we
consider insulators such that χ ≡ τ↓ (mod 2), where τ↑ and τ↓
are the “charge vectors,” which keep track of the (separately
conserved) spin-up and spin-down electrons. For this class
of insulators, we show that the edge mode criterion can be
equivalently phrased in terms of the parity of σsH/e∗ where
σsH is the spin-Hall conductivity in units of e/2π .

To see this, define


c = 1

e∗K
−1τ. (B1)

Then, we can write

1

e∗ χTK−1τ = χT 
c. (B2)

At the same time, we have

σsH = 1

2
(τ↑ − τ↓)TK−1τ = −τT

↓ K−1τ, (B3)

where the second equality follows from time-reversal symme-
try. Hence,

σsH

e∗ = − 1

e∗ τT
↓ K−1τ = −τT

↓ 
c. (B4)

Comparing Eqs. (B2) and (B4), the claim follows immediately:
if χ ≡ τ↓ (mod 2), then 1

e∗ χ
TK−1τ has the same parity as

σsH/e∗. Thus, in this case, the criterion for protected edge
modes can be equivalently formulated as the condition that
σsH/e∗ is odd.

APPENDIX C: THE NULL VECTOR CRITERION

In this section, we explain why the null vector condition
(37) guarantees that the perturbation (36) can gap out the
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two pairs of edge modes in example 2 (see Sec. III C). The
idea is as follows: we consider a change of variables of the
form �′ = U�, where U is a 4 × 4 matrix whose first two
rows are 
T

1 K,
T
2 K. The condition (37) guarantees that, if

we choose the other two rows of U appropriately, then the
resulting K′ = (U−1)TKU−1,τ ′ = (U−1)T τ can be put in the
form

K′ =

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎠, τ ′ =

⎛
⎜⎜⎜⎝

t1

t2

0

0

⎞
⎟⎟⎟⎠. (C1)

(The reason that τ ′ takes the above form is that 
1 and 
2 are
charge conserving vectors.)

We next assume that interactions on the edge are such that
V ′ = (U−1)TVU−1) = vδIJ (we can make this assumption
without loss of generality since the velocity matrix is nonuni-
versal and can be modified by appropriate perturbations at the
edge). In this case, the edge theory can be written as the sum
of two decoupled actions:

L = L13 + L24, (C2)

where

L13 = 1

4π
[2∂x�

′
1∂t�

′
3 − v(∂x�

′
1)2 − v(∂x�

′
3)2]

+ t1

2π
εμν∂μ�′

1Aν (C3)

and

L24 = 1

4π

[
2∂x�

′
2∂t�

′
4 − v(∂x�

′
2)2 − v(∂x�

′
4)2]

+ t2

2π
εμν∂μ�′

2Aν. (C4)

In the new �′ variables, the perturbation (36) becomes

U (x){cos[�′
1 − α(x)] + (−1)Q(
1) cos[�′

2 − α(x)]
}
.

(C5)

It is now easy to analyze the effect of the perturbation (C5):
clearly, this term will gap out the two Luttinger liquids by
freezing the values of �′

1 and �′
2. Note that the relevance or

irrelevance of Eq. (C5) is not important here, since the system
will always be gapped out for large U . Alternatively, it is not
hard to see that we can always make Eq. (C5) relevant if we
tune the velocity matrix V ′ so that the coefficients of (∂x�

′
1)2

and (∂x�
′
2)2 are much larger than the coefficients of (∂x�

′
3)2

and (∂x�
′
4)2.

APPENDIX D: PRIMITIVITY CONDITION

Let 
1, . . . ,
N be N integer vectors with M components,
M � N . Let B denote the matrix with columns 
1, . . . ,
N . In
this section, we show that there exist integers a1, . . . ,aN with
no common divisor such that the linear combination

∑
i ai
i

is nonprimitive, if and only if the set of ( 2N

N ) N × N minors
of the matrix B have a common factor.

