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Searching for non-Fermi liquids under holographic light

D. V. Khveshchenko
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599, USA

(Received 25 May 2012; revised manuscript received 24 August 2012; published 12 September 2012)

By expanding the set of background geometries beyond the commonly studied ones we identify those dual
gravity models that may provide holographic descriptions for some prototypical non-Fermi liquid states of
strongly correlated condensed matter systems. Specifically, we discuss prospective gravity duals of such iconic
examples as the nonrelativistic fermions coupled to gauge fields and Dirac fermions with Coulomb interactions.
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I. INTRODUCTION

Quantum theory of strongly correlated fermions has long
been in a rather desperate need for nonperturbative techniques,
the use of which could allow one to proceed beyond the
customary (and often uncontrollable in the regime of inter-
est) approximations when analyzing generic (nonintegrable)
systems.

Despite all efforts, though, the overall progress has been
quite limited. However, it has been argued that a recent pro-
liferation of the ideas based on the hypothesis of holographic
duality1 may offer a possible way out of the stalemate, thus
allowing the field to move towards a systematic classification
of various “strange” metallic (compressible) states that are
commonly (and often indiscriminately) referred to as non-
Fermi liquids (NFLs).

The holographic correspondence postulates a connection
between certain (non-Abelian, multi-(N ) component, and
supersymmetric) field theory models and their gravity duals
living in one extra dimension, so for N � 1 the strong-
coupling regime of the former can be mapped onto the weak
coupling one of the latter (and vice versa). The support for this
general idea is provided by a host of circumstantial evidence
gathered from the “bona fide” theories of strings and hot QCD
quark-gluon plasmas.

Nevertheless, despite a gradually building confidence in the
validity of the original holographic hypothesis, the status of its
recently proposed condensed matter applications remains, by
and large, unknown.

Pursuing the phenomenological “bottom up” approach,
the initial studies produced a number of rather baffling
results, which include multiple Fermi surfaces (merging into
one critical “Fermi ball,” or, rather, a “flat band,” in the
extreme N → ∞ limit), oscillatory frequency dependence and
dispersionless poles of the fermion propagator, and so on.2

Some of those early findings have already been interpreted
as spurious artifacts of taking the limit N → ∞. For one,
no oscillatory dependence would arise in a more systematic
“top-down” approach3 [besides, the same effect can also
achieved by including a nonminimal (Pauli) fermion-gauge
field coupling4].

Putting aside the central question about a general appli-
cability of the original holographic hypothesis to (typically,
neither non-Abelian/multicomponent, nor supersymmetric)
condensed matter systems, one common limitation of the early
studies was that their background metrics would typically be

chosen from a handful of well-known solutions to the classical
Einstein-Maxwell equations.

Obviously, such an “under the light” search for holographic
NFLs lacks any physical input specific to a given strongly
correlated system and, therefore, its chances of finding a
gravity dual for that particular system appears to be rather
hard to assess.

In essence, the early studies have so far found just one
type of the NFL behavior, dubbed “semilocal criticality,”
whereby the fermion propagator features a nonanalytical (and,
in general, oscillatory) frequency dependence, but only a
nonsingular momentum one,

G(ω,q) = 1

A(q) + B(q)ωνq
. (1)

Here the function A(q) has simple zeros at each of the
(potentially, multiple) “Fermi momenta” qi

F , whereas B(q)
takes finite values at such points (see Ref. 2 for details).

This behavior suggests that, at long distances, the sys-
tem effectively splits onto spatially uncorrelated “quantum
impurities,” each of which exhibits a characteristic d = 0
quantum-critical scaling. Although it was pointed out that the
propagator (1) bears a certain resemblance to that expected in
the context of some heavy fermion materials (see, e.g., Ref. 5
and references therein), in the absence of any solid agreement
with experiment that would suggest otherwise, this might well
turn out to be merely superficial.

In view of such uncertainty, the task of putting the
holographic correspondence on a firm ground and ascertaining
the status of its predictions more definitively would be best
achieved if this technique were applied to those situations
where prior insight has already been gained by some other
means. To that end, it would be very helpful, first, to find the
gravity duals of the already established (or, at least, suspected)
NFL states.

In what follows, we demonstrate that accomplishing this
task requires one to extend the class of metrics well beyond
the commonly studied classical examples.

