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We study the coherent properties of transmission through Kondo impurities by considering an open Aharonov-
Bohm ring with an embedded quantum dot. We develop a many-body scattering theory which enables us to
calculate the conductance through the dot Gd , the transmission phase shift ϕt , and the normalized visibility η

in terms of the single-particle T matrix. For the single-channel Kondo effect, we find at temperatures much
below the Kondo temperature TK that ϕt = π/2 without any corrections up to order (T/TK )2. The visibility
has the form η = 1 − (πT/TK )2. For the non-Fermi-liquid fixed point of the two-channel Kondo, we find that
ϕt = π/2 despite the fact that a scattering phase shift is not defined. The visibility is η = 1/2(1 + 4λ

√
πT ) with

λ ∼ 1/
√

TK , thus, at zero temperature, exactly half of the conductance is carried by single-particle processes,
and coherent transmission may actually increase with temperature. We explain that the spin summation masks
the inherent scattering phases of the dot, which can be accessed only via a spin-resolved experiment. In addition,
we calculate the effect of magnetic field and channel anisotropy, and generalize to the k-channel Kondo case.
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I. INTRODUCTION

If the ground state of a quantum dot has a fixed number
of electrons, decreasing the temperature to below the charging
energy of the dot reduces the conductance Gd through the dot
because of Coulomb blockade.1–4 If the electron occupancy is
odd, lowering the temperature even further increases Gd , until
it reaches (for a symmetrically coupled dot) 2e2/h at zero
temperature.5–7

The enhancement of the conductance is due to the single-
channel Kondo (1CK) effect,8 in which the dot acts as
a magnetic impurity that interacts with the spins of the
electrons in the surrounding leads. At low temperature, below
a characteristic temperature TK , a spin resonance is formed,
and the conductance through the resonance is perfect and
equals e2/h per spin. The physics of 1CK at low energy can
be described by a Fermi-liquid theory: at zero temperature,
all the particles that scatter off the impurity are scattered
into single-particle states, where the incoming and outgoing
states are connected by a π/2 scattering phase shift9 (see also
Sec. III).

The 1CK physics can be generalized to more complex
models, known as multichannel Kondo, where a few inde-
pendent channels compete to screen the impurity.10 In the
two-channel Kondo (2CK) case, when the couplings of the
two channels to the impurity are identical, the system flows
to a non-Fermi-liquid fixed point at zero temperature. At a
non-Fermi-liquid fixed point, the simple picture of elastic
scattering of single particles is no longer valid. At zero
temperature, a single particle that is scattered off a 2CK
impurity can be scattered only into a many-body state.11,12

Thus, there is no elastic single-particle scattering off a 2CK
impurity at the non-Fermi-liquid fixed point. The 2CK system
was first discussed as a purely theoretical problem,10 but it
was soon invoked as a candidate explanation for remarkable
low-energy properties of some heavy-fermion materials13–16

and glassy metals,17–21 and more recently in graphene.22–25

In the past decade, a few single-impurity realizations of

the 2CK system were proposed,26–30 offering the hope of
microscopically manipulating system parameters, and one of
the proposals29 was built and measured.31 The conductance
through a 2CK impurity, within one of the two channels, at
the non-Fermi-liquid fixed point is e2/2h per spin, assuming
equal coupling to two leads in that channel.11

Given that there are no elastic single-particle scattering
events off the impurity in the non-Fermi-liquid fixed point,
one might imagine that the transport through a 2CK impurity
has no coherent part. In this work, we show that at this fixed
point, exactly half of the conductance is carried by coherent
processes.32 This is because in a transport measurement
through a single-level quantum dot there are (at least) two
leads that are attached by tunneling to the dot. The electrons
that interact with the effective spin of the dot are described by
an operator ψ , a linear combination of electron operators in the
two leads. Another linear combination of electron operators in
the two leads, ξ , is decoupled from the dot. While there are no
elastic single ψ-particle scattering events, coherent transport
via ξ particles is possible.

The coherent properties of the transport through an impurity
can be measured in a two-path experiment, in which electrons
are sent from a source lead through two possible paths to a drain
lead (see Fig. 1). We assume that the propagations along the
different paths are independent of each other, namely, changes
in the properties of one path do not affect the propagation
along the other path. One of the paths contains the impurity of
interest, and the two paths encircle a magnetic flux φ. The
interference between the two paths depends on φ through
the Aharonov-Bohm (AB) effect. Hence, the conductance of
the setup contains two parts: a flux-independent part, which
is related to the separate conductances of the two paths, and a
flux-dependent part, which is related to the interference of the
two paths.

Two measurable quantities can be extracted from a two-path
experiment: the transmission phase shift of the flux-dependent
conductance, and the ratio between the amplitude of the
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FIG. 1. Schematic picture of a two-path setup. Electrons are sent
from the source lead toward the drain lead through two paths, the
partial waves of which interfere with each other. The transmission
amplitudes of the two paths are td and tref, and they encircle a magnetic
flux φ. The coherent transport through the Kondo impurity can be
studied by embedding it into one of the paths.

flux-dependent part and the flux-independent part of the
conductance. We cast the source-to-drain conductance of the
two-path device into the form

Gsd = Gd + Gref + 2
√

η
√

GdGref cos

(
eφ

h̄c
+ ϕt

)
, (1)

where Gd is the conductance through the path with the impurity
when the reference path is switched off, and Gref is the
conductance through the reference path when the impurity’s
conduction is switched off. The impurity will generally be real-
ized as one or more quantum dots, so we will interchangeably
refer to “impurity” and “dot” depending on context. We assume
that the paths are independent: manipulations of the dot (for
example, with gate potential) do not influence the conductance
of the reference path, and vice versa. The transmission phase
ϕt is related to the relative phase between the two paths, and the
normalized visibility η is related to the size of the coherent part
of the conductance compared to the total conductance. Note:
the phase of the reference path is arbitrary, determined by path
length, potential landscape, etc., so is the phase of the path with
the impurity, excluding the transmission phase of the impurity
itself. In the following, we assume for simplicity that each of
these phases is 0 mod 2π , so that ϕt is purely the transmission
phase of the impurity itself. The definition of η, implicit in
Eq. (1), is such that for Fermi liquids, at zero temperature and
without spin, η = 1. This can be easily checked by applying the
Landauer formalism33–36 for the two-path experiment setup.

The normalized visibility η can be reduced to below one
by four mechanisms: First, if the transmitted electrons accu-
mulate an energy-dependent phase when they are scattered
through the impurity, or just along either path, then at nonzero
temperature η is reduced because of the thermal averaging.
Second, if the phase depends on the spin, the spin summation
can also reduce η. Third, if part of the conductance is carried
by incoherent scattering processes, where single electrons are
scattered into many-body states, the interference and therefore
η are reduced. Fourth, electrons that are subjected to external
dephasing lose their coherence, so external dephasing also
decreases the interference and η. External dephasing depends
on the specific model and the details of the setup. Hence,
we focus mainly on the first three mechanisms, and only
qualitatively explore the effect of external dephasing on η.

Since Gd and Gref can be measured directly, the normalized
visibility can be experimentally determined. This requires two
measurements: the conductance through one of the paths, and
the two-path conductance. Measuring the transmission phase
of a 1CK impurity in a two-path setup was already suggested
before,37 and the predicted ϕt = π/2 was measured,38 demon-
strating coherent electron transmission through a many-body
state. Yet, no special attention was given to the amplitude
of the flux-dependent part of the conductance. In particular,
non-Fermi-liquid cases, where η can give information on the
underlying physics (and also ϕt is different from that in the
1CK case), were not treated.

In Sec. III, we relate ϕt and η to the single-particle elements
of the T matrix Tψψ (where the ψ particles are the particles
that interact with the dot). Using arguments of many-body
scattering, we find a relation between the coherent and the
incoherent parts of the conductance Gd, and rederive the
known expression for the conductance39–41

Gd = G0

∫
dε

(
−∂f

∂ε

)
2 Im{Tψψ }, (2)

where G0 is the quantum conductance multiplied by a sym-
metry factor related to relative coupling to different leads. We
also derive the following relations:

ϕt = arg(〈Tψψ 〉), η = |〈Tψψ 〉|2
2 Im〈Tψψ 〉 , (3)

where 〈Tψψ 〉 = 1
2

∑
s dε(− ∂f

∂ε
)Ts,ψψ is the thermal- and spin-

averaged value of the T matrix. Expressions for the dephasing
rate and the ratio between the inelastic scattering cross section
and the total cross section, both related to the normalized
visibility η, appear in the literature.42–45 We show that spin
summation has a crucial effect on ϕt and η of Kondo impurities.
Up to second order in T/TK (and B/TK ), spin summation
locks the value of ϕt at π/2 independent of the actual phases
that electrons accumulate when they cross the dot. Moreover,
spin summation reduces η significantly, even when all the
conductance is carried by coherent single-particle scattering.
The π/2 phase lock, and reduction of η, can be avoided if one
measures the conductance of each spin separately, and extracts
directly the transmission phase of each spin ϕts separately. A
concrete realization of Kondo impurities in quantum dots, with
access to each spin separately, was proposed by some of the
present authors in Ref. 46.

