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Towards the standard model for Fermi arcs from a Wilsonian reduction of the Hubbard model
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Two remarkable features emerge from the exact Wilsonian procedure for integrating out the high-energy scale
in the Hubbard model. At low energies, the number of excitations that couple minimally to the electromagnetic
gauge is less than the conserved charge, thereby implying a breakdown of Fermi liquid theory. In addition,
two charge e excitations emerge in the lower band, the standard projected electron and a composite entity
(comprised of a hole and a charge 2e bosonic field), which give rise to poles and zeros of the single-particle
Green function, respectively. The poles generate spectral weight along an arc centered at (π/2,π/2), while the
zeros kill the spectral intensity on the back side of the arc. The result is the Fermi arc structure intrinsic to cuprate
phenomenology. The presence of composite excitations also produces a broad incoherent pseudogap feature at
the (π,0) region of the Brillouin zone, thereby providing a mechanism for the nodal/antinodal dichotomy seen in
the cuprates.
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I. INTRODUCTION

As revealed by extensive angle-resolved photoemission
spectroscopy (ARPES) studies,1–7 lightly doped copper-oxide
superconductors (cuprates) in the pseudogap regime possess
a band of excitations that only cross the chemical potential
once. Such a single crossing generates a set of coherent or
pole-like excitations that ultimately form a truncated Fermi
region, termed a Fermi arc, as opposed to the traditional
Fermi surface generated by a double crossing. The coherent
excitations, centered around (0,0) → (π,π ), traverse the zone
diagonal and terminate in the vicinity of (π,0) or (0,π ),
thereby giving rise to a nodal/antinodal dichotomy,8–12 the
former being ungapped while the latter is gapped. While some
ARPES experiments13 performed on Bi2Sr2−xLaxCuO6+δ

(La-Bi2201) revealed closed hole pockets, and hence consis-
tency with the results from quantum oscillation experiments
in high magnetic fields,14–18 this interpretation has been
called into question.6 King et al.6 observed that the closed
pockets seen earlier13 are entirely structural in origin, as
they originate from overlapping superstructure replicas of the
main and shadow bands. Consequently, the preponderance of
evidence from ARPES is that the coherent excitations form
a disconnected region in momentum space consistent with a
single crossing of the chemical potential.

Theoretically, two questions arise. (i) What suppresses the
spectral weight on the back side of the arc? and (ii) What
is the origin of the incoherent excitations or gap at the zone
boundary? A natural candidate to explain the former is that two
kinds of excitations populate a doped Mott insulator, one of
which has no overlap with the electron. Such an excitation will
appear in the single-electron Green function as a zero rather
than a pole and hence will carry no spectral weight. In this vein,
some have proposed neutral composite excitations19 to explain
the origin of Fermi arcs. Alternatively, Fermi arcs have been
seen in numerics20–22 in the two-dimensional Hubbard model
and have been modeled phenomenologically23 (Yang, Rice,
and Zhang; hereafter YRZ). However, a key assumption of the
phenomenological account is that the zero line is fixed at the
diamond-shaped Fermi surface of the noninteracting system.
That the diamond-shaped Fermi surface of the noninteracting

system constitutes the zero line of the single-particle Green
function is a rigorous mathematical statement24 only if the
underlying Hamiltonian is particle-hole symmetric. In fact,
from the precise condition24–26 for the vanishing of the real part
of the Green function, maintaining that the zero line is doping
independent requires unphysical assumptions regarding the
spectral function. Certainly such a conservation of the zero
line is not borne out by numerics on the Hubbard model27,28

or by analytical arguments.24 In addition, models involving
Cooper pairs, fluctuating or otherwise, have been constructed
to yield either arcs5 or hole pockets.29,30 Our discussion here,
however, focuses entirely on arcs, as this seems to be what the
ARPES experiments are about.

While the physical origin of arcs might not be clear, the
mathematics is. Any Green function of the form

Gtoy(ω,k) = Z

ω − εk + |�(k)|2
ω−εk

(1.1)

will do. The similarity to the BCS Green function is only
perfunctory, as there is no anomalous component. Aside from
having poles, Eq. (1.1) has zeros whenever εk = 0, assuming
of course that the chemical potential corresponds to ω = 0.
While the two dispersing electronic bands, εk and εk, in
Eq. (1.1) are not hard to come by, the parameter �(k) is. It
requires some sort of order, fluctuating or otherwise, or a new
bosonic degree of freedom. While YRZ proposed Eq. (1.1)
phenomenologically, their intuition was based on weak-
coupling RPA diagrammatics31 on two-leg ladder systems. In
the context of an algebraic charge liquid,32 Qi and Sachdev29

also obtained Eq. (1.1). Thus far, the only system shown to
have the properties of an algebraic charge liquid is one with
parameters radically different from those of the cuprates.33