II. PROSPECTIVE GRAVITY DUALS OF CONDENSED
MATTER SYSTEMS

The early applications of the holographic hypothesis
yielding Eq. (1) utilized the standard Reissner-Nordstrom
(RN) “black brane” solution, which minimizes the Einstein-
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Maxwell action

Sg =
∫

1

2κ2

(
R + d(d + 1)

L2

)
− 1

2e2
F 2

μν. (2)

Hereafter,
∫ = ∫

dtdzdd �x√−detgμν stands for a covariant
d + 2-dimensional volume integral, R is the scalar curvature,
the second term represents a (negative) cosmological constant
of the asymptotically anti-de-Sitter space AdSd+2 of curvature
radius L, κ2 is the Newtonian coupling, and e is the charge of
the U (1) gauge field.

The corresponding metric (throughout this paper, the speed
of light c = 1)

ds2 = −f (z)dt2 + g(z)dz2 + h(z)d �x2 (3)

has nonzero components f (z)(z/L)2 = (L/z)2/g(z) = 1 −
(1 + μ2)(z/zh)d+1 + μ2(z/zh)2d , h(z) = (L/z)2. Here μ is the
(dimensionless) chemical potential of the fermion matter,
which is assumed not to react back on the metric, and zh is the
inverse radius of the horizon determined from f (zh) = 0.

The latter can remain finite even when the Hawking tem-
perature T = [d + 1 − (d − 1)μ2]/4πzh vanishes, thereby
giving rise to yet another artefact of the N → ∞ limit, a
seemingly nonvanishing entropy S(T → 0) �= 0. In the near-
boundary z → 0 (ultraviolet or UV) regime, Eq. (3) recovers
the standard AdSd+2 form, f (z) = g(z) = h(z) = (L/z)2.

In fact, the “locally critical” behavior (1) sets in at the
extremal T → 0 limit,2 where the near-horizon geometry
approaches AdS2 × Rd . Moreover, a similar [albeit more phys-
ically sound, entropywise, S(T ) ∼ T d/η] behavior was found
for a variety of geometries which reduce to the one-parameter
“Lifshitz” metric f (z) = (L/z)2η, g(z) = h(z) = (L/z)2 in the
z � 1 (infrared or IR) regime.6 It was also shown to result from
an approximate (Thomas-Fermi) account of the fermions’
back-reaction in the framework of the standard gravity (2),
thus leading to the “electron star” scenario.7

In fact, the latter metric naturally emerges alongside a whole
class of more general solutions in the so-called dilaton gravity
whose Lagrangian includes an additional bulk scalar field8

Sdg =
∫

1

2κ2

[
R − (∂φ)2

2
+ U (φ)

]
− Z(φ)

2e2
F 2

μν. (4)

In the minimal version, both the dilaton potential U (φ) =
d(d + 1)eδφ/L2 and the effective gauge coupling Z(φ) = eγφ

are given by simple exponential functions with the coefficients
δ and γ .

In what follows, we focus on the T = 0 case and consider a
still broader class of static and spherically symmetric metrics

f (z) = (L/z)2η, g(z) = (L/z)2α, h(z) = (L/z)2β, (5)

whereas at finite T one also has the freedom of altering the
additional polynomial “emblackening factor,” similar to that
in the RN solution (3).

For any β �= 0, Eq. (5) can be reduced to a two-parameter
family of metrics known as the “hyperscaling violating”
backgrounds.9 The latter are characterized by the dynamical
exponent ζ and hyperscaling violation parameter θ ,

ζ = η + 1 − α

1 − α + β
, θ = d

1 − α

1 − α + β
, (6)

which manifest themselves through the scaling properties of
the excitation spectrum in the boundary theory: ω → λζω for
q → λq and that of the interval (3), ds → λθ/Dds.

In Ref. 9, a number of “top-down” string scenarios were
presented, by which the “hyperscaling violating” geometries
may arise. In that regard, the null energy criteria that must be
obeyed by any physically sensible gravity dual with the metric
(5) impose the inequalities

β(η − β + α − 1) � 0, (η − β)(1 − α + η + dβ) � 0.

(7)

As in Ref. 9, the generalized metrics (5) do not cover the z → 0
region and, therefore, require a proper UV completion. Thus,
they should be viewed as gravity duals of some effective IR
field theories residing at a finite z0. Correspondingly, all the
holographic propagators discussed in the rest of this paper
pertain to the renormalized operators from such effective
theories rather than those of the “microscopic” boundary ones.
The latter can be obtained from the former by virtue of the
matching procedure, akin to that of Ref. 2.