The main results of this work are as follows: It is known
that in the 1CK case, at zero temperature, the transmission
phase equals the scattering phase shift of the 1CK,37 ϕt = π/2.
Since all the electrons are elastically scattered, the normalized
visibility is η = 1. However, when a magnetic field is applied,
regular non-spin-resolved measurements of the conductance
miss the magnetic field corrections. In this case, we find that
the transmission phase ϕt remains π/2 to second order in B,
even though the scattering phase shift for each spin depends
on the magnetic field9,10 δψ,s = αs(π/2 − B/TK ) (α↑ = 1 and
α↓ = −1). In order to reveal the magnetic field dependence
of the phase shift, one needs to perform a spin-resolved
measurement, namely, to measure the conductance of each
spin separately.
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In the non-Fermi-liquid fixed point of the 2CK case, we find
that at zero temperature η = 1/2, that is, exactly half of the
conductance is carried by single-particle transmissions.42 The
electrons that elastically transmit through the 2CK impurity
accumulate a ϕt = π/2 phase when they cross the impurity.
In the presence of a finite magnetic field, the system flows
under renormalization group to a Fermi-liquid fixed point, at
zero temperature, rather than the non-Fermi-liquid one.47 At
this Fermi-liquid fixed point, we find that again, one needs
to perform a spin-resolved measurement. A spin-summed
measurement will lead, at zero temperature, to a transmission
phase ϕt = π/2 and a normalized visibility η = 1/2, despite
the fact that the spin-dependent scattering phase shifts are
δψ,s = αsπ/4, and despite the fact that the conductance is
carried exclusively by single-particle scattering [see Eqs. (28)
and (29)]. Measurement of each spin separately, however, will
lead to the desired η = 1, and ϕt = αsπ/4.

The rest of the paper is organized as follows: In Sec. II,
we briefly review possible realizations of electronic two-path
experiments, and discuss what we learn from their analysis. We
define the two measurable quantities ϕt and η and discuss their
physical meaning. In Sec. III, we develop a scattering approach
to the transport through an impurity, similar to the Landauer
formalism33–36 for the noninteracting case. We consider a
many-body scattering matrix to include both elastic single-
particle scattering and inelastic single-particle to multiparticle
scattering. We rederive the conductance through the impurity
and give the mathematical expressions for ϕt and η. In Sec. IV,
we focus on Kondo impurities, and give the results for ϕt and
η for several Kondo fixed points. We also briefly discuss the
influence of possible external dephasing on the normalized
visibility. Finally, we summarize our results and conclusions
in Sec. V. In Appendix A, we give a detailed derivation
of the multiparticle scattering approach for the conductance,
transmission phase, and normalized visibility. In Appendix B,
we give more details about a possible two-path setup that can
be tuned to fulfill the theoretical assumptions we have made
in our analysis.

II. TWO-PATH EXPERIMENTS, TRANSMISSION PHASE,
VISIBILITY, AND NORMALIZED VISIBILITY

In this section, we discuss two-path setups and define the
transmission phase ϕt and the normalized visibility η. We
emphasize that the normalized visibility η is distinct from the
more common definition of the visibility.

The prototype of two-path experiments is the double-slit
experiment. In a double-slit experiment, particles are launched
toward the double slit, where they split into partial waves
which interfere with each other. In the electronic version of
the double-slit experiment, schematically drawn in Fig. 1, a
coherent electron beam is emitted from a source lead toward a
drain lead, via a beam splitter that allows electron flow along
two different paths that encircle a magnetic flux φ. The source-
to-drain conductance is given by

Gsd = e

h

∑
s

∫
dε

(
−∂f

∂ε

)
Ts(ε), (4)

where Ts(ε) is the probability for an incoming electron with
energy ε and spin s to be transmitted through the double slit,

and f (ε) is the Fermi-Dirac distribution function. If all the
electrons that pass through the double slit do so elastically and
coherently, the probability Ts(ε) is given by33

Ts = |td,s |2 + |tref,s |2 + 2|td,s tref,s | cos

(
eφ

h̄c
+ θs

)
, (5)

where td,s and tref,s are the transmission amplitudes of the two
slits. The transmission amplitudes are complex quantities with
a phase difference eφ

h̄c
+ θs between them. The phase difference

contains a contribution θs determined by the details of the
transmission through the double-slit setup, and a magnetic-
flux-dependent part eφ

h̄c
coming from the AB effect.

Equation (5) is valid only if all the electrons are coherently
transferred through the double slit.48 If some of the electrons
are transferred incoherently through one of the slits, then, since
these electrons do not interfere, the flux-dependent term of Ts

is reduced. If we embed into one of the paths a quantum dot
(as in the lower path in Fig. 1), we can examine the dot’s
coherence properties by measuring the conductance. In such a
device, the phase that electrons accumulate as they cross the
dot is encoded in the relative phase between the two paths θs .

In experiments, the measured source to drain conductance
is typically cast in the form

Gsd = G0 + Gφ cos

(
eφ

h̄c
+ ϕt

)
. (6)

G0 is the part of the conductance which is independent of the
magnetic flux, and is related to the independent conductances
of the two paths, and Gφ is the amplitude of the flux-dependent
part of the conductance. In the general case, ϕt is different from
θs , but if td,s , tref,s , and θs are independent of spin and energy,
then ϕt = θ↑ = θ↓. In standard two-path experiments, the ratio
Gφ/G0, is called “visibility,” and it measures the strength of
the flux-dependent conductance oscillation compared to the
average conductance.

The ratio Gφ/G0 can be reduced by several mechanisms.
Trivially, a mismatch between the transmission amplitudes
|td| �= |tref| decreases the ratio |tdtref|/(|td|2 + |tref|2), and there-
fore reduces Gφ/G0. In addition to the trivial transmission
amplitude mismatch, four other mechanisms noted earlier can
reduce Gφ/G0: thermal averaging, spin averaging, inelastic
scattering, and externally induced dephasing.

There is a conceptual difference between transmission
amplitude mismatch of the two paths, and the other three
mechanisms for Gφ/G0 reduction (we assume for the moment
that there is no external dephasing). Unlike the transmission
amplitude mismatch, these other mechanisms can not be
probed by simple single-path conductance measurements of
the system. To isolate the transmission mismatch from elastic
versus inelastic scattering and energy or spin-dependent phase,
we decompose the conductance (6) into the form of Eq. (1):

Gd + Gref + 2
√

η
√

GdGref cos

(
eφ

h̄c
+ ϕt

)
.

Gd and Gref are the independent conductances through the two
paths, which can be measured directly by closing off one and
then the other path. Equation (1) defines a new quantity, the
normalized visibility η. If all the electrons transmit coherently
through the two paths, and accumulate the same phase,
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then η = 1, independent of possible transmission amplitudes
mismatch.

We want to make a comment about the feasibility of
interference measurements in two-path experiments: In real
experiments, there is a typical coherence length lcoh along
which the propagating electrons preserve their coherence. This
length depends on the details of the realization of the two-path
setup, and we assume that it is much larger than the lengths of
the two paths lref,ld 	 lcoh. However, this assumption is not
enough: Electrons with different energies propagate along the
two paths, accumulating an energy-dependent phase difference
θs = ε(lref − ld )/vF , where vF is the Fermi velocity. As a
result, the thermal averaging introduces a new length scale,
the thermal length49 lT = vF /πKBT :∫

dε

(
−∂f

∂ε

)
2|td,s tref,s | cos

[
eφ

h̄c
+ θs(ε)

]

= 2|td,s tref,s | cos

[
eφ

h̄c

]
lref − ld

lT

1

sinh[(lref − ld )/lT ]
. (7)

Hence, we also require that the difference in length between
the two paths is much shorter than the thermal length50 |lref −
ld | 	 lT . In this case, the difference in length introduces a
second-order correction to the amplitude of the oscillations:
lref−ld

lT

1
sinh[(lref−ld )/lT ] ≈ 1 − 1

6 ( lref−ld
lT

)2 ∼ 1 − T 2.