Our point here is that �(k) arises fundamentally from a
new degree of freedom associated with dynamical spectral
weight transfer. Ideally, it would be advantageous to derive
Eq. (1.1) directly from the strong-coupling parameter space of
the basic model for a doped Mott insulator, for example, the
Hubbard model. Such a derivation has not been presented in
the literature. Hence, it is this problem that we address. Since
zeros24,25 arise from a cancellation of the spectral weight in the
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upper and lower Hubbard bands (hereafter UHBs and LHBs),
an accurate description of the upper band is required in a
derivation of Eq. (1.1). Hence, an attempt to obtain Eq. (1.1)
from a model that projects out the UHB, for example, the
t − J model, is initially a nonstarter, as this model does not
have zeros of the type required for Eq. (1.1). Nonetheless, the
information regarding the UHB should be correctly encoded
into a theory of the lower band if the UHB is integrated out
(rather than projected out) exactly à la Wilson.34 In this paper,
we show how the method we have recently developed35–37 for
carrying out the Wilsonian program for the Hubbard model
can be used to derive Eq. (1.1). We show explicitly that
two types of excitations emerge, projected electrons (yielding
poles in the propagator) and a new bound state that gives rise
to zeros. The bound state is not made out of the elemental
excitations and hence is orthogonal to an electron (hence
the zero). It represents a charge e excitation that originates
from the nonrigidity of the Hubbard bands, in other words,
the well-documented dynamical spectral weight transfer,38–40

the key fingerprint of the breakdown of the band concept in
Mott systems. Since the mathematics of Fermi arcs requires
two kinds of excitations, one with poles and the other with
zeros, we refer to a physical model that contains both, such
as the one presented here, as the standard model. More exotic
models relying on some type of order would fall outside this
framework.

II. CHARGE 2e BOSON THEORY

A. Preliminaries

Underlying our toy Green function is a two-pole structure
of the form

Gtoy(ω,k) = Z

(
cos2 θ

ω − ω+
+ sin2 θ

ω − ω−

)
. (2.1)

Here cos2 θ = (ω+ − ε(k))/(ω− − ω+) and ω± = 1
2 (ε(k) +

ε(k)) ±
√

(ε(k) − ε(k))2 + 4|�(k)|2. Zeros arise from the in-
terference between the poles at ω− and ω+. Any model that
admits zeros must have at least this two-pole structure. There
are two limits of the Hubbard model in which the zero surface
can be calculated exactly. In the atomic limit, the zero surface
of the exact single-particle Green function,

GR(ω) = 1 + x

ω − μ + U
2

+ 1 − x

ω − μ − U
2

, (2.2)

is independent of the momentum given by ω = μ and x = 0.
When the hopping is nonzero, t �= 0, the only limit in which
the zero surface can be calculated exactly is at half-filling and
particle-hole symmetry. In this limit, the zero surface24 for
a nearest-neighbor band structure is the magnetic Brillouin
zone. Since Fermi arcs are absent from both the atomic limit
and the half-filled system with hopping, it follows necessarily
that Fermi arcs (if they are present at all in the Hubbard model)
arise entirely from the dynamical part of the spectral weight.

Dynamical spectral weight transfer represents a concrete
example of more being totally different. As is evident from
Eq. (2.2), the weight of the lower band in the atomic limit is
1 + x. This spectral weight has a natural interpretation in terms
of electron states. There are 2x electron addition and 1 − x

electron removal states. Hence, in the atomic limit, there is a
one-to-one correspondence with the spectral intensity and the
number of electron states in the lower band. When the hopping
is turned on, the spectral intensity increases in the lower band
to 1 + x + α, where

α = 2t

U

1

N

∑
ij,σ

〈f †
iσ fjσ 〉 + O((t/U )2) (2.3)

and the fiσ ’s are a rotation of the original fermionic operators
in the Hubbard model such that it is block diagonal. The
energy of each block is nU , with n the number of double
occupancies in each block. α is necessarily positive because
any hopping process that creates double occupancy decreases
the available spectral weight in the upper band. Consequently,
counting electrons, fractionalized or otherwise, cannot exhaust
the total number of degrees of freedom in the lower band. A
new degree of freedom must be present which is distinct and
hence orthogonal to electron quasiparticles. This degree of
freedom will appear as a 0 in the spectral function in the lower
band. It is precisely the nature of the states that arise from the
mixing with the upper band that we elucidate here.

