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Implications of the two nodal domains conjecture for ground state fermionic wave functions
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The nodes of many-body wave functions are mathematical objects important in many different fields of physics.
They are at the heart of the quantum Monte Carlo methods but outside this field their properties are neither widely
known nor studied. In recent years a conjecture, already proven to be true in several important cases, has been put
forward related to the nodes of the fermionic ground state of a many-body system, namely that there is a single
nodal hypersurface that divides configuration space into only two connected domains. While this is obviously
relevant to the fixed node diffusion Monte Carlo method, its repercussions have ramifications in various fields
of physics as diverse as density functional theory or Feynman and Cohen’s backflow wave function formulation.
To illustrate this we explicitly show that, even if we knew the exact Kohn-Sham exchange correlation functional,
there are systems for which we would obtain the exact ground state energy and density but a wave function quite
different from the exact one. This paradox is only apparent since the Hohenberg-Kohn theorem relates the energy
directly to the density and the wave function is not guaranteed to be close to the exact one. The aim of this paper
is to stimulate the investigation of the properties of the nodes of many-body wave functions in different fields
of physics. Furthermore, we explicitly show that this conjecture is related to the phenomenon of avoided nodal
crossing but it is not necessarily caused by electron correlation, as sometimes has been suggested in the literature.
We explicitly build a many-body uncorrelated example whose nodal structure shows the same phenomenon.
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I. INTRODUCTION

The properties of the nodes of wave functions are important
in many different fields: e.g., the study of quantum dots, the
fixed node diffusion Monte Carlo method, the quantum Hall
effect, and quantum chaos, to name a few. However, despite the
fundamental importance of wave function nodes (as opposed
to orbital nodes) only recently have a few papers1–9 begun
to investigate their properties for both exact and approximate
many-body wave functions.

The nodal surface, (sometimes called nodal set in the
mathematical literature or simply the node), is the set of points
R for which a wave function vanishes, i.e., �(R) = 0. With R
we indicate the collective coordinates of the N particles in D

dimensions. The nodal set implicitly defines two or more nodal
domains (sometimes called nodal cells or nodal pockets), i.e.,
a connected set of points bounded by the nodal set where the
wave function has the same sign.

In one dimension it is well known10 that the so called “nodal
theorem” holds, i.e., the ground state has no nodes and a
nondegenerate Mth excited state has exactly M nodes, dividing
the real axis into M + 1 nodal domains. A common textbook
example of the nodal theorem is the simple harmonic oscillator.
In two-dimensional (2D) and higher-dimensional systems, the
nodal theorem is no longer valid: it is not necessarily true that
the Mth excited state has M + 1 nodal domains.11 Courant
and Hilbert10 were able to prove a weaker version of the nodal
theorem: The nodes of the Mth excited state divide the space
into at most M + 1 nodal domains.

The many-body fermionic ground state of an N -electron
system can, in principle, have a large number of nodal domains,
depending how many bosonic and mixed symmetry states
are below the fermionic one. In recent years, however, a
body of evidence has accumulated showing that in several
cases the ground fermionic state has only two nodal domains,
the minimum possible, and it has been conjectured1,2,9 that

this property might be a general property of fermionic
systems.

The properties of the many-body nodal surfaces, and in
particular the two nodal domains conjecture, are well known
in the field of quantum Monte Carlo, since they are at the heart
of the fixed node diffusion Monte Carlo (FN-DMC) method,
but are usually little known in other fields. Far from being
only a mathematical curiosity, if a wave function must have
only two nodal domains this fact puts a severe constraint
on its shape, which in turn can have various implications
worth exploring in different fields of physics. In the following
we will show two such implications: one related to density
functional theory (DFT) and the other to the construction
of backflow wave functions in the hope to further stimulate
the study of nodal surfaces in different fields of physics
where they usually are only marginally considered or not
considered at all. Furthermore we will show that this conjecture
is not necessarily related to electron correlation, as it is often
assumed.