A. Open versus closed Aharonov-Bohm ring

Although we will not need or discuss all its details, it is
useful to have in mind a concrete physical system that realizes
a two-path experiment, the AB ring. In an AB ring setup with
closed geometry, as schematically drawn in Fig. 2(a), electrons
tunnel between two leads through a conducting ring which
encircles a magnetic flux. Electrons can propagate through
each of the two arms of the ring, and as the two possible ways
interfere, the conductance depends on the magnetic flux. Yet,
there is a major difference between the closed AB ring setup
and the double-slit experiment. In a naive electronic double-slit
experiment picture, the phase of the interference depends
continuously on the flux-tuned relative phase between the
two paths. In the closed AB ring, however, Onsager relations
impose the restriction G(φ) = G(−φ), which yields35,51 ϕt =
±π . This phase rigidity has been measured,52 and although
it is an interesting phenomenon by itself, it prevents a direct

Source Drain
φ

Source Drain
φ

FIG. 2. (a) Closed AB ring: electrons that are emitted from the
source tunnel to the drain through the ring either clockwise or
counterclockwise. The two interfering paths encircle a penetrating
flux φ. Time-reversal symmetry constrains the conductance: G(φ) =
G(−φ). (b) Open AB ring: electrons that propagate along the ring
may leak out to side leads that are attached to the ring. The restriction
G(φ) = (−φ) ceases to be valid.

measurement of the phase difference between the two arms of
the ring.

We can overcome this by using an open-AB-ring setup, as
schematically depicted in Fig. 2(b). In such an experimental
setup, that was used by Schuster et al.53 and later on by
others,38,54–56 electrons that propagate along the ring can leak
out of the ring into side leads. The loss of electrons during the
propagation through the ring relaxes the two-terminal Onsager
restriction36 G(φ) = G(−φ). Although the open geometry
solves the phase rigidity problem, the intuitive double-slit
picture is not assured. In a double-slit setup, the transmissions
through the two slits are independent of each other, and
particles traverse the two slits only once. Therefore, we require
that in the open AB ring setup, the propagation of particles
along each path is independent of the details of the other path,
and that there are no multiple traversals of the ring. We rely on
the same features when defining the procedure for measuring η.
Examples of models for open AB rings with detailed analysis
of the conditions required for the realization of a double-slit
setup appear in Ref. 57 and in the appendix of Ref. 58.

Another difference between the AB ring and the ideal
double-slit experiment is the effect that the penetrating
magnetic flux has on the propagation along the two paths. In
the ideal double-slit experiment, magnetic flux tunes only the
relative phase of the paths. In contrast, in a real AB ring with
an embedded dot, the Kondo temperature of the dot, and the
conductance through the dot, may depend on the magnetic flux.
These effects of the magnetic flux on AB rings were studied
before and appear in the literature.59–65 But, these effects can
be made small, particularly for open AB rings.63 From now on,
we thus assume an open geometry that realizes a double-slit
experiment.

III. SINGLE-PARTICLE TRANSMISSION PROPERTIES
AND THE T MATRIX

In this section, we present a more general discussion on the
relation between scattering of electrons off the impurity and
the conductance of the system. We relate the three measurable
quantities Gd , ϕt , and η, which were defined in Eq. (1), to
the scattering matrix and the T matrix of the ψ particles.
In this section, we mostly give the results of this discussion,
whereas the full derivation appears in Appendix A. We derive
the mathematical expressions for ϕt and η, and show that if one
measures only the total conductance of the two spins together,
then at T 	 TK the phase ϕt is always equal to π/2, and it
has no perturbative corrections up to order O(T/TK )2 for the
Fermi-liquid fixed points and O(T/TK )

2
2+k for the non-Fermi-

liquid fixed points of the k-channel Kondo systems.
We consider a two-path setup, and we zoom in on the path

that contains the impurity. We make a distinction between the
external leads (the source and the drain), and the internal leads
through which the electrons propagate toward the impurity. We
refer to the latter as left and right leads (see, for example, Fig. 3
in Appendix B). Electrons from the source can be transmitted
into the left lead, then they propagate toward the impurity. After
the electrons are scattered off the impurity they can propagate
along the right lead and then be transmitted out into the drain.
A specific model that describes this situation is proposed and
presented in Appendix B.
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While the source and the drain are coupled very weakly
to the internal leads (because of the losses needed to ensure
each electron traverses the ring only once), the electrons in
the internal leads can, in principle, interact very strongly with
the impurity. Hence, in general, the left and the right leads are
described by complex many-body states. A general state in the
two leads can be characterized by two numbers nL and nR ,
measures of charge carried in each lead. There are, of course,
many possible states with charges enL and enR since states
with the same charges in the two leads can differ by multiple
particle-hole excitations.66 We use the notation |nL,nR,i〉 for
these states, where the index i labels the possible states with
charges enL and enR in the two leads.

The scattering matrix S connects incoming and outgoing
states in the leads

|n′
L,n′

R,j 〉out = Sn′
L,n′

R,j

nL,nR,i |nL,nR,i〉in. (8)

Charge conservation imposes n′
L + n′

R = nL + nR = m, so S
is a block-diagonal matrix, as sectors with different integer
value m are not mixed. Since the source and the drain are
coupled very weakly to the internal leads, in the limit of zero
source-drain bias voltage at low temperature, we assume that
only one particle at a time is launched from the external leads
toward the impurity. Hence, we focus only on the block m = 1
of the S matrix. When a single electron is sent from the source,
through the left lead, into the impurity, there are three possible
options:

(i) The electron is reflected back to the left lead.
(ii) The electron is transmitted to the right lead.

(iii) A complex many-body state is produced, where a total
charge ne is transmitted to the right lead and a charge (1 − n)e
is reflected to the left lead (n = 0,±1,±2, . . .).

We want to distinguish between the elastic single-particle
scattering processes and the scattering processes that involve
many-body states. We therefore use the following notation:
we denote by |L〉 the incoming or outgoing single-electron
states in the left lead, and similarly |R〉 in the right lead. In the
notation |nL,nR,i〉,

|L〉 = |1,0,0〉, |R〉 = |0,1,0〉, (9)

where we arbitrarily choose i = 0 for the single-particle states
with total charge one. The many-body states (also with total
charge one) are denoted by |χi

n〉, where

∣∣χi
n

〉 = |1 − n,n,i〉. (10)

We use the following notation for the S-matrix elements that
connect incoming single-particle states with outgoing single-
particle states:

S1,0,0
1,0,0 = r, S1,0,0

0,1,0 = t, S0,1,0
0,1,0 = r ′, S0,1,0

1,0,0 = t ′. (11)

The matrix elements that connect single-particle states with
many-body states are

S1−n,n,i
1,0,0 = Bni

L , S1−n,n,i
0,1,0 = Bni

R , (12)

S1,0,0
1−n,n,i = (

Ani
L

)∗
, S0,1,0

1−n,n,i = (
Ani

R

)∗
. (13)

Schematically, the nL + nR = 1 block of the S matrix is⎛
⎝ |L〉out

|R〉out

|χ〉out

⎞
⎠ =

⎛
⎝ r t ′ AL

†

t r ′ AR
†

BL BR C

⎞
⎠
⎛
⎝ |L〉in

|R〉in

|χ〉in

⎞
⎠ , (14)

where the matrix C denotes the matrix elements of S that
connect incoming many-body states with outgoing many-body
states. Here, we do not include spin, but generalization of what
follows to spinful electrons is straightforward.

Consider now the average current at the right lead. The
current is carried either by transmitted charge (from the left),
or by reflected charge

I = e

h

∫
dε

[
fl(ε)

(
|t |2 +

∑
n,i

n
∣∣Bni

L

∣∣2)

+ fr (ε)

(
|r ′|2 +

∑
n,i

n
∣∣Bni

R

∣∣2 − 1

)]
.