To begin, we make use of the Smith normal form23 for
integer matrices. According to this result, we can always find
an M × M integer matrix S and an N × N integer matrix T ,

both with determinant ±1, such that B = S D T , where D is
an M × N integer matrix of the form

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 0 · · · 0

0 d2 · · · 0
...

...
...

...

0 0 · · · dN

...
...

...
...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D1)

Next, we compare the N × N minors of B and D. Let b denote
the greatest common factor of the N × N minors of B, and let
d denote the greatest common factor of the N × N minors of
D. Given that S and T are integer matrices, it follows from B =
S D T that the minors of B are integer linear combinations of
the minors of D. Hence d divides into b. On the other hand,
since S and T have determinant ±1, we can equally well write
D = S−1 B T −1, implying that the minors of D are integer
linear combinations of the minors of B. Thus, we also know
that b divides into d. Combining these two observations gives
b = d. At the same time, the explicit expression for D (D1)
immediately implies d = |d1 d2 · · · dN |. We conclude that the
greatest common factor b is larger than 1 if and only if one of
the dj ’s is different from ±1.

To complete the argument, we need to show that having
one of the dj ’s different from ±1 is necessary and sufficient
for having a nonprimitive linear combination

∑
i ai
i . To see

that this condition is sufficient, suppose that one of the dj ’s is
different from ±1. We then define a1, . . . ,aN to be the elements
of the j th column of T −1. Using B = S D T , we can see that∑

i ai
i = dj 
, where 
 is the j th column of S. Also, we
can see that the ai have no common divisor since T −1 has
determinant ±1. Hence we have constructed a nonprimitive
linear combination. Conversely, suppose di = ±1 for all i, and
let a1, . . . ,aN be integers with no common factor. Defining a =
(a1, . . . ,aN ), we have

∑
i ai
i = B a = S D T a. We then

note that since S,T have determinant ±1, the vector S D T a

must have no common factor. We conclude that
∑

i ai
i is
primitive for any choice of ai . This completes the proof.

APPENDIX E: PROOF OF EQ. (65) REGARDING LOCAL
KRAMERS DEGENERACIES

Let |v〉 be a quantum many-body state with an even number
of electrons and short-range correlations. In this section, we
show that if |v〉 satisfies Eq. (63), then either

T 2
a |v〉 = T 2

b |v〉 = |v〉 or T 2
a |v〉 = T 2

b |v〉 = −|v〉. (E1)

The first step is to show that T 2
a |v〉 = ζ |v〉 and T 2

b |v〉 = 1
ζ
|v〉

for some complex number ζ . To see this, we define A = T 2
a

and B = T 2
b and note that

BA|v〉 = (T SaT Sa)(T SbT Sb)|v〉
= (T SaT )Sa(T SbT )Sb|v〉
= (T SaT )(T SbT )SaSb|v〉
= T SaSbT SaSb|v〉
= |v〉. (E2)
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Here, the third equality follows from the fact that Sa,(T SbT )
are local operators acting in nonoverlapping regions and
therefore commute. Next we note

〈v|B†B|v〉〈v|A†A|v〉 = 〈v|(B†B)(A†A)|v〉
= 〈v|A†B†BA|v〉
= 〈v|v〉
= 1, (E3)

where the first equality comes from the fact that v has short-
range correlations and A,B are local operators acting in distant
locations: A = T 2

a = (T SbT )Sb acts in region b, while B =
T 2

b = (T SaT )Sa acts in region a.
On the other hand, if we insert a complete set of states

�i |vi〉〈vi | into 〈v|B†B|v〉,〈v|A†A|v〉 and we choose this set
of states so that one of the vi’s is v, we deduce the inequalities

〈v|B†B|v〉 � |〈v|B|v〉|2,
(E4)

〈v|A†A|v〉 � |〈v|A|v〉|2.
Multiplying these two inequalities gives

〈v|B†B|v〉〈v|A†A|v〉 � |〈v|B|v〉|2 |〈v|A|v〉|2
= |〈v|BA|v〉|2
= |〈v|v〉|2
= 1, (E5)

where the first equality again follows from the fact that v has
short range correlations. Comparing Eqs. (E3) and (E5), we
deduce that v must be an eigenvector of both A and B, since
this is the only way the inequality can be saturated. In other
words, T 2

a |v〉 = ζ |v〉,T 2
b |v〉 = 1

ζ
|v〉 for some complex ζ .