III. SEMICLASSICAL PROPAGATORS

In the holographic analyses, the bulk fermions of mass m

couple to the metric and gauge fields in the minimal way,

Sf =
∫

ψ̄γμ

(
i∂μ + i

8
[γλ,γν]ωμ

λν + eAμ − m

)
ψ, (8)

where γμ are the γ matrices and ωλ
μν is the spin connection.1

In the absence of explicit analytical solutions for the bulk
fermion wave functions in generic gravitational backgrounds,
one can still resort to the semiclassical approach. The equation
for the Fourier-transformed wave function ψ(z,ω,q) features
an effective single-particle potential10

V (z) = m2 + q2

h(z)
+ ω2

f (z)
, (9)

which allows for two zero-energy solutions in the tunneling
region z0 < z < zt ,

ψ±(z,ω,q) ∼ 1

V 1/4(z)
e
± ∫ zt

z0
dz

√
g(z)V (z)

, (10)

where the turning point zt is defined as V (zt ) = 0.
Using Eq. (10) one then finds the effective IR theory’s Green

function as the reflection coefficient for the wave incident at
z = z0

1

GIR(ω,q) = ψ−(z,ω,q)

ψ+(z,ω,q)

∣∣∣∣
z→z0

∼ e−S(ω,q), (11)

where

S(ω,q) = 2
∫ zt

z0

dz
√

g(z)V (z). (12)

Considering the metric (5) and focusing on the limit of a small
fermion mass, one obtains the scaling behavior

S(ω,q) ∼
(

q1−α+η

ω1+β−α

) 1
η−β

, (13)
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indicative of the underlying quasiparticle dispersion ω ∼ qζ

governed by the dynamical exponent (6).
In the complementary limit of a large mass, the semiclas-

sical analysis can be more conveniently employed directly in
the real space.11 In this regime, various quantum-mechanical
amplitudes are dominated by the fermion paths that closely
follow the classical trajectories (geodesics) obtained from the
(imaginary-time) action

S(τ,x) = m

∫
dz

√
g(z) + f (z)(dτ/dz)2 + h(z)(dx/dz)2.

(14)

When evaluated on such a trajectory, Eq. (14) reads

S(τ,x) = m

∫ zt

z0

dz

√
g(z)

r(z)
, (15)

where r(z) = 1 − �2
x/h(zt ) − �2

τ /f (zt ) is a function of
the conjugate momenta �x = δS/δ(dx/dz) and �τ =
δS/δ(dτ/dz) given by the integral equations

x = �x

∫ zt

z0

dz

h(z)

√
g(z)

r(z)
, τ = �τ

∫ zt

z0

dz

f (z)

√
g(z)

r(z)
(16)

and the turning point is obtained by solving the equation
r(zt ) = 0. The minimal action (15) then controls the fermion
propagator, G(τ,x) ∼ e−S(τ,x).

While an explicit computation of Eq. (15) can be per-
formed only in some special cases, determining simpler,
one-parameter, dependencies S(τ ) and S(x) is possible for
a broad variety of metrics. Specifically, for the metric (5) one
obtains

S(x) ∼ x
1−α

1−α+β , S(τ ) ∼ τ
1−α

1−α+η . (17)

Notably, both Eqs. (12) and (15) elucidate the role of the radial
variable z as an energy-like renormalization scale parameter.
However, a direct correspondence between the two can not be
readily established, since the Fourier transformation relating
G(ω,q) and G(τ,x) requires both functions, including their
nonexponential prefactors, to be known across the entire
ranges of their arguments. It might be possible, though, to
relate their asymptotics by virtue of the saddle-point method,
wherever applicable.

IV. FINITE DENSITY FERMIONS WITH
SINGULAR INTERACTIONS

One important testing ground for the holographic hypothe-
sis is provided by the theory of finite density fermions coupled
to an Abelian gauge field. This problem has long been at the
forefront of theoretical research where it was studied with a
whole variety of techniques, although the case still remains
unclosed. For instance, the recent results of Ref. 12, which
revisited the attempts to obtain a self-consistent resummation
to all orders in the spirit of the Eliashberg theory,13 indicate
that a naive 1/N expansion may not be as reliable as previously
thought.

Furthermore, long-ranged and retarded (“singular”) in-
teractions that allow for a similar description are often
associated with the onset of ground-state instabilities, and the

concomitant NFL behaviors might occur even in those systems
whose microscopic Hamiltonians involve only short-ranged
couplings.