Using the unitarity of the large many-body S matrix, we can
write the conductance through the impurity as

G = e2

h

∫
dε

(
−∂f

∂ε

)(
|t |2 +

∑
n,i

n
∣∣Bni

L

∣∣2) . (15)

The coherent part of the conductance is obtained directly from
Eq. (15):

Gcoh = e2

h

∫
dε

(
−∂f

∂ε

)
|t |2. (16)

The contribution of the incoherent processes, where the single
particles are scattered into many-body states, is

Gincoh = e2

h

∫
dε

(
−∂f

∂ε

)∑
n,i

n
∣∣Bni

L

∣∣2. (17)

Suppose now that there is a unitary transformation that
mixes the two leads and block diagonals the nL + nR = 1
block of the S matrix. Physically, it means that there is a
linear combination of the two leads ξ = − sin(α)L + cos(α)R,
which is decoupled both from the impurity and from the
orthogonal combination of the leads ψ = cos(α)L + sin(α)R.
This is the case, for example, in the Anderson model for a
single-level quantum dot that is coupled to two leads. This
simplification breaks down in many-level quantum dots,67 so
in this paper we assume for simplicity a single-level quantum
dot.

The single-ψ-particle matrix element of the S matrix in the
new basis is

Sψψ = 1 + t

cos(α) sin(α)
.

Moreover, the fact that ξ is a free decoupled field imposes the
following relation:∑

n,i

n
∣∣Bni

L

∣∣2 = cos2(α) sin2(α)(1 − |Sψψ |2). (18)

Using the definition S = 1 + iT for the T matrix, we get the
known result39–41 for the conductance through the impurity

Gd = e2

h

sin2(2α)

4

∫
dε

(
−∂f

∂ε

)
2 Im{Tψψ }. (19)
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The ratio of the coherent part to the total conductance is

Gcoh/Gd =
∫

dε
(− ∂f

∂ε

)|Tψψ |2∫
dε
(− ∂f

∂ε

)
2 Im{Tψψ } . (20)

A. Normalized visibility

There is no way to measure directly the contribution of the
single-particle processes to the conductance. Namely, there
is no direct measurement of Gcoh/Gd. However, a two-path
experiment gives access to the transmission amplitude t . If, in
addition to the impurity, the two leads are connected via an
independent free reference arm, then the flux-dependent part
of the conductance is Gflux = ∫

dε(− ∂f

∂ε
)2 Re{tref te

i
eφ

h̄c }. Since
|tref| can be extracted from the conductance of the reference
arm when the other arm closed off, t is accessible from the
flux-dependent conductance.

While Gcoh is proportional to the thermally averaged value
of the transmission squared [see Eq. (16)], Gflux is propor-
tional to the thermally averaged value of the transmission∫

dε(− ∂f

∂ε
)t(ε). The normalized visibility that we have defined

in Eq. (1) is therefore slightly different from Gcoh/Gd:

η =
∣∣ ∫ dε

(− ∂f

∂ε

)
Tψψ

∣∣2∫
dε
(− ∂f

∂ε

)
2 Im{Tψψ } . (21)

Although Gcoh/Gd is closely related to the measurable
quantity η, they are identical only at zero temperature, or where
Tψψ is independent of the energy.

B. Transmission phase

The phases of t and Tψψ are related to the phase shift of
the scattering theory of the ψ particles. If we write Sψψ =
|Sψψ |e2iδψ , then

arg(Tψψ ) = arctan

(
1 − |Sψψ | cos(2δψ )

|Sψψ | sin(2δψ )

)
. (22)

The phase arg(Tψψ ) yields the value δψ for |Sψψ | → 1 and
π/2 in the limit |Sψψ | → 0. The transmission phase is the
phase of the thermally averaged T matrix

ϕt = arg

{∫
dε

(
−∂f

∂ε

)
Tψψ (ε)

}
. (23)

C. The π/2 phase lock of the transmission through
Kondo impurities at T � TK

The flux-dependent part of the conductance Gflux depends
on the average value of Tψψ . Until now, the averaging was
over different incoming energies (thermal averaging). When
we add the spin degree of freedom, we average Tψψ also over
spin. This is because in Gflux we sum over the two spins

Gflux = −
∑

s

∫
dε

∂f

∂ε
2 Re

{
tref tse

i
eφ

h̄c

}

= −
∑

s

∫
dε

∂f

∂ε
2 Re

{
i cos(α) sin(α)trefTs,ψψei

eφ

h̄c

}
.

(24)

We have assumed that tref is independent of the spin. If
the system is spin symmetric, T↑,ψψ = T↓,ψψ ≡ Tψψ can be
extracted from Gflux. The normalized visibility in this case is

η =
∣∣ ∫ dε

(− ∂f

∂ε

)
Tψψ

∣∣2∫
dε
(− ∂f

∂ε

)
2 Im{Tψψ } , (25)

and the transmission phase is

ϕt = arg

{∫
dε

(
−∂f

∂ε

)
Tψψ (ε)

}
. (26)

In the absence of spin symmetry, Gflux does not necessarily
give us access to Ts,ψψ . To see this, consider the simple
case where all the particles are scattered into single particles,
namely, |Sψψ | = 1 for both spins. This situation describes, for
example, the Fermi-liquid fixed points of 1CK or 2CK with
an applied magnetic field. In this case, Ts,ψψ = i(1 − e2iδψs ) =
2 sin(δψs)eiδψs . In the Kondo case, the system has the following
particle-hole symmetry [see, for example, the Hamiltonian in
Eq. (B5)]:

ψks → ψ
†
−k,−s , (27)

which enforces9,68 δψ↑(ε) = −δψ↓(−ε). The transmission
phase at zero temperature is

ϕt = arg[sin(δψ↑)(eiδψ↑ − e−iδψ↑ )] = π

2
, (28)

and the normalized visibility at zero temperature

η = |sin(δψ↑)(eiδψ↑ − e−iδψ↑ )|2
2 Im{sin(δψ↑)(eiδψ↑ − e−iδψ↑ )} = sin2(δψ↑). (29)

We see that the transmission phase is locked at π/2, in-
dependent of the phases of Ts,ψψ . We also see that the
normalized visibility can be smaller than one, even though
all the scattering processes are single-particle to single-particle
scattering. Interestingly, information about the phases of Ts,ψψ

(the phase shifts of the scattering theory) is now encoded
in η.

There are two ways to extract Tψψ despite the π/2 phase
lock of Kondo impurities: either to use the normalized visibility
to extract the phase shift, or to measure the transmission of each
spin separately. A concrete way to realize Kondo impurities
in quantum dots, with access to each spin separately, was
proposed by some of the present authors in Ref. 46.

Note that if the Kondo impurity is realized with a quantum
dot, the particle-hole symmetry (27) is exact only if the dot
is tuned by the gate voltage to the middle of the Coulomb
valley.69,70 Weakly breaking the particle-hole symmetry adds
a spin-independent contribution to the phase shift δψs → δ0 +
δψs [this is true both for Fermi-liquid cases and the non-Fermi-
liquid case of the 2CK (Ref. 70)]. For δ0 	 δψs it leads to small
corrections of Eqs. (28) and (29):

ϕt = π

2
+ [1 − cot2(δψ↑)]δ0 + O

(
δ0

δψ↑

)3

,

(30)

η = sin2(δψ↑) + cos(2δψ↑) cot2(δψ↑)δ2
0 + O

(
δ0

δψ↑

)4

.

115129-6



TRANSMISSION PHASE SHIFTS OF KONDO IMPURITIES PHYSICAL REVIEW B 86, 115129 (2012)

IV. RESULTS

In this section, we present the results of the transmission
phase ϕt and normalized visibility η of Kondo impurities [both
were defined in Eq. (1)]. We focus on the 1CK impurity and
the 2CK impurity since there are concrete realizations of such
impurities with quantum dots, and only quote the results for
the general k-channel Kondo. In the 2CK case, we consider
both its non-Fermi-liquid fixed point, and its Fermi-liquid fixed
points, reached by turning on a finite magnetic field or a finite
channel anisotropy.

A. Single-channel Kondo

In the 1CK case, the Ts,ψψ matrix element, up to second
order in 1/TK , is11

Ts,ψψ (ε) = i

[
2 + i

2ε

TK

− 3

(
ε

TK

)2

−
(

πT

TK

)2]
. (31)

Since
∫

ε dε(− ∂f

∂ε
) = 0, then

∫
dε(− ∂f

∂ε
)Ts,ψψ (ε) is purely

imaginary, therefore, the transmission phase is

ϕt = π

2
+ O(T/TK )3. (32)

The transmission phase matches the scattering phase shift of
the 1CK (up to T/TK corrections) when potential scattering is
neglected. The normalized visibility

η = 1 −
(

πT

TK

)2

+ O(T/TK )3. (33)

Two mechanisms reduce the nonzero-temperature normalized
visibility, elastic scattering with energy-dependent phase shift
δψ (ε) = π/2 + ε/TK , and the appearance of inelastic scatter-
ing. Both are allowed by the dominant irrelevant operator near
the 1CK fixed point.11

1. Finite magnetic field

At zero magnetic field, the T matrix is independent of
spin (i.e., T↑,ψψ = T↓,ψψ ) because of the symmetry between
the two spins. Therefore, the transmission phase and the
normalized visibility of the spin-summed conductance are the
same as the transmission phase and the normalized visibility
of each spin separately. However, when a magnetic field
is applied, the T matrix becomes spin dependent. Hence,
the transmission phase and the normalized visibility of each
spin are, in general, different from each other and from the
measured (spin-summed) quantities.