Bressanini et al.4 showed, both numerically and analyti-
cally, the differences in the topology of the nodal surfaces
between Hartree-Fock (HF) and configuration interaction (CI)
wave functions for the beryllium atom. They showed that the
HF wave function has four nodal domains while both the CI
and the exact wave functions have only two nodal domains. In
the following we briefly recall, for the benefit of the general
reader, the properties of the nodal surfaces of the beryllium
atom that we will use to define and illustrate the concepts
needed in later sections.

II. THE NODAL SURFACE OF THE GROUND STATE
OF BERYLLIUM ATOM

The beryllium atom has four electrons (N = 4) and its wave
function is an object defined by all spin-space coordinates of
the electrons. The ground state has 1S symmetry and in the
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absence of magnetic field, since the Hamiltonian does not
explicitly depend on spin, with no loss of generality we can
arbitrarily assign spin α to electrons 1 and 2 and spin β to
electrons 3 and 4 and study the properties of the associated
space component of the full wave function specified by the
twelve coordinates of the electrons:

�(R) = �(R1,R2,R3,R4)

= �(x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4), (1)

where Ri indicates the coordinates of electron i. The spatial
wave function in Eq. (1) can be viewed as the projection of
the full spin-space wave function against the spin function
ααββ. Projecting using a different spin function results in a
spatial function that differs only by a different labeling of the
coordinates.

In order to satisfy the Pauli principle the function must be
antisymmetric with respect to the interchange of electrons with
the same spin. For example,

P12�(R1,R2,R3,R4) = −�(R2,R1,R3,R4),
(2)

P34�(R1,R2,R3,R4) = −�(R1,R2,R4,R3),

where P12 and P34 are permutation operators.
The general properties of fermion nodes were investigated

by Ceperley.1 In this seminal paper he proved the tiling
theorem: All nodal domains in a ground fermionic state
are equivalent, i.e., they all have the same shape, and the
various permutation operators Pij that exchange electron i

with electron j transform one nodal domain into another. Note
that this theorem does not specify the total number of nodal
domains.

In the restricted Hartree-Fock approximation, the beryllium
ground state wave function is described by the electronic
configuration 1s22s2 whose Slater determinant, after spin
projection, factors into the product of two determinants

�HF = |1s(r1)2s(r2)|α |1s(r3)2s(r4)|β
= [1s(r1)2s(r2) − 1s(r2)2s(r1)]

× [1s(r3)2s(r4) − 1s(r4)2s(r3)] , (3)

where ri is the distance from electron i to the nucleus.
The wave function is the product of two independent

determinants, so the nodal set is the union of the nodal
sets of the individual determinants. Each determinant has
the structure of the 1s2s 3S state of Be2+ and it is easy to
see that the equations defining the two nodes are r1 − r2 = 0
and r3 − r4 = 0. The nodal set of �HF thus is defined by the
equation (r1 − r2)(r3 − r4) = 0: The HF wave function is zero
whenever two like electrons are at the same distance from the
nucleus. It is not difficult to see that the nodal set of �HF

divides the space into four equivalent nodal domains: two
where the wave function is positive and two where the wave
function is negative. These domains are related to each other
by permutations and satisfy the tiling theorem.

Note that the node is completely independent from the
actual shape of the 1s and 2s orbitals (although orbitals with
a completely arbitrary shape could introduce further spurious
nodes into the wave function).

Note also that �HF belongs to a higher symmetry group
than the exact wave function, since it neither depends on

FIG. 1. (Color online) Three-dimensional cut of the full 11D node
of the HF wave function for the Be atom with four nodal domains.

the interparticle distances nor the angular coordinates of the
individual electrons. For this reason its node has a particular
simple form.

Since the nodal set is a high-dimensional object we can
only plot portions of it by taking cuts, by fixing some of the
coordinates, and plot where this subset of the wave function is
zero.