Now we show that ζ = ±1. First, we note that

Ta|v〉 = T Sb|v〉
= T Sb(T SaSb|v〉)
= (T SbT )SaSb|v〉
= Sa(T SbT )Sb|v〉
= SaT 2

a |v〉, (E6)

so that

Ta|v〉 = ζSa|v〉. (E7)

This relation, together with the fact that ‖Tav‖ = ‖T Sbv‖ =
‖Sbv‖ = 1 and ‖Sav‖ = 1, implies that |ζ | = 1. To see that
ζ = ±1, we note that

T 2
a (Ta|v〉) = Ta(T 2

a |v〉) = ζ ∗Ta|v〉 (E8)

by antilinearity. At the same time,

T 2
a (Sa|v〉) = SaT 2

a |v〉 = ζSa|v〉, (E9)

where the first equality follows from the fact that T 2
a and Sa act

in different regions and hence commute. Given that Ta|v〉 ∝
Sa|v〉 by Eq. (E7), we must have ζ = ζ ∗. We conclude that
ζ = ±1.

APPENDIX F: PROOF OF THE LOCAL ANALOG
OF KRAMERS THEOREM

In this Appendix, we prove the local analog of Kramers
theorem described in Sec. IV D. Let |v〉 be a quantum many
body state with an even number of electrons, short range

correlations, and with a local Kramers degeneracy in regions
a and b [i.e., suppose |v〉 satisfies conditions (62)–(64)].
Define |v′〉 = Ta|v〉, where Ta = T Sb. The result we wish to
establish is that

〈v′|O|v〉 = 0, (F1)

〈v|O|v〉 = 〈v′|O|v′〉, (F2)

for any O, which is a finite product of local, Hermitian, time-
reversal invariant operators.

To begin, we write O = O1 · · ·Ok , where the Oi are local,
Hermitian, time-reversal invariant operators acting on widely
separated regions. We first consider the special case where all
of the Oi act on regions that are far from b. (Here, when we
say “far,” we mean much farther than the correlation length).
The proof in this case is based on three observations:

(1) The operator O commutes with Ta .
(2) For any two operators O and O′ that act on regions far

from b,

〈TaO′v|TaOv〉 = 〈Ov|O′v〉. (F3)

In other words, Ta behaves like an antiunitary operator within
the subspace of states of the form {O|v〉}.

(3) The state |v′〉 can be written as

|v′〉 = Ta|v〉 = −Sa|v〉. (F4)

The first observation follows from the fact thatO commutes
with Sb, and therefore also commutes with Ta = T Sb. The
second observation (F3) follows from

〈TaO′v|TaOv〉 = 〈T SbO′v|T SbOv〉
= 〈SbOv|SbO′v〉
= 〈v|O†S†

bSbO′v〉
= 〈v|(O†O′)(S†

bSb)|v〉
= 〈v|O†O′|v〉 〈v|S†

bSb|v〉
= 〈v|O†O′|v〉
= 〈Ov|O′v〉, (F5)

where we are using the fact that |v〉 has short range correlations
in the fifth equality. As for the third observation (F4), this is
equivalent to the identity derived in Eq. (E6).

