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Alternative Kondo breakdown mechanism: Orbital-selective orthogonal metal transition
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In a recent paper of Nandkishore, Metlitski, and Senthil [Phys. Rev. B 86, 045128 (2012)], a concept of
orthogonal metal has been introduced to reinterpret the disordered state of slave-spin representation in the
Hubbard model as an exotic gapped metallic state. We extend this concept to study the corresponding quantum
phase transition in the extended Anderson lattice model. It is found that the disordered state of slave spins in
this model is an orbital-selective orthogonal metal, a generalization of the concept of the orthogonal metal in
the Hubbard model. The quantum critical behaviors are multiscale and dominated by a z = 3 and z = 2 critical
modes in the high- and low-temperature regime, respectively. Such behaviors are obviously in contrast to the
naive expectation in the Hubbard model. The result provides alternative Kondo breakdown mechanism for heavy
fermion compounds underlying the physics of the orbital-selective orthogonal metal in the disordered state, which
is different from the conventional Kondo breakdown mechanism with the fractionalized Fermi-liquid picture.
This work is expected to be useful in understanding the quantum criticality happening in some heavy fermion
materials and other related strongly correlated systems.
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I. INTRODUCTION

Understanding the elusive non-Fermi liquid and its corre-
sponding quantum criticality is one of the central issues in
modern condensed-matter physics.1–7 To attack this challeng-
ing problem, one popular idea is to fractionalize the electrons
in the model Hamiltonian into more elementary collective
excitations, namely, quasiparticles like spinon, holon, and
so on, near the putative quantum critical points due to wild
quantum fluctuations.8–19

Generally, fractionalization can be performed in terms of
many slave-particle theories, specifically, for the Hubbard
model there exist slave bosons, slave rotors, slave spins,
etc.13,14,17,20–25 In recent years, the slave-spins approach has
attracted much interest in the study of the multiorbital Hubbard
model since it is easier to formulate than the conventional
slave boson or slave rotor techniques,21–24 which is due to the
fact that the slave-spin approach only has a minimum gauge
structure, namely, Z2 symmetry,21,23,25 while the other two
theories have a U(1) gauge symmetry. In addition, whether the
U(1) gauge theory in (2 + 1)d is confined or not is still hotly
debated but the deconfinement of Z2 gauge theory in (2 + 1)d
is undisputed.26–34 Due to these advantages of the slave-spin
representation, this representation has been employed to study
the Mott (for single band) or the orbital-selective Mott (for
multiorbital) transitions of the Hubbard model.21–24 The Mott
transition has been identified as the slave-spin ordering or
disordering transitions.21,23

However, very recently, Nandkishore, Metlitski, and
Senthil25 reinspected the slave-spin representation of single-
band Hubbard model and pointed out that the correct disor-
dered state of slave spins is not a Mott insulator but an exotic
metallic state which they called an orthogonal metal. This state
is a compressible metal, which has the same thermodynamics
and transport as the usual Landau Fermi liquid, but its
electronic spectral function has a gap, thus leading to a

simplest non-Fermi liquid. Therefore there is an orthogonal
metal–Fermi-liquid transition instead of Mott transition in the
slave-spin representation of the single-band Hubbard model.

For the case of multiorbital models, they argue that an
orbital-selective orthogonal metal (OSOM) can be identified
where some orbital are factionalized to form orthogonal metal
while others are still the usual Fermi liquid.25 Therefore it
leads to an orbital-selective orthogonal metal transition but not
a previously expected orbital-selective Mott transition for the
slave-spin representation of the multiorbital Hubbard model.

Meanwhile, it is noted that the quantum phase transition
(QPT) of many heavy fermion compounds is also modeled in
terms of a two-orbital model, namely, the Anderson/Kondo
lattice model, which describes one strongly correlated band
hybridizing with another noncorrelated band. Since this is
indeed a multiorbital model and may be highly relevant to
quantum criticality observed in experiments,3,5,6,35–37 it is
interesting to study whether an orbital-selective orthogonal
metal and the corresponding orbital-selective transition really
exist. Moreover, it is also desirable to see whether and how
this possible new transition relates to the well-studied Kondo
breakdown mechanism which is proposed to explain elusive
non-Fermi-liquid states and quantum critical behaviors in
some heavy fermion materials.9,10,18,35,38–41

At first sight, it seems to be straightforward to do it.
However, different from the multiorbital Hubbard model, a
hybridization term, which is a new feature for Anderson
lattice-like models responsible for the celebrated Kondo effect,
exists between two distinct bands and could lead to totally
different critical behaviors. We find that this hybridization
term is crucial for the QPT and it leads to a multiscale
quantum critical behavior like the standard Kondo breakdown
mechanism instead of a ϕ4 criticality with z = 1 expected from
naive application of multiorbital Hubbard models. Comparison
between our treatment and the standard Kondo breakdown
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mechanism is also discussed. Moreover, we confirm that
the disordered state of slave spins is indeed an OSOM as
expected by Nandkishore, Metlitski, and Senthil25 and the
corresponding phase transition is also the expected orbital-
selective orthogonal metal transition. As byproduct, we have
also constructed a path-integral formulism for the Z2 slave-
spin representation of the extended Anderson lattice model.