To better show the features of the nodal set we express the
electronic positions in spherical coordinates and rewrite the
wave function using sum and differences of those. Figure 1
shows a cut through the node of the HF wave function fixing
nine out of twelve coordinates, showing where �HF = 0 for
the remaining three coordinates. The x, y, and z axes show,
respectively, r1–r2, r3–r4, and θ1–θ2.

The plot is only a three-dimensional cut of the full 11-
dimensional (11D) (3N–1) node but it nicely shows the four
distinct nodal domains separated by the two intersecting nodes.
The two independent nodes, one from each determinant, cross
forming angles of π/2. It can be shown12 that this is a
general feature of intersecting nodes of eigenfunctions: If n

independent nodes cross, they form equal angles of π/n. The
intersection is a ten-dimensional (10D) set (3N–2) where both
the wave function and its gradient vanish: � = 0,∇� = 0.
The double permutation operator P12P34 transforms a point
in a positive (negative) domain into a point in the other
disconnected positive (negative) domain.

In the HF picture the ground state spatial wave function is
always the product of α and β determinants which means that
the nodal structure of �HF is always composed by two or more
intersecting nodal surfaces,2 even if not necessarily as simple
as those of beryllium. An important consequence is that the
number of nodal domains in the HF description is at least 4
for systems with more than three electrons (the ground state
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FIG. 2. (Color online) Three-dimensional cut of the full 11D node
of the CI wave function for the Be atom with two nodal domains.

of helium has only one domain since it is positive everywhere
while the ground state of Li has a single nodal surface and
two nodal domains4). The same of course applies to any single
Slater determinant generated from any single-particle theory.

It is well known that the quality of the HF wave function
for four electron atoms can be greatly improved by adding
the 1s22p2 configuration to the ground state one, generating a
small CI expansion:

�CI = ϕ(1s22s2) + cϕ(1s22p2). (4)

The nodal set of �CI is completely different from that of
�HF: As soon as the parameter c is different from zero, the two
independent nodal surfaces of the HF configuration merge,
an “opening” appears where the two surfaces previously
crossed, and only one hypersurface is left, with only two nodal
domains: one positive and one negative. Figure 2 shows a
three-dimensional (3D) cut of the full 11D node of �CI.

It is even possible to rigorously prove4 that the exact
beryllium ground state wave function has only two nodal
domains. The proof is repeated in the Appendix for the
convenience of the reader, to make the paper self-contained.

This property is not limited to the Be atom but seems to
be a general feature of fermionic systems. It was hypothesized
by Ceperley1 numerically checking the ground state of the 2D
and 3D noninteracting spin-polarized homogeneous electron
gas with periodic boundary conditions, up to 200 electrons.
Glauser et al.2 showed that HF wave functions for a few first-
row atoms have four nodal domains and conjectured that the CI
wave functions might have only two. Mitas9 proved that in two
dimensions and higher, spin-polarized noninteracting fermions
in a harmonic well have two nodal domains for arbitrary system
size, and was able to extend the proof to a number of other
models, such as fermions on a sphere or in a periodic box.

In the same paper Mitas showed, using a Bardeen-Cooper-
Schrieffer (BCS) pairing wave function, that the two nodal
domain property holds even for the ground state of 2D spin-
unpolarized fermions in a closed-shell singlet state of arbitrary
size.

The validity of the conjecture has been shown also for
spin-polarized closed-shell ground states of noninteracting
fermions and for spin-polarized atomic states with several
electrons, both for noninteracting and HF wave function.5

In summary, even if a general mathematical proof is still
lacking, there are reasons to believe that, at least for many
important cases, the two nodal domains conjecture is true.

III. IMPLICATIONS OF THE CONJECTURE

Although it has not yet been established in general exactly
in which cases the ground fermionic state has only two nodal
domains, the above discussion suggests that the conjecture
might be true for all ground states of electronic systems. If this
is true it is well worth trying to understand its implications
in different fields of physics through the constraints it puts
on the exact wave function. The principal aim of this paper
is to stimulate researchers in different fields to explore the
nodal structure of their wave functions and in particular to
investigate which consequences would have the two nodal
domains conjecture in fields where the fermionic nature of the
ground state wave function is important.