Consider, for example, the zero-temperature case, where,
as long as B 	 TK , the system is described by a Fermi-liquid
theory, so68 Ts,ψψ = i(1 − e2iδψs ). As we discussed in Sec. III,
the particle-hole symmetry ψks → ψ

†
−k,−s enforces δψ↑(ε) =

−δψ↓(−ε). In this case,

δψs(0) =
(

π

2
− αs

B

TK

)
, (34)

where α↑ = 1, and α↓ = −1. Notice that since δψs is half of
the phase of Sψψ , it is defined up to ±π . As we measure the
conductance of the two spins together, the total transmission
phase ϕt = π/2 independent of B [see Eq. (28)], and the

normalized visibility is less than one, η = sin2(π
2 − B

TK
) ≈ 1 −

( B
TK

)2 [see Eq. (29)], even though all the scattering processes
are single-particle to single-particle scattering.

A possible way to overcome this π/2 phase lock of the
transmission phase is to measure the conductance of a distinct
spin.46 The distinct spin transmission phase at zero temperature
would simply be δψs , and there is a 2B

TK
difference between the

spin-up and -down phases. The normalized visibility of each
distinct spin would be η = 1, as we expect for a Fermi-liquid
fixed point.

B. Two-channel Kondo

In the 2CK case, two disconnected channels interact with
the impurity. We consider a case where we can measure the
transport in one of the channels, and there is no charge transfer
between the different channels (this was the case, for example,
in the experimental setup of Ref. 31). Notice that in this case,
the index i in the states |nL,nR,i〉 [see, for example, Eq. (8)]
labels states with different particle-hole excitations in the leads
and also states with different excitations in the other channel.

If the two channels are equally coupled to the impurity,
then the system flows to a non-Fermi-liquid fixed point. In this
case, up to first order in 1/

√
TK , the matrix element Ts,ψψ is11

Ts,ψψ (ε) = i(1 − 3λ
√

πT I (ε)), (35)

where

I (ε) =
∫ 1

0
du

(
u− iε

2πT F21(u)

√
1 − u

u
− 4

π

1√
u(1 − u)

3
2

)
.

(36)

λ ∼ 1/
√

TK is the strength of the leading irrelevant operator
near the 2CK fixed point, and F21(u) is the hypergeometric
function F21(u) ≡ 1

2π

∫ 2π

o
dθ

(u+1−2
√

u cos θ)
3
2

.

The thermally averaged value of Ts,ψψ is∫
dε

(
−∂f

∂ε

)
Ts,ψψ (ε) = i(1 + 4λ

√
πT ). (37)

Since
∫

dε(− ∂f

∂ε
)Ts,ψψ (ε) is purely imaginary, the transmis-

sion phase

ϕt = π

2
+ O(T/TK ). (38)

The normalized visibility is

η = 1
2 (1 + 4λ

√
πT ) + O(T/TK ). (39)

These results are not surprising since at zero temperature,
there are no single ψ-particle to single ψ-particle scattering
processes at the non-Fermi-liquid fixed point. Thus, Sψψ = 0
for both spins, and hence ϕt = π/2 [see Eq. (22)]. Since in
this case Tψψ = i, we find a normalized visibility η = 1/2,
indicating that half of the conductance is carried by elastic
single-particle scattering.42,44

The sign of λ depends on the initial strength of the Kondo
coupling. λ is positive for strong coupling and negative for
weak coupling.11 The normalized visibility can, in principle, be
enhanced by nonzero temperature, unlike the usual case where
the temperature reduces interference effects. The enhancement
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of the normalized visibility is due to the fact that the
nonzero temperature allows single ψ-particles scattering off
the impurity (sψψ �= 0).

1. Finite magnetic field and finite channel anisotropy

The non-Fermi-liquid fixed point is unstable since finite
magnetic field and finite channel anisotropy turn on relevant
perturbations near the non-Fermi-liquid fixed point.47 In
the presence of such perturbations, the system flows under
renormalization group to a Fermi-liquid fixed point, at zero
temperature, rather than the non-Fermi-liquid one. In the case
of channel anisotropy, the channel which is coupled more
strongly to the dot flows to the 1CK-like fixed point, and the
other channel flows to a free-electron-like fixed point. Under a
finite magnetic field, the system flows to a Fermi-liquid fixed
point which is different from the 1CK fixed point.

In this section, we study the 2CK case under these two
possible perturbations. At zero temperature, Ts,ψψ is given
by71,72

Ts,ψψ (ε) = i

⎡
⎣1 −

−(ν�
√

TK ) + iαs

(
cBBz√

TK

)
√

(ν�
√

TK )2 + (
cBBz√

TK

)2
G(ε/T ∗)

⎤
⎦ ,

(40)

where � is the difference between the coupling strengths
of the two channels, and cB is a dimensionless number of
order one. T ∗ ∼ TK (ν�)2 + (cBB)2/TK is an energy scale that
characterizes the flow away from the non-Fermi-liquid fixed
point. G(x) = 2

π
K(ix), where K(x) is the complete elliptic

integral of the first kind. α↑ = 1, α↓ = −1, and we have
assumed �B = Bz. At zero temperature, the averaged value
of Tψψ is

1

2

∑
s

Ts,ψψ = i

⎡
⎣1 − −(ν�

√
TK )√

(ν�
√

TK )2 + (
cBBz√

TK

)2

⎤
⎦ . (41)

Thus, for � = 0, 〈Tψψ 〉 = i. Hence, the transmission phase
is ϕt = π/2 and the normalized visibility is η = 1/2 even for
B �= 0, where all the electrons are elastically scattered with a
phase δψ,s = αsπ/4. A spin-resolved measurement, however,
would lead to ϕt = αsπ/4 and η = 1 since for � = 0∫

dε

(
−∂f

∂ε

)
Ts,ψψ = i(1 − iαs). (42)

In Table I, we summarize the results for the zero-
temperature normalized visibility and transmission phase for

TABLE I. Zero-temperature normalized visibility and transmis-
sion phase for various relevant perturbations.

ηs ϕts η ϕt

B = 0,� = 0 1/2 π/2 1/2 π/2
B = 0,� > 0 1 π/2 1 π/2
B = 0,� < 0 0 0
B �= 0,� = 0 1 αsπ/4 1/2 π/2
B �= 0,� > 0 1 αs(π/2 − γ /2) cos2(γ /2) π/2
B �= 0,� < 0 1 αsγ /2 sin2(γ /2) π/2

the various relevant perturbations, where we define

cos(γ ) ≡ ν|�|√TK√
(ν�

√
TK )2 + (

cBBz√
TK

)2
, (43)

sin(γ ) ≡ cBBz/
√

TK√
(ν�

√
TK )2 + (

cBBz√
TK

)2
. (44)

Channel anisotropy. Recall that we are measuring the
conductance through one of the channels. At zero magnetic
field, if � > 0, the ψ particles form together with the impurity
a singlet, while the electrons in the other channel are simply
free. Thus, η and ϕt are the same as in the 1CK case. On
the other hand, if � < 0, the electrons in the other channel
form a singlet with the impurity, and the ψ particles are free.
Therefore, at zero temperature, the conductance through the
impurity, the dot, is zero. In this case, there is no interference
and hence, η = 0 and ϕt is not defined. Although this is
a Fermi liquid, η < 1 near this fixed point since most of
the charge is reflected. To explain it, we now discuss the
nonzero-temperature case.