The remainder of this paper is organized as follows. In
Sec. II, we introduce an extended Anderson lattice model and
reformulated it in terms of the slave-spin representation. Mean-
while, a useful path-integral formulism is also constructed
in this section. Then, a mean-field decoupling is used and
two resulting mean-field states are analyzed in Sec. III. One
state is the expected orbital-selective orthogonal metal and
the other is the usual heavy Fermi liquid. In Sec. IV, the
QPT between these two states is discussed and an effective
theory is used to clarify the correct critical behaviors, which
leads to identification of a multiscale criticality. In Sec. V, we
compare the results from the orbital-selective orthogonal metal
transition to the usual Kondo breakdown mechanism. Finally,
Sec. VI is devoted to a concise conclusion.

II. Z2 SLAVE-SPIN REPRESENTATION AND EXTENDED
ANDERSON LATTICE MODEL

The model we used is an extended Anderson lattice
model,25,38–41

H = −
∑
ijσ

tij d
†
iσ djσ +

∑
ij

Vijninj +
∑

i

(εi − μ)ni

−
∑
ijσ

gij c
†
iσ cjσ − μ

∑
iσ

c
†
iσ ciσ +V

∑
iσ

(d†
iσ ciσ + H.c.),

(1)

where ni = ∑
σ d

†
iσ diσ , εi is the on-site energy, μ is the

chemical potential, Vij is the Coulomb interaction which
includes the on-site energy Vii = U/2 when i = j , tij and gij

are hopping integrals for localized electron diσ and conducting
electron ciσ , respectively. V is the hybridization between the
d and c bands. This model describes a strongly correlated
band d hybridizing (V ) with another noncorrelated band c

and is expected to capture basic properties of some heavy
fermion systems, particularly the ones near quantum critical
points. Since we expect there is at least a QPT (particularly
related to non-Fermi-liquid behaviors) in this model, it is
natural and helpful to use techniques of fractionalization
which is ideal to achieve some non-Fermi-liquid behaviors and
the corresponding QPT. Here, motivated by recent intensive
studies of slave-spin representation of the Hubbard model, we
will also use the slave-spin technique in our discussion of the
above extended Anderson lattice model.

A. Z2 slave-spin representation

In the treatment of Z2 slave-spin approach, the local
electron dσ is fractionalized into a new auxiliary fermion fσ

and a slave spin τ x as21,23

diσ = fiσ τ x
i (2)

with a constraint τ z
i = −(1 − 2f

†
i↑fi↑)(1 − 2f

†
i↓fi↓) enforced

in every site. Under this representation, the original Hamilto-
nian can be reformulated as

H = −
∑
ijσ

tij τ
x
i τ x

j f
†
iσ fjσ +

∑
ij

Vijn
f

i n
f

j

+
∑
iσ

(εi − μ)f †
iσ fiσ −

∑
ijσ

gij c
†
iσ cjσ − μ

∑
iσ

c
†
iσ ciσ

+V
∑
iσ

(f †
iσ τ x

i ciσ + H.c.). (3)

It is noted that the first three terms of this Hamiltonian
are just the slave-spin representation of the Hubbard model
which have been intensively studied by many authors.21–25

While most of these authors identified the quantum phase
transition between the slave-spin disorder or order as a Mott
or orbital-selective Mott transition, Nandkishore, Metlitski,
and Senthil25 recently pointed out that the disordered state of
slave spins is not a Mott insulator but an exotic metallic state,
namely, the orthogonal metal. Thus there is an orthogonal
metal–Fermi-liquid transition instead of a Mott transition in
the slave-spin representation of Hubbard model. Following
the same methodology, we may expect that an orbital-selective
orthogonal transition could be found in the extended Anderson
lattice model since we are treating a two-band model where
one band has strong correlation between local electrons while
the other is basically a free Fermi gas.

Before leaving this subsection, we should emphasize that
although the physical d electron has been fractionalized into an
auxiliary fermion fσ and a slave spin τ x , the quantum number
of the electron (the spin- 1

2 and the charge e) are both carried
by the f fermion, which is quite different from slave boson
or slave rotor approaches where the charge and spin degree of
freedom are solely carried by bosonic particles and fermionic
spinons, respectively. This point is not noticed until the recent
interesting work of Nandkishore, Metlitski, and Senthil25

but has crucial influence on the correct interpretation of the
disordered state of the slave spin. As argued by Nandkishore,
Metlitski, and Senthil, a U(1) rotation of physical electron d

can only be matched by a U(1) rotation of f fermion while
the slave spin τ x does not change because it is purely real.
Therefore electric charge must be only carried by f fermion
but not the slave spin since it corresponds to the Noether charge
of the U(1) symmetry. Hence it can be a metallic state even
if the slave spin is gapped when the f fermions form Fermi
liquid. In the paper of Nandkishore, Metlitski, and Senthil,25

they named it orthogonal metal to emphasize that it is metallic
indeed and not a misunderstood Mott insulator. As a result,
the phase transition in the Z2 slave-spin theory of Hubbard is
orthogonal metal–Fermi-liquid transition in place of the Mott
transition.

B. Path-integral formulism for the Z2 slave-spin representation
of the extended Anderson lattice model

Before turning to discuss the mean-field treatment, we
present the construction of path integral for Z2 slave-spin
approach of the extended Anderson lattice model in this
subsection. To this aim, we follow the approach of Ref. 42
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where the general Z2 gauge theory is constructed in an
extended Hubbard model.