In the following we will assume that the conjecture is true
and will explore a few implications and ramifications, hoping
to stimulate further analysis. Some of the examples have
already been discussed (albeit very briefly) in the literature,
but in this paper they are brought together within a unifying
framework.

A. Avoided nodal crossings

In recent years a few papers have been devoted to
studying the phenomenon where two nodal lines (nodal sets
in 2D) exhibit “avoided crossings.” This phenomenon has
been investigated in excited states of two-dimensional model
potentials,13 chaotic wave functions,14,15 quantum stadium,16

Gaussian random waves,17 and other two-dimensional cases.
The phenomenon, however, is not limited to one-particle
excited states in two dimensions. The CI and exact beryllium
wave function show the same phenomenon which seems to be
a general feature, but so far little investigated, even of quantum
many-body systems.

Taking two-dimensional plots of the nodes of the HF wave
function (see Fig. 1) we observe two independent intersecting
nodal lines, defining four nodal domains (See Fig. 3 dashed
line). As soon as some mixing with the |1s22p2| configuration
is introduced the crossing of the two nodes disappears, except
in a lower-dimensional subset of configurations, and the two
nodes now show the avoided crossing phenomenon (solid line
in Fig. 3). This is clearly intimately related to the fact that the
CI and the exact wave function have only two nodal domains.

It is tempting to interpret the avoided crossing phenomenon
as a correlation effect since in the beryllium wave function
it appears as soon as we deviate from the simple HF wave
function. However, this is not so and the appearances of
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FIG. 3. Avoided nodal crossing in a beryllium CI wave function
(solid line). The nodes of HF wave functions are shown in dashed
lines.

avoided nodal crossings are rather a manifestation of the fact
that the wave function is no longer expressed as a simple
product. To illustrate this we show in Fig. 4 the nodes of the
2s4s 1S doubly excited state of the helium atom where the
interaction between the two electrons has been turned off.
Other excited states have similar features.

FIG. 4. Nodes of the 2s4s 1S doubly excited state of the helium
atom where the interaction between the two electrons has been turned
off.

Even if the interaction between the two electrons has been
turned off, and so there is no correlation, a pattern of avoided
crossings still shows up due to the fact that the wave function
is symmetric with respect to the interchange of r1 and r2,
and it cannot be written as a simple orbital product. It is
important to notice this property, and it is likely that this
feature survives even when the electronic interaction is turned
on.

Uhlenbeck18 showed that a generic property of eigen-
functions is that they are Morse functions and as a con-
sequence different nodes do not generally intersect. The
avoided intersection phenomenon and the two nodal domains
conjecture are both clearly related to Uhlenbeck’s theorem,
which, however, is too general and cannot exclude that some
state of some specific system has intersecting nodal surfaces.
A counterexample is the 1s3s 3S excited state of helium,
both with interacting or noninteracting electrons, that has
two intersecting nodal surfaces and four nodal domains. The
avoided crossing phenomenon is almost always present and
crossing of nodal surfaces occurs only in special cases, e.g.,
when there are specific symmetry constraints as in many 3S

states of the He atom that have r1 = r2 as one nodal surface.
The general properties of nodal surfaces for excited states will
be the subject of a future paper.19

B. The DFT wave function

Density functional theory (DFT) has become quite popular
in the last few decades. Its roots rest on the Hohenberg-Kohn
theorem20 which establishes the functional dependence of
the system’s ground state energy from the electron density.
Strictly speaking there is no wave function in DFT; its practical
implementation, however, almost always relies on the Kohn-
Sham formulation,21 where a system of N noninteracting
particles in a fictitious potential is introduced and whose
exact ground state wave function is a single Slater determinant
whose density is, by construction, equal to the density of the
real system of interacting particles. The orbitals which form
the Slater determinant are the solutions of N single-particle
equations. In its practical implementation the Kohn-Sham
(KS) scheme introduces an approximation of the so called
exchange-correlation potential.