Several approaches suggest some kind of composite exci-
tation mediates Fermi arcs. Consider the SU (2) gauge theory
of the t-J model proposed by Wen and Lee41 in which the
elemental fields are the appropriate linear combinations of two
charge e bosons and two spinons. A mean-field calculation41

of the coherent spinon-boson Green function reveals that the
spectral weight of the occupied part of the spectrum exceeds
1 − x, acquiring a value of 1 + x/2 instead. Wen and Lee41

alleviated this problem by introducing an interaction which
recombined the bosons and fermions back into the elemental
fields. The effect of this interaction with strength U was to
enhance the spectral weight in the unoccupied part of the
spectrum. The correct spectral weights were obtained simply
by adjusting the magnitude of U . The unoccupied part of
the spectrum41 shows up as a small hole pocket centered
roughly at (π/2,π/2). The intensity on the back-side of the
pocket is greatly suppressed, thereby leading to a structure
not too distinct from a Fermi arc. Subsequent work on the
U (1) formulation of the t-J model with a phenomenological
spinon-holon binding term reached a similar conclusion.42

However, the most extensive calculation in the gauge theoretic
formulations of the Hubbard model reached a rather different
conclusion. Working directly with the Hubbard model, Imada
and colleagues19 used a slave-particle construction with the
gauge fluctuations treated at the RPA level and concluded it is
actually dynamical spectral weight transfer that leads to a fermi
arc structure and a Green function of the YRZ form. Aside
from suffering from the lack of a systematic way of treating
the gauge fluctuations, this formulation generates Fermi arcs
from a neutral composite excitation.19 Since neutral entities
cannot couple to the current, it is unclear how such entities can
influence the spectral function. What we demonstrate here is
that dynamical spectral weight transfer mediates Fermi arcs.

B. Exact results: The conserved charge
and the low-energy mode

Dynamical spectral weight transfer has two profound
consequences. First, we show exactly that the conserved

115118-2



TOWARDS THE STANDARD MODEL FOR FERMI ARCS . . . PHYSICAL REVIEW B 86, 115118 (2012)

charge (1 − x) is not exhausted by counting the degrees of
freedom minimally coupled to the electromagnetic gauge. The
remainder are carried by an incoherent background. Second,
the dynamically transferred degrees of freedom give rise to
zeros in the lower band. In fact, the physics we find here is
analogous to the finite U charge processes that contribute to the
spectral function measured by ARPES in heavy fermions.43

We start with the procedure to integrate out the UHB.
Previously, we demonstrated35–37 that a theory of the LHB
(hole doping) can be obtained by introducing a new fermionic
field Di

35,36 which represents the excitations in the upper band.
This field has mass U and hence should be integrated out to
construct the exact low-energy theory. As in the derivation of
all collective phenomena which dates back to the classic paper
of Bohm and Pines,44 a constraint must be introduced so that,
when solved, the model in the extended space is equivalent to
the starting UV-complete theory. The new fermionic degree of
freedom enters the action in a quadratic fashion and hence the
standard fermionic path integral techniques can be applied to
integrate the high-energy scale of the UHB. Since the LHB
and UHB are not rigid in the sense that the spectral weights of
the two bands are coupled, integrating out the upper band will
lead to new degrees of freedom in the lower band. In Euclidean
signature, the Hubbard action in the extended space is

SUV
h =

∫ β

0
dτ

∫
d2θ

{
θ̄ θ

∑
i,σ

(1 − niσ̄ )c∗
iσ ∂τ ciσ

+
∑

i

D∗
i ∂τDi + U

∑
j

D∗
j Dj − t

∑
i,j,σ

gij [θ̄ θ (1−niσ̄ )

× (1 − njσ̄ )c∗
iσ cjσ + D∗

i c
∗
jσ ciσDj + (D∗

j θciσVσ cjσ̄

+ C.c.)] + sθ̄
∑

j

ϕ∗
j (Dj − θcj↑cj↓) + C.c.

}
, (2.4)

where the matrix gij selects the relevant neighbors, Vσ =
±1(σ =↑ , ↓), the constraint is given by δ(Di − θci↑ci↓), θ is
a Grassmann, s is a constant with units of energy so that ϕi is
dimensionless, and ciσ is an electron annihilation operator
for site i with spin σ . Because the δ-function constraint
appears exponentiated in the action, an auxiliary field with
charge 2e, ϕi , enters the action as a Lagrange multiplier. As
a consequence, the field ϕ is not made out of the elemental
excitations (thereby distinguishing it from other charge 2e

scenarios involving pairs of electrons) but, rather, arises
because the UHB and LHB are not rigid bands. In the action,
the first two terms represent the dynamics in the LHB and
UHB, respectively; the third term, the mass of the D field; the
fourth term, the hopping in the lower band with matrix element
t ; the next two, the dynamical mixing between the upper and
lower bands; and the last term, the constraint. The constant s

has units of energy and is O(t).45 It is straightforward to check
that solving the constraint by integrating out the auxiliary field,
ϕi , followed by an integration over Di exactly reduces SUV

h

to the action for the standard Hubbard model. This is the
UV limit of our theory. The advantage of the reformulation
above is that it cleanly associates the physics of the upper
band with a fermionic field Di which enters the action in a
quadratic fashion. To obtain the IR limit, one simply has to
perform the Gaussian integration over the massive field, Di .