The construction of the path integral is to calculate the
partition function Z = Tr(e−βĤ P̂ ) where P̂ is the projective
operator to exclude unphysical states introduced by Z2 slave-
spin representation. Here we use

P̂ =
∏

i

1

2

[
1 + (−1)

1
2 [τ z

i +1−2(nf

i −1)2]]. (4)

This choice has the advantage to meet the mean-field theory
of the Z2 slave-spin approach. Obviously, one can employ
another equivalent projective operator,43

P̂ =
∏

i

1

2

[
1 + (−1)(1/2)[τ z

i −1+2n
f

i ]
]
. (5)

We will use the first definition of P̂ in the following discussion.
Follow Ref. 42, the projective operator can be reformulated by
introducing auxiliary Ising field σi = ±1,

P̂ =
∏

i

1

2

∑
σi=±1

ei(π/4)(σi−1)[τ z
i +1−2(nf

i )2]. (6)

Since [P̂ ,H ] = 0, one can define an effective Hamiltonian Heff

as

Heff = H +
∑

i

i
π

4
(1 − σi)

[
τ z
i + 1 − 2

(
n

f

i

)2]
. (7)

Then using the same method in the treatment of the quantum
Ising model (see Appendix A) and standard coherent state
representation of fermions, one obtains the path-integral
formulism of theZ2 slave-spin representation of the extended
Anderson lattice model,

Z =
∏

i

∫
df̄idfidϕiδ

(
ϕ2

i − 1
)
dσiδ

(
σ 2

i − 1
)
e−S (8)

and

S =
∫

dτ

[ ∑
iσ

f̄iσ (∂τ + εi − μ)fiσ +
∑
ij

Vijn
f

i n
f

j

+
∑

i

1

2
(∂τϕi)

2 −
∑
ijσ

tij ϕiϕj f̄iσ fjσ

+
∑
ijσ

c̄iσ (−gij − μδij )ciσ + V
∑
iσ

ϕi(f̄iσ ciσ + c.c.)

+
∑

i

i
π

4
(1 − σi)

[
1 − 2

(
n

f

i

)2]]
, (9)

where we have used τ x
i |ϕ〉 = ϕi |ϕ〉 with ϕ = ±1 and τ z

i |ϕ〉 =
|ϕ1〉|ϕ2〉|ϕ3〉 · · · | − ϕi〉 · · · |ϕN 〉 to avoid confusion with aux-
iliary Ising field σi . The above action is our main result in
this subsection and further approximations have to be made in
order to gain some physical insights.

III. MEAN-FIELD THEORY AND ORBITAL-SELECTIVE
ORTHOGONAL METAL

Undoubtedly, it is a formidable task to treat the Hamiltonian
of slave-spin representation of the extended Anderson lattice

model [Eq. (3)] exactly, thus here we only consider a mean-
field treatment and will reinclude the fluctuation effect in the
discussion of critical properties of the next section.

It is straightforward to derive a mean-field Hamiltonian as
follows:25

Hf c = −
∑
ijσ

t̃ij f
†
iσ fjσ +

∑
ij

(Vij + 4λiδij )nf

i n
f

j

+
∑

i

(εi − μ − λi)n
f

i −
∑
ijσ

gij c
†
iσ cjσ − μ

∑
iσ

c
†
iσ ciσ

+ Ṽ
∑
iσ

(f †
iσ ciσ + H.c.) (10)

HI = −
∑
ij

Jij τ
x
i τ x

j +
∑

i

(
λiτ

z
i + V̄ τ x

i

)
, (11)

where the Lagrange multiplier λi has been introduced to
fulfill the constraint on average, t̃ij = tij 〈τ x

i τ x
j 〉, Ṽ = V 〈τ x

i 〉,
Jij = tij

∑
σ 〈f †

iσ fjσ 〉 + c.c., V̄ = V
∑

σ 〈f †
iσ ciσ 〉 + c.c. The

decoupled Hamiltonian HI is a generalized transverse Ising
model and Hf c describes f fermions hybridizing with the
conducting electrons.

Let us first focus on the quantum Ising model [Eq. (11)].
It is well known that the standard transverse Ising model in
one spatial dimension can be exactly solved by Jordan-Wigner
transformation and it has two phases with the critical exponents
being the same as the two-dimensional classical Ising model.1

Beyond one spatial dimension, to our knowledge, no exact
solutions exist for the quantum Ising model until now.
However, one may define 〈τ x〉 as a useful order parameter and
there are at least two phases in two and three space dimensions.
(It is just this case in the study of the single-band Hubbard
model in terms of some mean-field approximations and the
Schwinger bosons theory.21,23,25) One is a magnetic ordered
state with 〈τ x〉 �= 0 while the other is described by a vanished
〈τ x〉 and is a disordered state with an excitation gap. Moreover,
there must be a quantum critical point (QCP), whose critical
properties could be described by a quantum ϕ4 theory, between
these two distinct phases.

In the case of the above generalized quantum Ising model,
we may simply assume that it has magnetic ordered (〈τ x〉 �= 0)
and disordered (〈τ x〉 = 0) states with a QCP between them to
simplify our treatment. (Readers can refer to Appendix A for
such ϕ4 theory.)

Next, we treat the Hamiltonian Hf c. It is noted that
Hf c is still an interacting Hamiltonian and thus has many
possible phases. Because usually it is more interesting to
study the instability of Landau Fermi liquid to other states
via quantum phase transitions, we here assume f fermions
form a Fermi liquid and have a sharply defined Fermi surface
in the remaining parts of the present paper.