At nonzero temperature, the � < 0 case should be treated
more delicately. Up to second order in 1/T ∗, Ts,ψψ is72

Ts,ψψ (ε) = ε

4T ∗ + i
9

64

(
ε

T ∗

)2

+ i
7

64

(
πT

T ∗

)2

. (45)

Most of the charge is reflected and only a small amount of
charge can be transmitted, either elastically or inelastically.
This is similar to the 1CK case, where at nonzero temperature
most of the charge is transmitted, and only a small part
is reflected either elastically or inelastically. Up to second
order in 1/T ∗, the portion of elastic transmission through the
impurity out of all scattering events of incoming particles with
energy ε is

|Ts,ψψ (ε)|2
2 Im{Ts,ψψ (ε)} = 2/9

1 + 7
9

(
πT
ε

)2 . (46)

In the ε � T limit, 2/9 of the charge is transmitted elastically.
The phase that the particles accumulate in this limit is propor-
tional to ε, ϕt (ε) ≈ 9ε

16T ∗ . The thermal averaging, however, has
a crucial effect in this limit. The thermally averaged T matrix
〈Tψψ 〉 = i 5

32 (πT
T ∗ )2 is purely imaginary and proportional to T 2,

and therefore

η(T ) = 5

(
πT

8T ∗

)2

, ϕt = π/2. (47)

Finite magnetic field. At finite magnetic field, we see that
in order to access the phase shift of the ψ particles δψs ,
one needs to measure each spin separately. Notice that at
� → 0 (γ → π/2), the spin-averaged normalized visibility
and the transmission phase are the same as in the non-Fermi-
liquid fixed point (B = 0,� = 0): η = 1/2 and ϕt = π/2. In
order to distinguish the Fermi-liquid fixed points from the
non-Fermi-liquid fixed point, one can measure the temper-
ature dependence of the conductance through the impurity.
Nontrivial

√
T dependence indicates a non-Fermi-liquid fixed

point. Alternatively, as we already mentioned, spin-dependent
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measurements of ηs and ϕts give different results for the
Fermi-liquid and the non-Fermi-liquid fixed points.

2. Generalization to k channels

We have focused on the 1CK and the 2CK impurities
since there are concrete realizations of these impurities with
quantum dots. Yet, it is worthwhile to study the more general
k-channel Kondo case. In the Fermi-liquid fixed points at zero
temperature, all the ψ particles are scattered into ψ particles,
namely, |Sψψ | = 1. In the non-Fermi-liquid 2CK fixed point,
none of the ψ particles are scattered into ψ particles,
namely, |Sψψ | = 0. In the more general k-channel Kondo
case, however, where k > 1 channels screen the impurity, a
finite part of the ψ particles are elastically scattered off the
impurity. At zero temperature, the single ψ-particle element
of the S matrix is11

SkCK
ψψ = cos

(
2π

2+k

)
cos

(
π

2+k

) . (48)

The conductance, up to O(T/TK )
4

2+k , is11

Gd = e2

h
sin2(2α)

[
1 − cos

(
2π

2+k

)
cos

(
π

2+k

) + ck

(
T

TK

) 2
2+k

]
, (49)

where the factor cK can be calculated numerically.11 The
normalized visibility is

η = 1

2

[
1 − cos

(
2π

2+k

)
cos

(
π

2+k

) + ck

(
T

TK

) 2
2+k

]
+ O(T/TK )

4
2+k ,

(50)

and since SkCK
ψψ is real, the transmission phase is

ϕt = π

2
+ O(T/TK )

4
2+k . (51)

C. External dephasing

In Sec. II, we defined the normalized visibility η, which is
the amplitude of the AB oscillations, normalized in a certain
way. In Sec. III, we showed that η has a physical meaning,
and that it is related to the proportion of the total conductance
carried by single-particle scattering. In this section, we want
to comment about the feasibility of η measurements.

So far, we have discussed three mechanisms that reduce
the normalized visibility: the possibility of noncoherent
charge transfer through the dot into many-body states, thermal
averaging over a transmission with energy-dependent phase,
and averaging over spin-dependent transmission phase.
AB oscillations in a real-life experimental setup can also
be suppressed by other mechanisms that are not related
to the physical properties of the examined impurity. A
real experimental two-path setup is usually coupled to a
complicated environment. For example, in an open AB ring
setup, the shapes of the two paths, the quantum dot(s), the
tunnel barriers, and many other components of the setup are
all defined by applying voltages to nearby nanopatterned
electrodes. Therefore, each component of the system is
coupled to an environment (metal electrodes, semiconducting
leads) with associated noise and degrees of freedom.

An electron that propagates through the two paths leaves a
trace in the environment; equivalently, a propagating electron
that interacts with the environment accumulates a random
phase73 ϕ. As a result, the amplitude of the AB oscillations
is multiplied by the averaged value 〈eiϕ〉. The normalized
visibility in the presence of the environment is therefore36

√
η = 〈eiϕ〉

∣∣∫ dε
(− ∂f

∂ε

)
Tψψ

∣∣√∫
dε
(− ∂f

∂ε

)
2 Im{Tψψ }

≈
(

1 − 1

2
〈δϕ2〉

) ∣∣ ∫ dε
(− ∂f

∂ε

)
Tψψ

∣∣√∫
dε
(− ∂f

∂ε

)
2 Im{Tψψ }

. (52)

The details of the coupling to the environment depend on the
details of a specific experimental setup. Yet, we can roughly
estimate the external dephasing by assuming that the phase
randomness originates mostly from the thermal fluctuations
of the environment. At nonzero temperature T , the electrodes
in the environment suffer from Nyquist noise, and we can
estimate 〈δϕ2〉 ∼ T .

Hence, dephasing by the environment can reduce the
normalized visibility linearly in the temperature. In the Fermi-
liquid fixed points, η has T 2 corrections without external
dephasing. This means that at low temperatures, the dominant
suppression of η would be due to external dephasing. In
the non-Fermi-liquid fixed point of the 2CK, η has a

√
T

dependence in the absence of external dephasing. Thus, at
low temperatures, the change in η (enhancement for λ > 0
and reduction for λ < 0) is expected to be stronger than its
suppression due to external dephasing.

The relation between the system and the environment is
outside the scope of this work. In particular, we do not get
into specific models for the environment. We want to note that
there are models that treat rigorously the effect of a specific
environment on the interference in AB rings (for example,
a quantum-point-contact that is coupled to an embedded
quantum dot,74,75 or a fluctuating magnetic flux76).

In the 2CK non-Fermi-liquid case, a noisy environment
can, in principle, turn on relevant operators. Thus, a noisy
environment with strong effect on the system would make
the observation of the non-Fermi-liquid behavior difficult.
Hence, if a non-Fermi-liquid behavior is indeed observed in
an experimental system, it indicates a relatively weak external
dephasing.

V. CONCLUSIONS AND DISCUSSION

In this work, we have focused on information that can be
obtained from two-path experiments. Typically, in two-path
experiments, the measurable quantity is the transmission phase
ϕt . We showed that the combination of two measurements,
the two-path conductance together with the conductance of
one of the paths (either of the paths), gives us additional
physical information about the nature of coherence in the
transport. These two measurements allow us to normalize the
amplitude of the flux-dependent conductance, with respect
to the independent conductances of the two paths [Eq. (1)].
We showed that the normalized amplitude η is related to
the fraction of scattering processes that involve only single
particles.
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We have related ϕt and η to the single-particle matrix
element of the S matrix. If there is a linear combination of
the two leads (denoted by ξ ) which is decoupled both from
the dot, and from the orthogonal linear combination (ψ), then,
working in the ψ − ξ basis, we showed that ϕt and η can be
used to study Sψψ . In the simple case of Fermi liquids at zero
temperature, where Sψψ = e2iδψ , ϕt turns out to be identical
to δψ , and η = 1.

We also showed that in the absence of spin symmetry, both
ϕt and η are affected by the summation over spin in a standard
conductance measurement. At zero temperature, we showed
that the phase ϕt is locked at π/2 independent of δψ [see
Eq. (28)], and that η is suppressed to below one [see Eq. (29)].
A proper measurement in this case would involve independent
measurement of the transport of each spin.

In the various Fermi-liquid fixed points of the Kondo
impurities, we have showed that the transmission phase equals
the scattering phase shift ϕts = δψs . The normalized visibility
at zero temperature is η = 1, and nonzero temperature reduces
it with a correction ∼(T/TK )2. The small reduction of η

is due to two different physical effects of the temperature.
First, the transmission phase is energy dependent. When we
thermally average over the temperature, ϕt remains at its
zero-temperature value (to this order of correction), but η is
reduced. Second, the nonzero temperature allows incoherent
scattering processes (the leading irrelevant operator near the
fixed point allows the scattering of single-particle states to
many-body states). Hence, a small part of the conductance is
incoherent and therefore η is reduced.