The result is the low-energy or IR action, SIR
h = ∫

dτLIR
h , with

the associated Lagrangian,

LIR
h = (1 − niσ̄ )c∗

iσ ∂τ ciσ − tgij (1 − niσ̄ )c∗
iσ cjσ (1 − njσ̄ )

− (sϕi − tbi)
∗(M−1)ij (sϕj − tbj )

− (sϕ∗
i ci↑ci↓ + c.c.) − 1

β
tr lnM, (2.5)

where a matrix element of M is given by Mij = (∂τ +
U )δij − tgij c

†
jσ ciσ and bi = ∑

j gij cjσ Vσ ciσ̄ . Hereafter, re-
peated indices are implicitly summed unless otherwise stated.
It is important to note that no approximations have been made
as of yet.

In both actions, SUV
h and SIR

h , global U(1) symmetry
guarantees the existence of a conserved charge, which turns
out to be

QUV
h = (1 − niσ̄ )c∗

iσ ciσ + 2D∗
i Di, (2.6)

QIR
h = (1 − niσ̄ )c∗

iσ ciσ + 2(sϕi − tbi)
∗

× (M−1)ik(M−1)kj (sϕj − tbj ). (2.7)

It is a natural consequence that the conserved charge 〈QUV
h 〉

is consistent with the number of electrons in the original
Hubbard model since the operator D

†
i Di counts the num-

ber of doubly occupied sites. From the Hellman-Feynmann
theorem, it is straightforward to check how the number of
double occupancies, nUV/IR

docc , is related to Di . Since nUV/IR
docc =

β−1∂ lnZUV/IR
h /∂U with Zh = ∫

D[· · ·]e−Sh , one can easily
observe the second terms in Eqs. (2.6) and (2.7) are identical to
nUV

docc and nIR
docc, respectively. As a result, the conserved charge

〈QIR
h 〉 is identified with the number of electrons, 1 − x, with

x the number of holes. This is one of the indications that the
low-energy action, SIR

h , retains the structure of the Hubbard
model even after the integration of the massive modes.

Another advantage of the low-energy theory is that the
non-Fermi-liquid nature of the low-energy excitations is im-
mediately manifest. To illustrate this, one can add a minimally
coupled source term,36

L′UV
h = J ∗

iσ [θ̄ θ (1 − niσ̄ )ciσ + θ̄ c∗
iσ̄ VσDi] + c.c., (2.8)

so that when the constraint is solved, the bare electron operator
is generated.36 What we would like to know is what is the
transformed fermion at low energies. Integrating out the Di

fields results in a source contribution to the IR Lagrangian,

L′IR
h = J ∗

iσ ψiσ + c.c. − J ∗
iσ c∗

iσ̄ (M−1)ij cjσ̄ Jjσ , (2.9)

with a new collective field, ψiσ , given by

ψ∗
iσ = (1 − niσ̄ )c∗

iσ +tb∗
j (M−1)jiVσ ciσ̄ −sϕ∗

j (M−1)jiVσ ciσ̄ .

(2.10)

Note ψiσ is derived not contrived. It is Eq. (9) in Ref. 35.
We obtained it by integrating the UV -complete Lagrangian
in the presence of the source term that generates the correct
UV current with respect to the massive field Di . ψiσ is the
propagating degree of freedom in the IR. It contains not only an
electron-like quasiparticle affected by nearby spin fluctuations,
but also a hole (with the opposite spin) that is dressed with a
doubly charged bosonic mode. Note that we cannot give ψiσ a
simple interpretation in terms of bosons or fermions. At best,
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ψiσ corresponds to the physical field that is minimally coupled
to an external gauge field. That is, these are the excitations
that couple to light. Hence, it is the field that is probed by
an ARPES experiment, for example. While ψiσ was derived
earlier, what we did not show explicitly is that it does not
stand in a one-to-one correspondence with the bare electrons.
This can be proven exactly by focusing on the positive-definite
quantity,

ψ∗
iσ ψiσ = (1 − niσ̄ )c∗

iσ ciσ + (tb − sϕ)∗j (M−1)jiciσ̄ c∗
iσ̄

× (M−1)ij (tb − sϕ)j

= QIR
h − (tb − sϕ)∗j (M−1)ji(2 + c∗

iσ̄ ciσ̄ )(M−1)ij
× (tb − sϕ)j , (2.11)

which is essentially the conserved charge less the number
of doubly occupied sites. Since the second term in the last
line is positive definite, the number of low-energy collective
modes which are minimally coupled to the electromagnetic
gauge field is less than 〈QIR

h 〉 = 1 − x. The natural resolution
of this conumdrum is that the number operator only counts
those excitations that have a particle-like interpretation. That
is, the number operator only counts the coherent part of the
spectrum. All of the stuff mediated by mixing with the upper
band is entirely incoherent, and hence while it can contribute
to the current, it is not enumerated by counting the number of
particles. The remainder of the charge count is carried by the
last term in Eq. (2.9).