Under these assumptions, it is safe to discard the interacting
terms between f fermions since Landau Fermi liquid is
basically a noninteracting gas and we will use a modified
Hamiltonian H̃f c, which reads

H̃f c = −
∑
ijσ

t̃ij f
†
iσ fjσ +

∑
i

(εi − μ − λi)n
f

i −
∑
ijσ

gij c
†
iσ cjσ

−μ
∑
iσ

c
†
iσ ciσ + Ṽ

∑
iσ

(f †
iσ ciσ + H.c.). (12)
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The above Hamiltonian can be readily diagonalized in the
momentum space. If the renormalized hybridization Ṽ is not
zero (〈τ x〉 �= 0), one obtains two new bands, namely, E±(k) =
1
2 (ε̃k + gk ±

√
(ε̃k − gk)2 + 4Ṽ 2) where ε̃k,gk are the single-

particle energy for f and c fermions, respectively. This is just
the heavy fermion band found in the more conventional slave
boson theory of Anderson or Kondo lattice models. One may
interpret the case with nonzero effective hybridization Ṽ as a
heavy Fermi liquid.9,10,35,38–41 In fact, based on the discussion
in the slave boson theory,9,10,35,38–41 a nonzero Ṽ also signals a
development of Kondo effect. Meanwhile, to further confirm
whether or not this state (Ṽ ) is a Fermi liquid, it is helpful
to inspect the behavior of the quasiparticle, particularly its
single-particle Green’s or equivalently its spectral function.

The Green’s function of the physical d (localized) electrons
is defined as21,23,25

Gdσ (i,j,t) = −i〈T djσ (t)d†
iσ (0)〉

= −i
〈
T τx

j (t)τ x
i (0)fjσ (t)f †

iσ (0)
〉
. (13)

At the mean-field level, the f fermion and slave spin are
decoupled from each other and the resulting Green’s function
can be written as21,23,25

Gdσ (i,j,t) ≈ Gspin(i,j,t)Gf σ (i,j,t), (14)

where we define Gspin(i,j,t) = 〈T τx
j (t)τ x

i (0)〉, Gf σ (i,j,t) =
−i〈Tfjσ (t)f †

iσ (0)〉. For the free f fermion, its Green’s function
and spectral function Af σ (k,ω) can be easily found as
Gf σ (k,ω) = 1

ω−ε̃k+iδ
and Af σ (k,ω) = δ(ω − ε̃k), respectively.

In the case of Ṽ �= 0 (ordered state of the corresponding
quantum Ising model), the Green’s function of the d electron
has the form25

Gdσ (k,ω) = 〈τ x〉2

ω − ε̃k + iδ
(15)

and its spectral function is

Adσ (k,ω) = 〈τ x〉2δ(ω − ε̃k). (16)

The above spectral function with a nonzero Z = 〈τ x〉2 is a key
characteristic of the Landau Fermi liquid thus we conclude that
the whole system is a conventional Fermi liquid when the slave
spin is in its ordered state.25 In addition, due to the intensive
renormalization effect (two new bands with a large effective
mass being inversely proportional to Z approximately), this
Fermi liquid can be identified as heavy Fermi liquid as has
been done in the slave boson treatment of Anderson and Kondo
lattice models.9,10,35,38–41

A. Orbital-selective orthogonal metal in the extended Anderson
lattice model

In contrast, for a vanished Ṽ (disordered state of the slave
spin), the two flavors of fermions decouple from each other
and at the same time, the slave spin will acquire an excitation
gap. This can be seen as follows. In the low-energy limit,
the quantum Ising model can be described by an effective ϕ4

theory where space and time are on an equal footing and we
obtain the Green’s function of slave spin as follows:25

Gspin(k,ω) ∼ 1

�2 + k2 − (ω + iδ)2
, (17)

and the corresponding spectral function can also be easily
derived with the form

Aspin(k,ω) = δ[ω2 − (�2 + k2)]. (18)

Clearly, the spectral function of the slave spin has an excitation
gap �. Therefore the d electron will also acquire a gap
with Z = 0. According to the definition of the orthogonal
metal in the paper of Nandkishore, Metlitski, and Senthil,25

if a state has a gap for single-particle excitation and the
same thermodynamics and transport properties as Landau
Fermi liquid, it could be identified as an orthogonal metal.
In our case, the physical d electron has a excitation gap
while the f fermions form Fermi gas. Most importantly, the
f fermions carry both charge and spin degrees of freedom
of the physical d electrons, thus f fermions will contribute
to the thermodynamics, charge, and spin transports exactly
in the same way as real electrons. (The contribution of slave
spins can be neglected in the low-energy limit, since they
are gapped in the disordered state.) Therefore the d electrons
are in an orthogonal metal and the whole system consists
of a Fermi liquid of c electrons and an orthogonal metal of
d electrons which are mutually decoupled in the mean-field
level. (This is still true when fluctuations are included since
the slave spin is in its disordered state and has a gap.)
According to Nandkishore, Metlitski, and Senthil,25 this state
is an orbital-selective orthogonal metal (OSOM).

We note that the properties of QCP between these two states
have not been discussed in this section, since approaching the
critical point, the fluctuation effect may dominate and here we
will leave its discussion in the next section. One will find that
the critical fluctuation of the slave spin indeed dominates the
thermodynamics and transport behaviors in the QCP and in
the quantum critical regime.

IV. QUANTUM PHASE TRANSITION FROM
ORBITAL-SELECTIVE ORTHOGONAL METAL TO

HEAVY FERMI LIQUID

Having analyzed the properties of the heavy Fermi liquid
and a metallic state combining both an orthogonal metal state
for d electrons and a Fermi liquid for conducting electrons, in
this section, we proceed to discuss the phase transition between
these two distinct states.