Such interactions are mediated by gapless bosonic excita-
tions of an emergent order parameter, and in all the diverse
reincarnations of the problem, their gauge-like propagator
conforms to the general expression

D(ω,q) = 1

|ω|/qξ + qρ
. (18)

Important pertinent examples include anomalous electromag-
netic skin effect in metals,14 compressible quantum Hall states
with screened repulsive interactions,15 critical spin fluctuations
in itinerant ferromagnets,16 and density fluctuations in “quan-
tum nematics,”17 for all of which ξ = 1, ρ = 2. In contrast,
normal skin effects and antiferromagnetic fluctuations would
be described by ξ = 0, ρ = 2, whereas compressible quantum
Hall states with the unscreened Coulomb interactions corre-
spond to ξ = 1, ρ = 1.

The asymptotic IR behavior of the propagator of fermions
coupled to a gaugelike bosonic mode can be evaluated by
means of the eikonal-type procedure,18 which reduces the
former to the phase factor taken along the classical trajectory

G(τ,x) ∼
〈

exp

[
i

∫
Aμ(z = z0)dxμ

]〉
A

= e−S. (19)

Here the averaging is performed over a (physical or effec-
tive) gauge field Aμ governed by the propagator 〈AμAν〉 =
D(ω,q)(δμν − qμqν/q

2), thereby resulting in

S(τ,x) = 1

2

∫
dωddq

(2π )d+1
D(ω,q)

1 − cos(ωτ − qx)

(iω − vq)2
, (20)

where v ∼ qF x̂ is the Fermi velocity in the direction of the
vector x.

To estimate the eikonal action (20) for a timelike interval

S(τ ) = 1

2

∫
dωddq

(2π )d+1
D(ω,q)

1 − cos ωτ

(iω − vq)2
∼ τ

ρ+1−d

ξ+ρ , (21)

we first perform the momentum and then the frequency
integrations, thereby discovering that, at τ → ∞, the integral
is dominated by the frequencies ω ∼ τ−1 and momenta q ∼
τ−1/ξ+ρ .

Moreover, the kinematics of fermion scattering is such that,
at small scattering angles (which is the regime amenable to
the eikonal approximation), one finds ω � |vq| � |v × q|
for all 2 − ξ < d < 1 + ρ. Thus, the scattering momentum
appears to be primarily directed along the Fermi surface and
perpendicular to the local Fermi velocity.

With that observation in mind, one can also compute
the integral (20) for a spacelike interval, thus obtaining the
asymptotic behavior

S(x) ∼ x
ρ+1−d

ξ+d−1 . (22)

It is then easy to see that Eqs. (17), (21), and (22) match,
provided that the following relations hold:

1 − α

1 − α + β
= ρ + 1 − d

ξ + d − 1
(23)

1 − α

1 − α + η
= ρ + 1 − d

ρ + ξ
.
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The above results pertain to the propagators of the effective
field theories which, unlike their underlying microscopic coun-
terparts, become essentially universal after having undergone
renormalization down to the IR scale z0. As such, they need to
be contrasted with the holographic Green functions computed
at a finite z0, rather than those at the original boundary z = 0.

Thus, in order to reproduce the effects of the singular in-
teraction (18) with ξ = 1, ρ = 2 and d = 2 in the holographic
setting, one needs to choose the relevant parameters as follows:
η = 2β = 2(1 − α). For comparison, the case of ξ = 1, ρ = 1
can be covered by choosing η = β, α = 1, whereas the case of
ξ = 0,ρ = 2 requires η = 1 − α, β = 0, which values would
be unattainable within the class of hyperscaling violating
metrics.

Notably, all of the above metrics comply with the criteria
(7) for the existence of a consistent gravity dual, the second
one being satisfied as a strict equality, η = 1 − α + β or
ζ = 1 + θ/d = [2(1 − α) + β]/(1 − α + β). Also, the corre-
sponding values of the dynamical exponent (ζ = 3/2, 1, and
2, respectively) agree with those inferred from contrasting
the quasiparticle dispersion vq against the fermion self-
energy12–17

�(ω) =
∫

dεddq

(2π )d+1

D(ω,q)

iω + iε − vq
∼ ω

d−1+ξ

ξ+ρ , (24)

which in comparison yields ζ = (ξ + ρ)/(d − 1 + ξ ).
Obviously, the matching conditions (23) are only the

necessary ones, so they may not always guarantee that the
entire two-parameter functional dependence of the action
S(τ,x) would be reproduced with this choice of parameters.
Our discussion should then be viewed as merely suggestive
of a possible holographic correspondence between the afore-
mentioned theories, and, in order to further strengthen the case,
more observables would need to be matched.