This discrepancy is not a surprise when one considers that
the total spectral weight of the lower band exceeds 1 + x

(Refs. 38 and 40) by a dynamical correction, α > 0, that
depends on the hopping integral, t . Since there are only 1 + x

electron states in the lower band, and only charge e excitations
contribute to the spectral function, there has to be some new
charge mode to make up the difference. What ψiσ makes plain
is that there are charge e states that contribute to the current
that are completely incoherent. It is a composite excitation of
ϕ† and a hole ciσ̄ . In terms of the UV variables, this degree of
freedom represents the binding of a doublon and a holon. The
new composite excitation, ϕ∗M−1Vσ cσ̄ , has internal structure
and hence is orthogonal to the projected electron. Since there
is no Hilbert space for ϕ, interpreting ϕ†ciσ̄ in terms of a
particle is not possible. It is this additional degree of freedom
that creates the Fermi arc structure—that is, the zeros of of
the Green function. Hence, hidden in ψiσ is an incoherent
contribution to the single-particle Green function. What this
discussion makes clear is that ϕ should not be considered to
be an independent degree of freedom but, rather, one that is
strongly coupled to the fermions.

What we have shown thus far is that there is a dynamical
contribution to the charge degrees of freedom that are coupled
to the source term that generates the current. Such entities are
the physical degrees of freedom that create holes in the lower
band. Consequently, when one such excitation is removed
from the lower band, the change in the spectral weight should
also depend on t . Hence, the doping level should receive a
dynamical contribution. To this end, we defined46 x ′ = x + α,
and hence the weight in the UHB is 1 − x ′ and the occupied and
empty parts of the lower band are 1 − x ′ and 2x ′, respectively.

C. Green function and approximations

Thus far, all of our statements are exact. Our calculation of
the Green function is not, however. To lend credence to our
treatment, we state our assumptions clearly and up front. The
complexity arises in treating the ϕ degree of freedom. Our
treatment is in the spirit of the results obtained in the previous
section, namely, that ϕ leads to the creation of a new charge e

excitation that is orthogonal to a projected electron on account
of its internal structure.

Having determined the generating functional,
L′

h[{J ∗
iσ ,Jiσ }], we proceed to calculate the Green function. In

the functional formalism, it is given by

Gψ (ri − rj ,τ ) = − δ2

δJiσ δJ ∗
jσ

lnZ IR
h [{J ∗

iσ ,Jiσ }]|J ∗=J=0

= −〈Tτψi(τ )ψ†
j (0)〉 + 〈δ(τ )c†iσ̄ (M−1)ij cjσ̄ 〉,

(2.12)

where Tτ represents time ordering and 〈· · ·〉 stands for the
average over all possible paths. Since the second term is
independent of time, this term contributes to the incoherent
part of the Green function. To understand the first term
which contains both coherent and incoherent responses, it is
sufficient to focus on the correlator between the ψiσ ’s. Since
ψiσ contains a composite excitation which has a prefactor
of t/U , 〈Tτψiσ (τ )ψ†

jσ (0)〉 can, in principle, be expanded
in power of t/U . The presence of the projection operator,
(1 − niσ̄ ), however, does not necessarily guarantee that it gives
a dominant contribution compared to the composite entities.

For the purpose of numerical evaluation, we make an
approximation to the projection operators, following the idea
developed by Zhang et al.47 However, the crucial difference
is that we make the substitution the bare hole concentration
by the effective hole doping level (x → x ′), since the physical
entities coupled to the external gauge field are not the bare
electrons but are, rather, dynamically generated. Hence our
first approximation is

(A1) (1 − niσ̄ )c∗
iσ cjσ (1 − njσ̄ ) → gtc

∗
iσ cjσ ,

where gt = 2x ′/(1 + x ′). Interestingly, in the strong cou-
pling limit, (U/t 
 1), a mean-field approach to Kotliar-
Ruckenstein’s slave boson construction48 led to the same
renormalization factor for the charged fermion but with x ′
replaced with x. Likewise,

(A2) (1 − niσ̄ )c†iσ (∂τ + · · ·)ciσ → gpc
†
iσ (∂τ + · · ·)ciσ ,

where gp = (1 − x ′)/(1 − x). The multiplicative factors are
chosen here for internal consistency with the two assumptions.