First, it is useful to refine how the heavy Fermi liquid get
heavy and die approaching the QCP.44 In the previous section,
we have obtained the spectral function of physical d electrons
as

Adσ (k,ω) = Zδ(ω − ε̃k), (19)

where the quasiparticle spectral weight Z = 〈τ x〉2.25 Since
〈τ x〉 is the order parameter of the quantum Ising model
[Eq. (11)], it vanishes as (1 − h/hc)β (hc is the critical field
of the Ising model and β is the critical exponent) when
approaching the QCP. Therefore the quasiparticle spectral
weight of d electrons has to vanish as

Z ∼ (1 − h/hc)2β (20)

if one approaches the QCP from the heavy Fermi liquid.
Thus the effective mass of d electrons may diverge as m∗ ∼
Z−1 ∼ 1

(hc−h)2β (this identification may be invalid as argued in
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Ref. 45) when the heavy Fermi liquid is near the critical point.
Because near QCP, the effective mass of the whole system is
dominated by the d electrons, we expect that the effective mass
of the heavy Fermi liquid will diverge in a similar way as the
situation of d electrons. Hence the above argument confirms
that the heavy Fermi liquids indeed get heavy approaching the
QCP and ultimately die with a vanishing quasiparticle spectral
weight.

Next, if one starts in the OSOM state (it is also the
disordered state for the slave spin) and approaches the QCP,
the gap of d electrons will vanish everywhere on a momentum
space surface which should correspond to the Fermi surface of
f electrons. Specifically, based on the general quantum critical
scaling theory, the gap may close (vanish) as1,46

� ∼ (h − hc)νz, (21)

where ν are the critical exponents of the correlation length
ξ ∼ |h − hc|−ν and z is the dynamical critical exponent (z = 1
for the Ising-like model). Thus it is clear that at the QCP, the
gap is zero and the Fermi surface of f electrons starts evolving
into the Fermi surface of physical d electrons.

One may wonder, since the spin and charge degrees
of freedom are both carried by the f fermions and their
Fermi surface evolves into the real Fermi surface of physical
electrons, what is the slave spin and what role it plays. In our
view, the slave spin represents the long-range coherence of the
original model and can be considered as a neutral collective
mode. This collective mode reflects the subtle topological
order.2,47 As a matter of fact, even in the ordered state,
no conventional symmetries (e.g., translation, rotation, spin
rotation, and so on) are broken by the condensation of the slave
spin τ x , as also shown in the celebrated Kondo breakdown
mechanism,9,10,35,38–41,48–56 which describes a transition from
a fractionalized Fermi liquid (FL∗) to a heavy Fermi liquid
with the condensation of slave bosons but without symmetry
breaking.

In what follows, we proceed to the discussion of the QCP.
Naively, a reader who is familiar with the slave-spin theory of
the Hubbard model may expect no new things appear in our
case. However, this is not true.

In the naive expectation, one can use a ϕ4 theory for slave
spins and check that the coupling to fermions is irrelevant in the
sense of renormalization-group theory (RG) if the long-range
Coulomb interaction is present.25 However, in our extended
Anderson lattice model [Eq. (3)], there is an extra hybridizing
term among the f , c electrons and slave spins τ x . If this term
is irrelevant in the low-energy limit, the naive expectation
will be justified, otherwise, one cannot rely on the results
established in the study of Hubbard and have to analyze the
critical properties specific to this model.

A. RG argument on relevance/irrelevance of hybridizing term

Here, we use a RG argument to show that the hybridizing
term is relevant (marginal) in d = 2 (d = 3) for the fixed point
of the effective ϕ4 theory. It can be performed as follows. At
the QCP, it is useful to analyze an effective continuum quantum
field theory (QFT) instead of the original lattice model (one

can find details in Appendix B):

S =
∫

ddxdτ (Lf + Lc + Lf c + LI + · · ·), (22)

where

Lf =
∑

σ

f̄σ

(
∂τ − iv∂x − vq − 1

2m
∂2
y

)
fσ , (23)

Lc =
∑

σ

c̄σ

(
∂τ − iv0∂x − 1

2m0
∂2
y

)
cσ , (24)

Lf c = V
∑

σ

ϕ(f̄σ cσ + c.c.), (25)

LI = 1

2
[(∂τϕ)2 + c2(∂yϕ)2 + rϕ2 + uϕ4], (26)

where v and vo are Fermi velocity for f and c electrons,
respectively. And q = kF − kF0 = √

(2t̃ − ε + μ + λ)/t̃ −√
(2g + μ)/g denotes the mismatch of the Fermi surface

for the f fermion and conduction electrons with m = 1/2t̃ ,
m0 = 1/2g being the effective mass. The slave-spin part LI

is assumed to be described by an effective ϕ4 theory and
other interaction terms neglected in the above effective action
are not interesting for our purpose.25 If one insists that the
critical point is controlled by the decoupled fixed point of
the above action, then one has dim[f ] = dim[c] = dim[ϕ] =
d+1

2 , dim[y] = −1, and dim[x] = dim[τ ] = −2 with z = 1.
[dim[O] is the scaling dimension of the quantity O, which
is equivalent to the statement that O′(x ′,τ ′) = bdim[O]O(x,τ )
with b being the scaling factor in the scaling transformation of
RG.] Obviously, a scaling argument indicates that the u term
in LI is irrelevant for d > 1, thus we can neglect such a term
in our following treatment.