In the non-Fermi-liquid fixed point of the 2CK, we find
that although there are no single ψ-particle to single ψ-
particle scattering processes, a part of the conductance is
still coherent. The transmission phase is ϕt = π/2 despite the
fact that δψ is not defined. The normalized visibility, at zero
temperature, is η = 1/2 indicating the fact that exactly half of
the conductance is carried by elastic single-particle scattering
events.42 At nonzero temperature, η can either be diminished
or be enhanced with a ∼√

T/TK behavior. The enhancement
is possible since the leading irrelevant operator near the fixed
point allows single ψ-particle to single ψ-particle scattering.

In real experiments, the propagating electrons are subjected
to an external dephasing by the environment. We expect a
reduction of the normalized visibility due to this external
dephasing. Assuming mostly thermal fluctuations in the
environment (Nyquist noise), we roughly estimate a linear
temperature dependence of the external dephasing. Therefore,
near the Fermi-liquid fixed points, one might not be able to see
the predicted ∼T 2 reduction of η. Near the non-Fermi-liquid
2CK fixed point, however, the ∼√

T dependence is expected to
be parametrically stronger than the external dephasing. Thus,
we expect that measuring this effect would be possible in the
presence of external dephasing.
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APPENDIX A: DETAILED DERIVATION OF THE
CONNECTION BETWEEN THE TRANSMISSION

AND THE T MATRIX

In this Appendix, we present in detail the derivation of the
relations between the transmission properties (from the left
lead through the impurity to the right lead) and the single-
particle matrix elements of the T matrix.

We want to write a scattering matrix that connects incoming
states and outgoing states in the leads. In general, these states
can be complex many-body states that involve the two leads.
A general state in the two leads can be characterized by two
numbers nL and nR according to the charge carried in the two
leads. There are, of course, many possible states with charges
enL and enR since states with the same charges in the two
leads can differ by multiple particle-hole excitations. We use
the notation |nL,nR,i〉 for these states, where the index i labels
the possible states with charges enL and enR .

The scattering matrix S connects incoming and outgoing
states

|n′
L,n′

R,j 〉out = Sn′
L,n′

R,j

nL,nR,i |nL,nR,i〉in . (A1)

Charge conservation imposes n′
L + n′

R = nL + nR , hence, S
is a block-diagonal matrix. We work in the zero-bias limit at
low temperature, and therefore only single electrons can be
sent from the source and the drain. Hence, we focus only on
the block nL + nR = 1 of the S matrix.

There are two types of states in the subspace of states with
nL + nR = 1, single-electron states, and many-body states.
We can make this distinction since the two leads are free. We
denote by |L〉in and |L〉out the incoming and outgoing single-
electron states in the left lead, and similarly |R〉in and |R〉out in
the right lead. We denote the other states, which are many-body
states of the form |1 − n,n,i〉, by |χi

n〉 (n = 0,±1,±2, . . .).
Notice that in the cases n = 0,1, the states | �χ0,1〉 span only
the multiparticle states. The single-electron states of the form
|1,0〉 and |0,1〉 are denoted by |L〉 and |R〉.

Schematically, the nL + nR = 1 block of Eq. (A1) is⎛
⎝ |L〉out

|R〉out

|χ〉out

⎞
⎠ =

⎛
⎝ r t ′ AL

†

t r ′ AR
†

BL BR C

⎞
⎠
⎛
⎝ |L〉in

|R〉in

|χ〉in

⎞
⎠ , (A2)

where the exact definitions for all the terms in Eq. (A2) appear
in Sec. III [see Eqs. (9)–(13)]. Here, we do not include spin,
and generalization of what follows to spinful electrons is
straightforward.

Since the S matrix is unitary and block diagonal, its
nL + nR = 1 block is also unitary. This leads to the following
relations:

|r|2 + |t |2 +
∑
n,i

∣∣Bni
L

∣∣2 = 1 , (A3)

|r ′|2 + |t ′|2 +
∑
n,i

∣∣Bni
R

∣∣2 = 1 , (A4)

|r|2 + |t ′|2 +
∑
n,i

∣∣Ani
L

∣∣2 = 1 , (A5)

|r ′|2 + |t |2 +
∑
n,i

∣∣Ani
R

∣∣2 = 1 . (A6)

Consider now the average current at the right lead. As
mentioned before, at low temperature and bias voltage, we can
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assume that only single electrons are sent toward the impurity.
The average current is

I = e

h

∫
dε

[
fl(ε)

(
|t |2 +

∑
n,i

n
∣∣Bni

L

∣∣2)

+ fr (ε)

(
|r ′|2 +

∑
n,i

n
∣∣Bni

R

∣∣2 − 1

)]

= e

h

∫
dε

[
fl(ε)

(
|t |2 +

∑
n,i

n
∣∣Bni

L

∣∣2)

− fr (ε)

(
|t ′|2 +

∑
n,i

(1 − n)
∣∣Bni

R

∣∣2)] . (A7)

At equilibrium, the current is zero, therefore

|t |2 +
∑
n,i

n
∣∣Bni

L

∣∣2 = |t ′|2 +
∑
n,i

(1 − n)
∣∣Bni

R

∣∣2, (A8)

and the current becomes

I = e

h

∫
dε[fl(ε) − fr (ε)]

(
|t |2 +

∑
n,i

n
∣∣Bni

L

∣∣2) . (A9)

Thus, the conductance is

Gd = e2

h

∫
dε

(
−∂f

∂ε

)(
|t |2 +

∑
n,i

n
∣∣Bni

L

∣∣2) . (A10)

The proportion of the total conductance carried by coherent
single-particle scattering is

Gcoh/Gd =
∫

dε
(− ∂f

∂ε

)|t |2∫
dε
(− ∂f

∂ε

)(|t |2 +∑
n,i n

∣∣Bni
L

∣∣2) . (A11)

Suppose now that there is a linear combination of the
two leads ξ = − sin(α)L + cos(α)R, which is decoupled both
from the impurity and from the orthogonal combination of the
leads ψ = cos(α)L + sin(α)R. This is the case, for example,
in the Anderson model for a single-level quantum dot that is
coupled to two leads. The fact that ξ is a free decoupled field
simplifies the above expressions as it imposes the following
restrictions on the S matrix in the ψ − ξ basis: Sξx = Sxξ = 0
(x = ψ, �χn), and Sξξ = 1. In particular, the restriction Sψξ =
Sξψ = 0 requires t ′ = t which, together with Eq. (A8), yields
the relation ∑

n,i

n
∣∣Bni

L

∣∣2 =
∑
n,i

(1 − n)
∣∣Bni

R

∣∣2. (A12)

Moreover, we can relate Bni
L and Bni

R . Since (omitting the
in and out subscripts)

Bni
L = 〈

χi
n

∣∣L〉 = cos(α)
〈
χi

n

∣∣ψ 〉− sin(α)
〈
χi

n

∣∣ξ 〉, (A13)

Bni
R = 〈

χi
n

∣∣R〉 = sin(α)
〈
χi

n

∣∣ψ 〉+ cos(α)
〈
χi

n

∣∣ξ 〉, (A14)

and as 〈χi
n|ξ 〉 = 0, we get

Bni
L = cos(α)

〈
χi

n

∣∣ψ 〉, (A15)

Bni
R = sin(α)

〈
χi

n

∣∣ψ 〉. (A16)

We obtain the relation

Bni
R = tan(α)Bni

L . (A17)

Plugging this relation into Eq. (A12) gives

[1 + tan2(α)]
∑
n,i

n
∣∣Bni

L

∣∣2 = tan2(α)
∑
n,i

∣∣Bni
L

∣∣2. (A18)

Thus, we get the important equalities∑
n,i

n
∣∣Bni

L

∣∣2 = sin2(α)
∑
n,i

∣∣Bni
L

∣∣2, (A19)

∑
n,i

n
∣∣Bni

R

∣∣2 = sin2(α)
∑
n,i

∣∣Bni
R

∣∣2. (A20)

Together with Eqs. (A3) and (A4), the sum rules (A19) and
(A20) tell us that the incoherent part of the conductance,
which is carried by single-particle to many-particles scattering
processes, can also be determined by the coherent single-
particle part of the S matrix.