Strictly speaking the Kohn-Sham orbitals and wave func-
tion have no real physical meaning. Their only connection
with the real system is that they provide the exact density
and energy, provided one has the exact exchange-correlation
functional. While this is certainly true and well known, in
recent years many authors started to view the KS wave function
as a legitimate object both for qualitative and quantitative
purposes. For example, it is quite common to use wave
functions built from Kohn-Sham orbitals in quantum Monte
Carlo simulations where the nodal shape and connectivity is
crucial to obtain accurate results. This is not a real issue in
quantum Monte Carlo simulations since the fixed node energy
is a rigorous upper bound to the exact ground state regardless
of the origin of the wave function that is employed to define
the nodes.

More problematic, however, could be the use of the KS
orbitals and wave function for interpretive purposes in DFT
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itself or to compute properties other than the energy and the
density, since there is no guarantee that the wave function
would be even close to the exact one. However, an often used
justification on the use of the KS orbitals and wave function as
if they possess physical meaning is that, after all, they come
from a one-electron potential where exchange and correlation
effects have been introduced and, furthermore, they are able
to generate the exact density. On the other hand, the HF wave
function does not include correlation effects and its generated
density is not the exact one, but HF wave functions and
orbitals are routinely used to interpret experimental results. As
Reboredo and Kent22 recently remarked. the success of DFT
has led to its use “beyond its formal scope and unfortunately
tempted some to believe that if we had the exact ground state
density functional we would only need to solve noninteracting
problems even for properties not related to the ground state
energy and density.”

Given the above discussion on the nodal surfaces of the
beryllium atom and the two nodal domains conjecture it is easy
to see that the KS wave function, as the HF one, always has
features not present in the exact ground state wave function.
Suppose we have the exact exchange-correlation functional. In
this case the Kohn-Sham equations would generate the orbitals,
exact solutions of a noninteracting four-electron system, that
give the exact ground state energy and the exact density of
the beryllium atom. However, since the KS wave function is
written as a determinant, it will necessarily have at least two
independent nodal surfaces and at least four nodal domains.
This argument extends to all systems where the conjecture
proves to be true, including possibly all nondegenerate ground
states of atoms and molecules. Even if we knew the exact
Kohn-Sham exchange-correlation potential, in all these cases
we would obtain the exact ground state energy and density
but a wave function fundamentally different from the exact
one. For this reason its use for more than qualitative purposes
should be viewed with caution since there is no guarantee that
expectation values other than the density will be close to the
exact ones.

As explained above this paradox is only apparent since,
strictly speaking, there is no wave function in DFT, and the
Hohenberg-Kohn theorem relates the energy directly to the
density. The wave function in the Kohn-Sham scheme is
only an intermediate tool to generate the density and is not
guaranteed to be close to the exact one. This agrees with the
conclusions of Reboredo and Kent,22 studying a model system,
that the popular expectation that the DFT solution has good
nodal surfaces is not valid in general.

A number of reviews on perspective and current challenges
of DFT theory have appeared recently23–25 but in none of
these is mentioned the fact that the KS wave function, written
as a single determinant, is fundamentally different than the
exact wave function due to its wrong nodal structure, even
if one has the exact functional. This is an explicit and clear
example why any attempt to use the KS wave function to
compute properties other than the energy and density cannot be
theoretically justified. Interestingly a few papers have appeared
in the DFT literature26,27 suggesting the use of multideter-
minant wave functions in DFT. In this case the DFT wave
function would have, at least in principle, the correct nodal
topology.

C. Feynman and Cohen backflow wave function

In many field of physics the fermionic system of interest is
usually described at first order using some kind of one-particle
approximation, i.e., a single determinant wave function built
from single-particle orbitals. It can be either the result of a HF
calculation, a DFT description with some approximate func-
tional [e.g., Becke three-parameter Lee-Yang-Parr (B3LYP)],
or it can come from some other single-particle theory.