Then, using the above scaling dimensions in the tree level
RG of the hybridizing term [Eq. (26)], one obtains dim[V ] =
3−d

2 which means that only if d > 3 is satisfied, the hybridizing
term is indeed irrelevant. For the case of d = 2, the hybridizing
term is relevant and could completely destroy the free fixed
point of ϕ4 theory while the hybridizing term is marginal in the
case of three spatial dimensions. Although we only consider
the tree level RG, the results we find have shown a sign that it
is crucial to include the hybridizing term in the critical theory
and the naively expected fixed point of ϕ4 theory could not be
stable when encountering the hybridizing.

Before leaving this subsection, we should emphasize that
the marginal (or relevant) feature of the hybridizing term is
indeed unchanged by other perturbations. For example, when
we consider a system without continuous rotation symmetry
(generic lattice model), there will be a Landau damping
term δS ∝ ∫

q,ω
(a + b|ω|/q)|O(q,ω)| with O(x) = [ϕ(x)]2 as

discussed in Ref. 25. Obviously, this term is subleading to
the hybridizing term since it involves the composite object
O(x) = [ϕ(x)]2. In Ref. 25, the authors conclude that the
transition from Fermi liquid to orthogonal metal would not
be described by the decoupled fixed point for generic lattice
models except for a fine tuned Z4 model. In our case, if
we consider such a Z4 model to replace the ϕ4 theory for
slave spins, one will find again that the induced Landau
damping term for the composite object O = ϕ2 is subleading
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to the hybridizing term. Therefore we suspect that the most
relevant perturbation to the decoupled fixed point might be the
hybridizing term for generic lattice models.

B. Effect of the hybridizing term

Hence it is important to find what role the hybridizing term
plays. To proceed, one can utilize the effective action Eqs. (B6)
and (B6) derived in Appendix B instead of the one-patch action
used in the RG argument,

S =
∫

dτ (LI + Lf + Lc + Lf c),

LI =
∫

ddx
1

2
[c2(∇ϕ)2 + rϕ2],

Lf =
∑
kσ

f̄kσ [∂τ + ε̃(k)]fkσ , Lc =
∑
kσ

c̄kσ [∂τ + g(k)]ckσ ,

Lf c = V

∫
ddx

∑
σ

ϕ(f̄σ cσ + c.c.), (27)

where ε̃(k) = t̃k2 − 2t̃ + ε − μ − λ, g(k) = gk2 − 2g − μ,
and other terms as uϕ4 and (∂τϕ)2 are neglected due to their
irrelevance as what has been seen in previous RG arguments.

A careful reader may note that the above effective action is
rather similar to the one in the Kondo breakdown mechanism
of the Anderson/Kondo lattice model where the slave boson
representation is used.9,10,35,38–41,48–56 However, we should
note that there exist some differences between these two
formulisms. First, in the usual Kondo breakdown mechanism,
a fluctuating U(1) gauge field, which results from fluctuation
over the mean-field state of spin liquid, plays an important
role while no such gapless gauge field appears in our Z2

formulism. This is because no Heisenberg exchange term is
introduced in our extended Anderson lattice model Eq. (1).
Second, the hybridizing effect is represented by a complex
bosonic field in the Kondo breakdown mechanism and this
complex bosonic field contributes to electric conduction. In
contrast, in the Z2 slave-spin representation, the slave-spin ϕ

denoting the hybridizing effect is a real bosonic field and it has
no contributions to electric conduction at all since the electric
charge is only carried by f fermion though it could affect the
thermal transport.

With the above distinctions in mind, following the detailed
treatment of the Kondo breakdown mechanism,40,41 we can
calculate the corrections from the hybridizing term. (We
here only consider the case of three spatial dimensions for
simplicity.) At the one-loop order, we have the self-energy
correction for the slave spin as

�f c(k,i�n) = 2ρ0

4π

∫
dεdωd cos θ{1/[(iω + i�n − ε

− v0k cos θ )(iω − αε − αv0q)] + (k → −k)},
(28)

where ρ0 = 1/2D (2D denotes the bandwidth of conduction
electrons) is the density of states of free conduction electrons,
α = v/v0 with q the mismatch of the two Fermi surfaces of
the f fermion and conduction electron c. We have also used
the linearized spectrums, which means ε̃(k) ≈ v(k − kF ) and
g(k) ≈ v0(k − kF0) with q = kF − kF0. The calculation of the

above integral can be found in Eq. (17) of Ref. 40 and the only
difference for our case is the existence of the second term with
k → −k. The appearance of such a term is indeed due to the
fact that the real bosonic slave-spin ϕ couples f̄σ cσ and c̄σ fσ

as can be seen in the last term in Eq. (27).
Then, since the calculation of Eq. (27) is just as Eq. (17)

of Ref. 40, we may only quote the results of Ref. 40. The
main result is that the corrections from the hybridizing term
is multiscale because of the mismatch of the two Fermi
surfaces. There exists a characteristic energy scale E� =
0.1 vkF0

2 (q/kF0)3, above which the hybridizing fluctuation of
the slave spin is dominated by the usual Landau damping term
(see Appendix C for details),∫

ddqdω

( |ω|
q

+ q2 + · · ·
)

|ϕ(q,ω)|2, (29)

while below the characteristic energy scale E�, the slave spin
is not damped by the particle-hole excitation and its dynamical
critical exponent is z = 2,40,41∫

ddqdω(−ω + q2 + · · ·)|ϕ(q,ω)|2. (30)