Notice also that
∑

n,i〈ψ |χi
n〉〈χi

n|ψ〉 = ∑
ni |〈ψ |χi

n〉|2 is the
sum of probabilities to find outgoing states if the incoming
state is |ψ〉. Since we sum over all possible outgoing states
besides |ψ〉 and |ξ 〉, and as 〈ξ |ψ〉 = 0 we find that∑

n,i

〈
ψ
∣∣χi

n

〉〈
χi

n

∣∣ψ 〉 = 1 − |out〈ψ |ψ〉in|2 = 1 − |Sψψ |2,

(A21)

so ∑
n,i

∣∣Bni
L

∣∣2 = cos2(α)(1 − |Sψψ |2), (A22)

∑
n,i

∣∣Bni
R

∣∣2 = sin2(α)(1 − |Sψψ |2). (A23)

The conductance (A10) can be written as

Gd = −e2

h

∫
dε

∂f

∂ε
[|t |2 + sin2(α) cos2(α)(1 − |Sψψ |2)],

(A24)

and the contribution of the single-particle processes to the
conductance, out of the total conductance, is

Gcoh/Gd =
∫

dε
∂f

∂ε
|t |2∫

dε
∂f

∂ε
[|t |2 + sin2(α) cos2(α)(1 − |Sψψ |2)]

.

(A25)

The fact that there is a linear combination of L and R which
is decoupled both from the impurity and from the orthogonal
linear combination imposes restrictions on the values of
r,t,r ′,t ′ (since Sψξ = Sξψ = 0 and Sξξ = 1). By applying the
unitary transformation on the S matrix, one finds that

Sψψ = 1 + t

cos(α) sin(α)
. (A26)

Plugging (A26) into (A24) and (A25) gives

Gd = −e2

h

sin2(2α)

4

∫
dε

∂f

∂ε
(|Sψψ − 1|2 + [1 − |Sψψ |2]),

(A27)

Gcoh/Gd =
∫

dε
∂f

∂ε
|Sψψ − 1|2∫

dε
∂f

∂ε
(|Sψψ − 1|2 + [1 − |Sψψ |2])

. (A28)
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At this point, we can already see two important features:
First, Gcoh/Gd depends only on Sψψ and in particular does
not depend directly on α. Second, if |Sψψ | = 1 (but Sψψ �=
1), then Gcoh/Gd = 1, and if Sψψ = 0 then Gcoh/Gd = 1/2.
In other words, for a zero-temperature Fermi-liquid theory
η = 1, and for a theory where ψ has no single-particle to
single-particle scattering processes (like in the 2CK case at
zero temperature), η = 1/2.

Using the definition S = 1 + iT for the T matrix, we can
bring (A27) and (A28) into the form

Gd = e2

h

sin2(2α)

4

∫
dε

(
−∂f

∂ε

)
2 Im{Tψψ }, (A29)

Gcoh/Gd =
∫

dε
(− ∂f

∂ε

)|Tψψ |2∫
dε
(− ∂f

∂ε

)
2 Im{Tψψ } . (A30)

APPENDIX B: MODEL FOR A QUANTUM-DOT IMPURITY
EMBEDDED INTO AN OPEN AB RING

In this Appendix, we present a model for a possible setup of
a quantum dot that is embedded into an open AB ring. Setups
of this kind can be used to study the transmission through 1CK
and 2CK impurities.

Consider the open AB ring setup that is depicted in Fig. 3.
The system contains two external leads (source and drain) and
two internal paths. The external leads are coupled to the two
paths by four transmission coefficients (t ref

s , t ref
d , tLs , tRd ) which

are assumed to be very small. The two possible paths are either
through the quantum dot (the lower arm in Fig. 3) or through
the reference arm (the upper arm in Fig. 3). When an electron
is propagating along the lower arm, it has a finite probability
to leak outside the system. However, once it gets close enough
to the dot, we assume that it can only scatter (forward or
backward) off the dot. We refer to the area near the dot from
the left (right) as left (right) lead (not to be confused with
the external leads, source, and drain). The Hamiltonian of the
system is

H = Hexternal + Href + Hsystem + Ht, (B1)

where each of the three first elements on the right-hand side of
Eq. (B1) describes one part of the system. Hexternal describes

φSource Drain

Reference arm

Left lead Right lead

Dot

tL tR

Losses
Losses

Losses Losses

trefs

tLs

trefd

tRd

Internal
leads

FIG. 3. Schematic model of a quantum dot embedded into an open
AB ring. The four transmission coefficients between the two paths
and the external leads (t ref

s , t ref
d , tL

s , tR
d ) are very small. To the lowest

order in the external transmission coefficients, the propagations along
the arms are independent of each other. Because of the losses, time-
reversal symmetry is broken. We encode the losses in the transmission
coefficients.

the external leads

Hexternal =
∑

r=S,D

∑
k,s

εkc
†
rkscrks, (B2)

where crks are the annihilation operators of electrons with spin
s in external lead r . Href describes the free electrons in the
reference arm. The lower arm is described by the Hamiltonian

Hsystem =
∑

i=L,R

∑
k,s

εkc
†
iksciks + Hdot

+
∑

i=L,R

∑
ks

(tic
†
iksds + H.c.), (B3)

where crks are the annihilation operators of electrons with spin
s in the internal lead i, and ds annihilates an electron with
spin s in the dot. Hdot describes the quantum dot itself and any
other system that might interact with it, but does not interact
directly with the other part of the setup (e.g., a capacitively
coupled gate electrode, other dots, etc.). The different parts of
the setup are connected via Ht :

Ht =
∑
ks

∑
r

t ref
r c

†
rkscref,ks +

∑
ks

tLs c
†
SkscLks

+
∑
ks

tRd c
†
DkscRks + H.c. (B4)

We do not get into the details of how the setup is coupled to
other side leads.

To the lowest order in the external transmission coefficients
Ht , the two paths are independent of each other. Therefore,
using the definitions of ϕt and η [see Eq. (1)], the conductance
can be written in the form

Gsd = Gd + Gref + 2
√

η
√

GdGref cos

(
eφ

h̄c
+ ϕt

)
,

where Gref is the conductance through the reference arm and
Gd is the conductance through the dot. There is a linear
combination of the internal leads, ξ = − sin(α)cL + cos(α)cR ,
where α = arctan(tR/tL), which is decoupled both from the
dot and from the orthogonal combination of the leads, ψ =
cos(α)cL + sin(α)cR . Following the discussion in Sec. III, the
transmission through the dot is proportional to the T matrix
of the ψ particles Ts,ψψ .

So far, we have not specified what is the Hamiltonian of the
dot Hdot. In other words, we have not specified other systems
that interact with the dot (and do not interact directly with the
ring). In the following two sections, we discuss two specific
cases: a 1CK case, where the dot is attached to a gate electrode
and tuned to form a 1CK impurity, and a 2CK case, where
another large dot is coupled to the small dot with appropriate
gate electrodes to form a 2CK impurity.29

1. Single-channel Kondo

The dot is capacitively coupled to a gate electrode. If a gate
voltage is applied, then at low enough energies, by tuning the
gate voltage and the tunneling barriers between the dot and the
ring (tL,R), one can bring the Hamiltonian (B3) to the form of
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Kondo Hamiltonian69

Hsystem =
∑
k,s

εkψ
†
ksψks +

∑
k,s

εkξ
†
ksξks

+ J
∑
k,s

∑
k′,s ′

ψ
†
ks �σss ′ψk′s ′ · �S, (B5)

where ξ = − sin(α)cL + cos(α)cR , and ψ = cos(α)cL +
sin(α)cR . J is the Kondo interaction strength, �σ are the three
Pauli matrices, and �S is the total spin of the dot. Up to second
order in 1/TK , the Ts,ψψ matrix is11

Ts,ψψ (ε) = i

[
2 + i

2ε

TK

− 3

(
ε

TK

)2

−
(

πT

TK

)2]
. (B6)

2. Two-channel Kondo

We can tune the part of the system that is described by Hdot

to form a 2CK impurity (e.g., by adding another relatively large
quantum dot, and couple it to the small dot).29 The Hamiltonian

(B3) becomes29,70

Hsystem =
∑
k,s

εkψ
†
ksψks +

∑
k,s

εkξ
†
ksξks +

∑
k,s

εkD
†
ksDks

+
∑
k,s

∑
k′,s ′

(Jψψ
†
ks �σss ′ψk′s ′ + JDD

†
ks �σss ′Dk′s ′ ) · �S,

(B7)

where Dks are the annihilation operators of the large dot, and
JD (Jψ ) is the strength of the interaction between the spin
of the electrons in the large dot (in the ψ lead) and the total
spin of the small dot. By tuning the parameters properly, we
can bring the system to the symmetric point Jψ ≈ JD , where
it displays a non-Fermi-liquid behavior.29 In this case, up to
order 1/

√
TK , the Ts,ψψ matrix is11

Ts,ψψ (ε) = i(1 − 3λ
√

πT I (ε)),

where I (ε) was defined in Eq. (36).
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