A popular approach to improve the variational freedom of
the wave function, suggested by Feynman and Cohen28 in a
study of liquid helium, is to use the so called backflow transfor-
mation. The coordinates R of the particles in the determinant
are replaced by the transformed collective coordinates X(R),
where the new coordinates Xi are related to the old electronic
coordinates Ri through

Xi(R) = Ri + ξ (R), (5)

where ξ (R) is the backflow displacement for particle i possibly
containing some variational parameter.

Examples of studies using this approach are numerous and
include both finite and infinite systems.29,30 Let us consider
a system with Nα and Nβ electrons, both greater than 1.
Before the transformation the wave function has at least
two independent nodal surfaces, with at least four nodal
domains. One surface depends only on the coordinates of α

electrons while the other depends on the coordinates of the β

electrons. After the backflow transformation the wave function
�BF = |X(R)|α|X(R)|β is still a product of two determinants.
The difference now is that each determinant depends on all
coordinates. However, since each determinant is, by definition,
antisymmetric, it must have at least one node. Since the
backflow transformation is continuous the topology of the
nodal domains is not changed by a backflow transformation.
This means that, even with infinite flexibility in the backflow
transformation, convergence to the exact wave function and ex-
act energy is never reached. This does not prevent the nodal set
of the backflow wave function to be better than the single de-
terminant nodes since now they depend on all the coordinates,
as in the exact wave function. However, in order to converge
to the exact nodes it is first necessary to establish the correct
number of nodal domains, and only at that point the backflow
transformation can converge to the exact wave function.

A number of different ways to write a wave function with the
correct, at least in principle, number of nodes is available, the
more common being the configuration interaction method. A
CI wave function, with a few well chosen determinants, seems
to be able to reduce the number of nodal regions to two, as we
saw for the beryllium atom, although a general proof is still
lacking. A number of other functional forms have been inves-
tigated in recent years, including Pfaffians31 and geminals.32

The above discussion rigorously applies to finite systems.
For infinite systems, a solid for example, one is interested in
the total energy per particle, and while for a given cell size
it is still true that a single determinant from a single-particle
theory gives a number of nodal domains greater than 2, and so
cannot converge to the exact wave function and total energy,
it is still open to question if the energy per particle could, at
least in principle, converge to the exact value.
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D. Excited states

In all the above discussions we have considered a generic
fermionic ground state. It is interesting to speculate, along the
same line of arguments, in which cases a single-determinant
wave function might give the correct description of the nodal
topology.

Let us considered a spin-polarized system of N electrons.
For example, this might be an excited state (of different
symmetry than the ground state) of an atom or a molecule.
Since all electrons have the same spin, the Slater determinant
factorizes into a spin part and only a single determinant (α,
for example) is left. In principle this functional form is able
to describe the correct topology of the nodal structure, with a
single node that divides the whole configuration space in two
equivalent regions. How this could be achieved in practice
is still open to investigation, but Mitas and co-workers5,9

showed that there are cases where this is indeed possible.
It is interesting to note that in this case the two nodal domains
conjecture does not prevent convergence to the exact node.

A similar argument applies when we have N–1 α electrons
(N > 2) and one β electron. The atomic case N = 3
corresponds to the lithium atom ground state while for larger N

it can represent excited states. The HF and KS wave functions
are products of a Slater determinant of order N − 1, with at
least two nodal domains, and a β determinant composed by
a single orbital. If this is the 1s orbital, positive everywhere,
we fall into the previous case where this wave function can, in
principle, describe the correct nodal topology.

In the generic case of N–M α electrons and M β electrons
(M > 1) a spin-space determinant factorizes into a product
of two determinants, composed by independent variables, and
as discussed in a previous section, the wave function has the
wrong number of nodal domains.