Obviously, the critical modes of z = 2 and z = 3 are more
relevant than the ϕ4 theory with z = 1 and in the low-energy
limit, both thermal and transport properties will be dominated
by these two kinds of critical modes. Due to the appearance of
these two modes, we could conclude that the transition from
the orbital-selective orthogonal metal to heavy Fermi liquid
is also multiscale as the usual Kondo breakdown mechanism.
Moreover, we should emphasize that, for systems in three
spatial dimensions, the above one-loop calculation (Gaussian
fluctuation correction) seems sufficient both from the scaling
argument and the Eliashberg analysis.1,40

V. COMPARISON WITH USUAL KONDO BREAKDOWN
MECHANISM

After the discussion in the last section, we now realize that
the Z2 slave-spin representation of the extended Anderson
model just provides a modified Kondo breakdown theory
compared to the standard Kondo breakdown in terms of
slave bosons. However, there are some important distinctions.
Our theory describes a transition from a Fermi-liquid-like
OSOM state to conventional heavy Fermi liquid while there
is a transition between FL∗ and the heavy Fermi liquid for
the standard Kondo breakdown theory. Moreover, the critical
fluctuation is mainly from slave spins. In contrast, both slave
bosons and gapless U(1) gauge fields contribute to the critical
properties in the standard one. In addition, the standard Kondo
breakdown theory is usually called orbital-selective Mott
transition39,40 since one of the two bands is Mott localized,
while in our case we find that one band develops a gap
but still behaves as a metal (OSOM) with another band
remaining a simple metal. As suggested in the paper of
Nandkishore, Metlitski, and Senthil, we may also call our
theory an orbital-selective orthogonal metal transition.

Moreover, for physical observables at criticality, following
the treatment of Sec. V in Ref. 41, we find that the specific
heat behaves as Cv ∝ T + T 3/2 (Fermi-liquid-like behavior
dominates) when T � E�, while Cv ∝ T ln(T/E�) dominates
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for T > E�. However, in the standard Kondo breakdown
mechanism, due to the existence of the gapless U(1) gauge
field, the specific heat is also dominated by the T ln(T/E�)
term even for T � E�.

For the static spin susceptibility, the critical modes of slave
spin contributes δχs ∝ −T 2 (T � E�) and δχs ∝ −T 4/3 (T >

E�) while the gapless U(1) gauge field gives rise to an extra
contribution δχs ∝ T 2ln(T ) in the standard Kondo breakdown
mechanism.41

As for the crossover lines defining the quantum critical
regime, our Z2 slave-spin representation gives the same results
as the standard Kondo breakdown mechanism, namely, T ∝
(r)2/3 (T � E�) and T ∝ (r)3/4 (T > E�) with r2 proportional
to the gap of slave spins in the disordered states.40,41 Mean-
while, the temperature-dependent resistivity of Z2 slave-spin
representation recovers the same behavior [δρ(T ) ∝ T 2 for
T � E� and δρ(T ) ∝ T ln(T/E�) when T > E�] in the usual
Kondo breakdown mechanism.40,41

The high-temperature results (T > E�) of the Wiedemann-
Franz ratio and Grüneisen ratio in our present theory are
identical to the one in the well-studied Kondo breakdown
mechanism.57,58 However, due to the lack of the gapless U(1)
gauge field, in the low-temperature regime, we find a constant
Grüneisen ratio and the temperature-dependent part of the
Wiedemann-Franz ratio behaves as δL(T ) ∝ v

v0
instead of

δL(T ) ∝ T 5/3v
T 2v0

in the usual Kondo breakdown mechanism.57,58

We should remind the reader that although the critical
behaviors are controlled by the Gaussian theory with z = 3
or z = 2 but not by the ϕ4 theory which has z = 1, the results
of previous sections are all unchanged since the slave spins
are gapped or condensed which cannot modify the qualitative
properties of OSOM and heavy Fermi liquid. However, the
critical exponents have to be mean-field like because in our
theory d + z > dc = 4 where dc is the upper critical dimen-
sion. But, we also note that for d = 2, there is still a debate on
whether the critical behaviors are really Gaussian.59–61 This
debate results from that the critical theory is found to be
strongly correlated in spite of the seeming Gaussian feature and
no controllable techniques in the framework of conventional
QFT can be used to extract useful observables.59–61 Therefore
some researches are turning into the studies of the derivative
of strings theory,62–65 the anti–de Sitter/conformal field theory
(AdS/CFT) correspondence (or gauge/gravity duality)66,67 and
hope this new mathematical machinery may help us to inspect
difficult condensed-matter problems from the viewpoint of
quantum gravity. Besides, we expect that the exotic orthogonal
metal or its derivative, the orbital-selective orthogonal metal,
may be realized in the powerful gauge/gravity duality via
confining geometries that terminate along the holographic μ

direction as the realization of usual Fermi liquid65 but with
carefully chosen boundary conditions which are needed to be
uncovered in the near future.