Since the action S IR
h has all relevant degrees of free-

dom for the low-energy sector, including the spin singlet
fluctuations (bi) and mixing between the separate Hubbard
bands (ϕ), it is reasonable to expand the action in powers
of t/U . To leading order, the matrix elements (M−1)ij
is U−1δij . From the fact that the collective boson ϕi

only has dynamics through its coupling to the fermions,
we assume the dynamics of the boson to be frozen.
Operationally this assumption breaks down at O(t/U )2,
where the explicit dynamics of ϕ appears, as can be seen
from an expansion of the M matrix, s2

U 2 ϕ
∗(∂τ − U + · · ·)ϕ.
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In fact, even at O(t/U )2, the propagator for ϕ makes plain
that it has a pole only in the high-energy sector. This justifies
the assumption that

(A3) the bosonic field, ϕ, has no dynamics in the LHB.

In other words, it alone is highly massive and is not likely
to propagate in the low-energy sector. Finally, although local
spin ordering might be non-negligible, we assume it to be, at
most, ancillary to the strong interaction physics arising from
the coupled boson-fermion terms. This is a key assumption
and certainly not traditional, as most treatments of the LHB
focus on the spin physics. However, as our emphasis here is on
isolating the source of zeros in the LHB, demonstrating that
the action possesses such modes in the absence of the spin-spin
scattering term would suffice to show that such an interaction
is indeed ancillary to the essential charge physics. As will
become evident, our treatment does in fact show this to be
the case. Under these considerations, the effective low-energy
action turns into

S IR
h =

∫ β

0
dτ

{
c∗

kσ [gp(∂τ − μ)δij − gtεk]ckσ

− 1

U 2
(sϕ − tb)∗q(U + 2μ)(sϕ − tb)q

− (sϕ∗
qcq−k↑ck↓ + c.c.)

}
, (2.13)

where μ denotes the chemical potential, k and q are the
momenta, and εk = tgij e

ik·(rj −ri ). This action has a BCS-like
coupling and hence will have a Green function of the form
of Eq. (1.1). That the Green function must be of the form
of Eq. (1.1) is not dependent on the assumptions delineated
earlier. It relies solely on the fact that the spectral weight in
the lower band exceeds 1 + x and hence a new charge e state
distinct from the projected electrons must be present. Such an
excitation can only be a composite.

Consequently, for a given amplitude of ϕq, the Fourier trans-
formation of the two-point correlator G = −〈Tτψi(τ )ψ†

j (0)〉
becomes

G(iωn,k) = g̃t

iωn − μ − g̃t εk − �±(iωn,k)
+ t

U
(· · ·),
(2.14a)

�±(iωn,k) = s2
k,qϕqϕ

∗
q

iωn − μ ± g̃t εq−k
, (2.14b)

where ωn = (2n + 1)π/β for n ∈ Z, g̃t = gt/gp, and sk,q =
1 − (εk + εq−k)/U . The ± subscript on the self-energy arises
from the two choices which are possible for treating the dy-
namics of the charge 2e boson. If ϕi is treated as an independent
degree of freedom that can condense, then it can be absorbed
as a redefinition of the interaction strength, s → sϕ. This will
correspond to a simple condensation of ϕ in a nonzero mo-
mentum particle-particle channel, hence the plus sign in front
of the g̃t εq−k factor in the denominator of the self-energy. As
will be clear, this is not the interpretation of ϕ that is ultimately
consistent with the theory outlined here. Alternatively, ϕ∗

i ciσ̄

could be viewed as a new composite charge e excitation that
results from dynamical spectral weight transfer. With such
bound modes, the interaction term, ϕ∗c↑c↓, can be interpreted

as a particle-hole scattering process. To implement this
interpretation in the Green function, we note that since ϕ∗c↑c↓
now describes the scattering of an electron cσ off a composite
particle ϕ∗Vσ cσ̄ /|ϕ|, the denominator in the one-loop self
energy will resemble that of a particle-hole scattering event,
thereby leading to a minus sign in front of the g̃t εq−k term in
the denominator of the self-energy. In additon, the ellipse in
Eq. (2.14a) represents the terms that originate from the mixing
between the composite excitations and the projected electron,
which are at least suppressed by the factor t/U . The number g̃t

results from the rescaling g
1/2
p ciσ → ciσ . Since g̃t = gt/gp �

2x ′, the t/U corrections in Eq. (2.14a) are comparable to
the leading term only for x ′ < t/2U ∼ 0.05. For example, at
half-filling, the Green function only has the t/U term and the
spectral weight is governed entirely by the mixing between the
projected and the composite excitations as shown previously.45

In the current treatment, we explore entirely the contribution
from the leading term, which is of the form of Eq. (1.1).