IV. CONCLUSIONS

After illustrating the two nodal domains conjecture we
showed that it has interesting ramifications and nontrivial
implications in different fields of physics. Although it is
well known that the DFT wave function in the Kohn-Sham
formulation is only a tool to generate the density, we were able
to precisely show the structural differences with respect to the
exact wave function of the real interacting system and point
out that these differences persist even if the exact exchange-
correlation functional is available. For this reason any attempt
to use the KS wave function to compute properties other
than the energy and density cannot be theoretically justified.
We pointed out that the popular way to improve the quality
of a wave function using a backflow transformation cannot
converge to the exact value, even in principle, unless one
starts from a wave function with the already correct number of
nodal domains. We remarked on the connections between the
two nodal domains conjecture and the related phenomenon of
nodal avoided crossings and pointed out that this is not related
to electronic correlation by explicitly examining the nodes of a
doubly excited state of the noninteracting helium atom. Finally
we speculated in which cases a single determinant could in
principle give a qualitatively correct description of the nodes
for excited states. We hope our analysis will stimulate further
investigations on nodes in different fields of physics.

APPENDIX: PROOF THAT FOUR-ELECTRON 1 S ATOMIC
GROUND STATES HAVE ONLY TWO NODAL DOMAINS

According to the tiling theorem,1 for any ground state
fermionic wave function all the nodal domains are equivalent
and all are related by permutations. In the four-electron
case, this implies that there can be at most four nodal
domains, since there are only four permutations that do not
interchange spin: two positive permutations, I and P12P34,
and two negative permutations, P12 and P34. The different
nodal domains can be labeled with respect to a reference
point, R∗ = (R1, R2, R3, R4), as the set of points that can
be reached by a continuous path from the reference point that
does not cross a node of �. Any point with �(R∗) �= 0 can
be chosen as a reference point. The tiling theorem tells us that
the nodal domain defined with respect to one reference point
is equivalent to those defined with respect to another point up
to a permutation.

In order to prove that there is only one positive nodal domain
it is sufficient to find a reference point R∗ and show that there
is a continuous path R(t), where the wave function is always
positive, from R∗ to its doubly permuted image P12P34R∗.
The connection between the two negative regions follows by
symmetry.

As a reference point we choose a point of the form R∗ =
(R1, − R1, R3, − R3) where R1 and R3 are arbitrary nonzero
vectors nonparallel to each other. Since the exact wave function
�(R) is a 1S state it is spherically symmetric, which means
that �(R) is invariant with respect to a rotation of all electrons
about any axis through the nucleus. We need to find an axis
such that with a single rotation the two α electrons exchange
positions, and the same happens for the two β electrons. This
axis is R1 × R3, i.e., the axis orthogonal to both R1 and R3. A
rotation of π around this axis defines a path R(t) that exchanges
electrons 1 and 2 and at the same time 3 and 4, connecting R∗ to
P12 P34 R∗. Since the wave function is invariant with respect
to rotation, it is constant along this path. Hence as long as
�(R∗) �= 0, i.e., it is a valid reference point, then there are
only two connected nodal domains, a single positive and the
symmetric negative region.

To finish the proof we need to show that it is always possible
to choose R∗ such that �(R∗) �= 0. We express the exact wave
function using a CI (configuration interaction) expansion � =∑

i ciϕi , where the first two terms are ϕ1 = |1s22s2| and ϕ2 =
|1s22p2|.

As we have already seen, the Hartree-Fock term ϕ1 vanishes
for any R∗ defined as above. The second term ϕ2 has a node
of the form

[g(r1)R1 − g(r2)R2] · [g(r3)R3 − g(r4)R4] = 0 (A1)

for some positive function g. With the value of R∗ assumed
above, ϕ2 will vanish only when R1 · R3 = 0. Thus as long
as R1 and R3 are not orthogonal the sum of the first two
CI configurations is not zero, and there is no reason to
expect that adding other CI terms will cause �(R∗) to
vanish exactly for all of these points R∗. This completes
the proof that the Be atom ground state has only two nodal
domains.
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