Given these three observations, our argument proceeds just
like the proof of the usual Kramers theorem. To derive (F1),
we note that

〈v′|Ov〉 = 〈TaOv|Tav
′〉

= 〈OTav|Tav
′〉

= 〈Ov′|T 2
a v〉

= −〈Ov′|v〉
= −〈v′|Ov〉, (F6)

where the first equality follows from Eqs. (F3) and (F4). It
then follows that 〈v′|Ov〉 = 0. As for Eq. (F2), we have

〈v|Ov〉 = 〈TaOv|Tav〉
= 〈OTav|Tav〉
= 〈Ov′|v′〉
= 〈v′|Ov′〉. (F7)
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This completes the argument for the special case where all
the Oi act far from b. We now consider the general case, where
some of theOi operators may act in the vicinity of b. We define
Oα to be the product of all the Oi that act far from b, and Oβ to
be the product of all the other Oi . We can then express O as a
product O = OαOβ . We note that the definition of Oα and Oβ

guarantees that Oα acts on regions far from b, while Oβ acts
on regions far from a. Also, Oα and Oβ act on regions that are
far from one another.

The factorization O = OαOβ is useful because it allows us
to reduce the general problem to the special case treated above.
Indeed, consider the relation (F1). Simple manipulations give

〈v′|Ov〉 = 〈v′|OαOβv〉
= −〈Sav|OαOβv〉
= −〈v|S†

aOαOβ |v〉
= −〈v|S†

aOα|v〉 〈v|Oβ |v〉
= 〈v′|Oαv〉 〈v|Oβ |v〉, (F8)

where the fourth equality follows from the fact that v has
short range correlations. On the other hand, we know that
〈v′|Oα|v〉 = 0 by the special case discussed above. The
relation (F1) follows immediately.

Similarly, to derive Eq. (F2), we note that

〈v′|Ov′〉 = 〈v′|OαOβv′〉
= 〈Sav|OαOβSav〉
= 〈v|S†

aOαOβSav〉
= 〈v|(S†

aOαSa)(Oβ)|v〉
= 〈v|S†

aOαSa|v〉 〈v|Oβ |v〉
= 〈v′|Oα|v′〉 〈v|Oβ |v〉. (F9)

Then, using the fact that 〈v′|Oα|v′〉 = 〈v|Oα|v〉 we deduce

〈v′|Ov′〉 = 〈v|Oα|v〉 〈v|Oβ |v〉
= 〈v|OαOβ |v〉
= 〈v|Ov〉. (F10)

This completes our proof of the local analog of Kramers
theorem.

APPENDIX G: ADIABATIC FLUX INSERTION AND
THE EDGE THEORY

In this Appendix, we analyze the effect of the adiabatic flux
insertion of −1/e∗ flux quanta using the edge theory (10) to
describe the two edges of the cylinder. We show that the effect
of this flux insertion process is given by Eq. (67).

For now, we focus on one of the edges, say the left edge. The
adiabatic insertion of −1/e∗ flux quanta can be implemented
by applying a slowly varying vector potential (At,Ax) =
[0,f (t)/L], where f (−∞) = 0 and f (∞) = −2π/e∗. Since
the edge theory is quadratic, we can analyze the effect of
this flux insertion using the classical equations of motion. We
have

− K∂t∂x� + V∂2
x� = τ (∂tAx − ∂xAt ). (G1)

Integrating over x and using the above expression for A, we
derive

dρ

dt
= −K−1 τ

2π

df

dt
. (G2)

where ρI ≡ 1
2π

∫
dx∂x�I . The net effect of the flux insertion

is therefore

ρ → ρ + 1

e∗ K−1τ. (G3)

On the other hand, if one quantizes (10), one derives the
canonical commutation relations

[�I (y),∂x�J (x)] = 2πiK−1
IJ δ(x − y). (G4)

Letting �(
) = ∫
dx√
L
ei�(
), where �(
) = 
TK�, we de-

rive the commutation relation

[ρ,�(
)] = 
�(
). (G5)

Comparing Eqs. (G3) and (G5), we conclude that the adiabatic
flux insertion is implemented by the operator �( 1

e∗ K−1τ ) =
�(
c).

Including the effect on the right edge as well, we have

|�2〉 = �l(
c)�r (−
c)|�1〉, (G6)

where �l and �r denote the operators acting on the left and
right edges, respectively. This completes our derivation of
Eq. (67).
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