However, if the conditions (23) are not met, then no viable
gravity duals of the aforementioned physically revelant NFL
systems may be found among the generalized family of metrics
(5). By this argument, one concludes that none of these such
systems can be naturally mated with the classical AdS-RN
metric considered in Ref. 2.

V. COULOMB INTERACTING DIRAC FERMIONS

The recent upsurge of interest in graphene and topological
insulators—as well the earlier advent of 1D Coulomb metals
(e.g., carbon nanotutes), gapless 2D high-Tc superconductors,
and quasiparticle properties of 3D superfluid He3—brought
out the problem of (pseudo-)relativistic Dirac fermions with
isolated Fermi points and potentially long-ranged (due to a
lack of screening), albeit nearly instantaneous, interactions.

In the 1D case, the asymptotic dual geometry is AdS3 and
the corresponding (conformally invariant) boundary theory
is that of chiral 1D fermions. Its proper UV completion
is naturally achieved with the use of Eq. (3) for μ = 0,
known as the “nonrotating BTZ black hole,”19 and the (exact)
finite-temperature chiral fermion propagators read

G±(τ,x) =
(

πT

sinh πx+T

)2�+[
πT

sinh(x−T )

]2�−
, (25)

where x± = x ± τ . In the T → 0 limit Eq. (26) amounts to
G±(τ,x) = 1/x

2�+
+ x

2�−
− .

According to the holographic principle,1 the boundary
theory then must be strongly coupled, as manifested by the UV
(left/right) fermion dimensions, �± = mL/2 + 1/2 ± 1/4,
which are necessarily large, �+ + �− > 1.19 Notably, such
dimensions cannot be obtained from any 1D theory with short-
ranged repulsive couplings where the corresponding Luttinger
parameter would be limited to the interval 1/2 � K � 1,
thereby resulting in 1/2 � �+ + �− = 1

4 (K + 1/K) � 5/8.
In fact, the still-lower K values, 0 < K < 1/2, can be

attained only in the presence of long-ranged interactions, such
as Coulomb, which endows the Luttinger parameter and the
fermion dispersion with a slow momentum dependence,

K(q) = 1√
1 + σ | ln q| , εq = q

√
1 + σ | ln q|, (26)

where σ = 2e2/π .
In the general case of the d-dimensional Dirac fermions

with the 3D Coulomb interaction, Uq ∼ q1−d , the counterpart
of Eq. (20) reads (after the frequency integration)

S(τ,x) =
∫

ddqUq

(2π )dεq

[1 − cos(εqτ − qx)]. (27)

In the 1D case, one then obtains the leading behavior,

S(τ,x) ∼ σ 1/2 ln3/2 |x − τ |, (28)

which gives rise to a faster-than-algebraic decay of the
propagator G(τ,x) ∼ e−S , thus implying that the system
undergoes the 1D analog of the Mott transition.20

Making use of Eq. (15), one observes that capturing the
behavior (28) in the holographic framework would require a
logarithmic deformation of the asymptotic AdS3 geometry

g(z) = (L/z)2 ln z/z0, f (z) = h(z) = (L/z)2. (29)

Although this ansatz may not be unique, it shows that a
prospective gravity dual of the Coulomb-interacting Dirac
fermions is likely to lie outside the family of the AdS-RN
metrics utilized in Ref. 2. On the other hand, there exist
solutions showing logarithmic behavior at intermediate values
of z for some generalized dilaton potentials, as in Eq. (4), tuned
to their degeneracy points.8 Thus, one would have to tap into
those resources if viable candidates to the role of the gravity
dual of the 1D Coulomb metal were to be found.

VI. SUMMARY

In conclusion, we demonstrate that in order to ascertain
the status of the holographic approach in the context of
its applications to the hypothesized NFLs, one needs to
venture out of the comfort zone of the customary gravitational
backgrounds in search of new (self-consistent) solutions to the
coupled equations for the metric, dilaton, gauge, and matter
fields along the lines of Refs. 6–9.

To that end, we discuss the specific examples of non-
relativistic fermions coupled to gaugelike fields and Dirac
fermions with the Coulomb interactions, in both cases finding
the prospective metrics to possibly belong to the solutions
(alongside the hyperscaling-violating ones) of some general-
ized dilaton gravity models.
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Based on these observations, we suggest that, within such
a broad class of metrics, one would have better chances of
“reverse engineering” the gravity duals of the already docu-
mented NFLs, thus putting the entire holographic machinery

up to a decisive test. Then, after having affirmed that this
approach might work in the already known cases, one can
continue expanding the list of novel NFL states with greater
confidence.
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