D. Free-energy minimum approach to the 2e boson

Evaluating the Green function is equivalent to a random-
matrix problem. In the most general case, the field ϕi must be
integrated over with a separate value on each site. However,
such a multi-variable integration is not tractable in any
dimension. From the observation that the collective boson
is not canonical, that is, it does not have its own kinetics,
it was previously conjectured that the spatially homogeneous
configuration was the most prominent candidate for the ground
state.35,45 Even though such an approach was successful in
capturing some experimental45 findings, it still leaves an open
question whether the homogeneous solution minimizes the
free energy. To this end, we explore some inhomogeneous
solutions for ϕi to see where the free-energy is a minimum.
In particular, we explore a staggered configuration, ϕi =
eiq·ri |ϕ0|. It should be noted that a particular choice of
the configuration of ϕ does not correspond to spontaneous
symmetry breaking, since the bosonic mode is in lack of
inherent dynamics.

In Fig. 1, we directly compute the free energy difference
between a configuration with a spatial texture and the homoge-
neous state, �F = F (ϕ0e

iq·r) − F (ϕ0), where q, determines
the spatial dependence of ϕi . Except for small values of ϕ0 in
which the homogeneous solution minimizes the free energy,
the distinct minimum occurs at (π,π ) when the magnitude
of the bosonic field, ϕ0, approaches unity. This is significant
because the probability distribution of ϕ0 computed from
P (|ϕ|) = 1/Z IR

h

∫
D[{c,c∗}]e−S IR

h , has a distinct maximum
precisely at the value of ϕ where the (π,π ) solution minimizes
the free energy. This state of affairs obtains because a quick
inspection of the action reveals that for a staggered configu-
ration of ϕ, the ϕ†b term actually vanishes. This results in a
lowering of the energy relative to the homogeneous solution.

That the (π,π ) configuration of ϕi minimizes the free
energy is highly significant because the evaluation any integral
over ϕi will be dominated by the staggered solution. What
about the single-particle Green function? In our previous
treatment of this problem in which we assumed that the mixing
with the UHB was mediated by a homogeneous boson, ϕ0

for all sites, we obtained a completely gapped structure at
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FIG. 1. (Color online) Free energy minimization and probability
distribution of charge 2e boson. (a) �F = F (ϕ0e

iq·r) − F (ϕ0) as
a function of momentum q. ϕ0 is the magnitude of the charge 2e

boson. As is evident, the free energy is strongly dependent on the
momentum. As ϕ0 increases, the minimum of the free energy shifts
to (π,π ). This corresponds to a sign change for the bosonic excitation
around a plaquette. (b) Probability distribution for ϕ0 evaluated from
the IR action by the relation, P (|ϕ|) = 1/Z IR

h

∫
D[{c,c∗}]e−SIR

h . The
maximum occurs at ϕ0 ≈ 1.2, where the corresponding momentum
that minimizes the free energy is q = (π,π ).

the chemical potential for the spectral function. Given that
q = (π,π ) is the blobal minimum, our expression for the Green
function simplifies to

G(iωn,k) =
∫

d|ϕ||ϕ|P (ϕ)G(iωn,k)|ϕq=δq,π |ϕ|. (2.15)

The probability distribution function P (ϕ) is shown in
Fig. 1(b). For completeness, we present in Fig. 2 the band
dispersion corresponding to the maximum in the spectral
function obtained from Eq. (2.14a) for three cases: (i) a
homogeneous solution; (ii) a staggered (π,π ) phase of ϕi in
the particle-particle channel, �+; and (iii) a staggered solution
in the particle-hole channel, �−. For the homogeneous phase,
we find a hard gap [Fig. 2(a)] because no momentum states
cross the chemical potential. However, as shown earlier, the
homogeneous solution does not correspond to a minimum in
the free energy. Consider the staggered solutions shown in
Figs. 2(b) and 2(c). Figure 2(b) shows that even a staggered
solution in the particle-particle channel, a gap does not occur
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FIG. 2. (Color online) The low-energy band dispersion along
high-symmetry directions for (a) a homogeneous configuration,
ϕi = ϕ0; (b) a staggered configuration (ϕi = |ϕ0|eıπ ·ri ) evaluated
by Eq. (2.14a); and (c) a staggered one evaluated by Eq. (2.14a).
Here, we take the broadening factor η = 0.025t for a typical value
U/t = 10, t ′/t = −0.3, t ′′/t = 0.1, and the bare hole doping level
as x = 0.12. In the evaluation, the parameters, α = x ′ − x are taken
from the numerical estimates of the number of double occupancies
from Liebsch and Tong.49

in the (π,0) region of the Brillouin zone. There is also a
crossing along the zone diagonal. This indicates that a simple
condensation of ϕ in a nonzero-momentum particle-particle
channel cannot give rise to the nodal/antinodal dichotomy.
There is in fact a clear reason why ϕ cannot be treated as an
independent degree of freedom that can condense. There is a
one-to-one correspondence between Eq. (2.10) and its analog
[Eq. (19) in Ref. 39] in the standard perturbative treatment of
the Hubbard model. In essence, the charge 2e boson replaces
a string of operators that account for the mixing of double
occupancy into the lower band. This is why this approach
is simpler. As it would be completely incorrect to replace
that string of operators with an average value, it is equally
wrong to treat ϕ as a variable that can condense. In fact, it is
well known40 that such mean-field truncations fail to describe
dynamical spectral weight transfer in the Hubbard model.

Consider the third dispersion [Fig. 2(c)], in which ϕ is the
mediator of a composite charge e state. This corresponds to
a self-energy given by �−. The break in the dispersion just
above the chemical potential is not followed by a re-entrant
crossing at a higher momentum. Such a re-entrant crossing
would give rise to a closed Fermi surface. It is the presence of
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FIG. 3. (Color online) The spectral function of the low-energy
theory for each hole doping level: (a) x = 0.05, (b) x = 0.08,
(c) x = 0.12, and (d) x = 0.18. An incoherent background is removed
and the intensities of the spectral function are normalized for the first
quadrant of the full Brillouin zone.

the additional propagating degree of freedom which thwarts
this re-entrance. In addition, there is no crossing at (π,0), but
a broad incoherent feature indicative of the pseudogap. Since
the breakup of the bound state results in a band crossing near
the (π,0) region, the root cause of the pseudogap is the bound
state formed between the bosonic field, ϕ, and a hole, as we
have advocated previously.45 Consequently, the pseudogap
problem is one of confinement. The corresponding Fermi
surfaces are shown in Fig. 3. The arc-like structure is evident.
The line of zeros is given by the divergence of the self-energy
and hence it is doublon-holon binding that is responsible for
killing the intensity on the back side of the arc. The Fermi
surfaces evolve smoothly for the doping levels shown from
x = 0.05 to x = 0.18. Note also the broad feature at the zone
boundary. While it is tempting to interpret the broad peak near
the antinodal region as an electron pocket, the lack of coherent
excitations makes this view untenable.

III. FINAL REMARKS

The key point this work demonstrates is that two types
of charge carriers go into forming Fermi arcs. The projected

electrons are present in any low-energy reduction of the
Hubbard model and create the spectral weight on the high-
intensity side of the arc. The zeros correspond to composite
excitations which are present as a result of dynamical spectral
weight transfer and hence are present only if the UHB is
retained or treated appropriately. Such composite excitations
enter the self-energy through the particle-hole channel, as
the relevant scattering process is that of a fermion from the
composite excitation. Both of these features leading to an
effective two-fluid model45,50 are present within a Wilsonian
reduction of the high-energy scale in the Hubbard model.
The treatment we have derived here should be valid as long
as the UHB provides a relevant perturbation to the physics
of the LHB. Hence, it cannot describe the crossover to the
Fermi liquid regime in which ϕ is unbound. Experimentally,
a decoupling of the UHB from the LHB appears to take place
around x ≈ 0.25.51 Accompanying the collapse is a transition
from a small Fermi surface scaling with x to a large one with
effective area 1 − x. The precise nature of this transition will be
the subject of a future study. However, a prediction of this work
is that the in the pseudogap regime, the volume of the Fermi
arc region should be given by x ′ rather than x. This follows
from the fact that the number of particle-like excitations that
minimally couple to the electromagnetic gauge is less than
1 − x ′ < 1 − x. Hence, the hole Fermi surface should be given
by x ′. High-precision ARPES measurements can be employed
to verify this result.

Since our scheme of two types of charge carriers, one giving
rise to zeros and the other to poles, seems quite general, it is
tempting to rewrite the IR theory in terms of the composite
and projected excitations. This would require integrating in an
additional field for the composite, fiσ , degree of freedom. The
composite fermion is not canonical, however, and treating it
as such would destroy the key feature leading to a suppression
of the spectral on the back side of the arc. Thus far, we have
found no consistent way of doing this. Hence, an open problem
remains precisely how the new composite excitation should be
treated. But that it is present in any standard model of Fermi
arcs is not in doubt.
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27J. Kokalj and P. Prelovšek, Phys. Rev. B 75, 045111 (2007).
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