VI. CONCLUSION

In the present paper we have shown that an orbital-selective
orthogonal metal state can exist in the slave-spin representation
of an extended Anderson lattice model. The corresponding
transition is identified as an orbital-selective orthogonal metal

transition as expected [recently, we note that a U(1) slave-spin
representation has been proposed and it indeed describes a
Mott transition in contrast to the Z2 case employed in this
paper68]. However, in contrast to the naive expectation based
on the insight from Hubbard model, a multiscale quantum
critical behavior is found instead of a z = 1 ϕ4 critical theory
of the Hubbard model, due to the highly relevant hybridization
term appearing in the Anderson-lattice-like models. Moreover,
it is noted that the result we obtained is rather similar to
the standard Kondo breakdown mechanism,9,10,35,38–41,48–56

thus we may consider it as an alterative Kondo breakdown
mechanism with an orbital-selective orthogonal metal tran-
sition instead of an orbital-selective Mott transition of the
standard one. However, we also note that there exist some
interesting differences between these two formulisms since no
gapless U(1) gauge fluctuation appears near criticality in our
Z2 slave-spin representation. We hope that our present work
could be useful for further study in the quantum criticality
happening in some heavy fermions materials and other related
strongly correlated systems.
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APPENDIX A: PATH INTEGRAL FOR THE QUANTUM
ISING MODEL IN TRANSVERSE FIELD

The quantum Ising model in transverse field is defined as1

ĤI = −J
∑
〈ij〉σ

(
τ z
i τ z

j + H.c.
) − K

∑
i

τ x
i , (A1)

where a ferromagnetic coupling J > 0 is assumed and K

represents the transverse external field. At first glance, one may
directly use the coherent state of spin operators in constructing
the path-integral representation (one can find a brief but useful
introduction to this issue in Ref. 1), however, this will lead to
an extra topological Berry phase term and is not easy to utilize
practically. An alterative approach is to use the eigenstates of
spin operator τ x or τ z as the basis for calculation.69 One will
see that this approach is free of the topological Berry phase
term and gives rise to a rather simple formulism. Therefore, to
construct a useful path-integral representation, we will follow
Ref. 69.

First of all, we consider the ortho-normal basis of Ns-Ising
spins as

|σ 〉 ≡ |σ1〉|σ2〉|σ2〉 · · · |σN 〉 (A2)

with σi = ±1 and define

τ z
i |σ 〉 = σi |σ 〉, (A3)

τ x
i |σ 〉 = |σ1〉|σ2〉|σ3〉 · · · | − σi〉 · · · |σN 〉. (A4)
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Then the partition function Z = Tr(e−βĤ ) can be represented
as

Z =
∑

{σ }=±1

N∏
n=1

eεJ
∑

〈ij 〉 σi (n)σj (n)〈σ (n + 1)|eεK
∑

i τ x
i |σ (n)〉,

where εN = β. The calculation of 〈σ (n + 1)|eεK
∑

i τ x
i |σ (n)〉

is straightforward by exponentiating the τ x
i matrix and one

gets

〈σ (n + 1)|eεK
∑

i τ x
i |σ (n)〉 = 1

2
[eεK + e−εKσi(n)σi(n + 1)],

= eaσi (n)σi (n+1)+b, (A5)

where a = 1
2 [ln cosh(εK) − ln sinh(εK)] and b =

1
2 [ln cosh(εK) + ln sinh(εK)]. Therefore the resulting
path-integral formulism for the quantum Ising model in
transverse field is

Z =
∑

{σ }=±1

N∏
n=1

eεJ
∑

〈ij 〉 σi (n)σj (n)+∑
i aσi (n)σi (n+1)+Nsb. (A6)

Further, if one assumes that the model is defined in a
hypercubic lattice in space dimension d, an effective theory
can be derived as

Z =
∫

Dφδ(φ2 − 1)e− ∫
dτddx(1/2g)[(∂τ φ)2+c2(∇φ)2], (A7)

where 1
2g

= ( aε

ad
0
)(d+1)/2 with a0 being the lattice constant and

c2 = Jad−2
0

aε
. Moreover, in the effective theory, φ corresponds to

τ z while τ x gives the kinetic-energy term in imaginary time.
Then, the standard φ4 theory is obtained by relaxing the hard
constraint φ2 = 1 while introducing a potential-energy term,

Z =
∫

Dφe− ∫
dτddx[(∂τ φ)2+c2(∇φ)2+rφ2+uφ4], (A8)

where r,u are effective parameters depending on microscopic
details.

APPENDIX B: EFFECTIVE THEORY FOR
ORBITAL-SELECTIVE ORTHOGONAL METAL

TRANSITION

In this section, we would like to derive an effective theory
for the orbital-selective orthogonal metal transition. First,
using the mean-field Hamiltonian Eqs. (11) and (12), one finds

HI = −J
∑
〈ij〉

τ x
i τ x

j + λ
∑

i

τ z
i , (B1)

H̃f c = −t̃
∑
〈ij〉σ

f
†
iσ fjσ +

∑
i

(ε − μ − λ)nf

i − g
∑
〈ij〉σ

c
†
iσ cjσ

−μ
∑
iσ

c
†
iσ ciσ , (B2)

where we have considering uniform ε, λ and approaching the
QCP from the orbital-selective orthogonal metal with only
nearest-neighbor hopping for simplicity. Therefore mean-field
parameters V̄ and Ṽ are both zero in the above formulism.
In contrast, generically, effective hopping t̃ and J do not
vanish even in the disordered state of slave spins since t̃ =

〈τ x
i τ x

j 〉 �= 〈τ x〉2 as can be seen in cluster-mean-field treatment
and Schwinger boson representation in Ref. 23.

Then, following the path-integral treatment for the Z2 slave-
spin representation in Sec. II, we can obtain

S0 =
∫

dτ (LI + Lf + Lc),

LI = 1

2

∑
i

(∂τϕ)2 − J
∑
〈ij〉

ϕiϕj ,

(B3)
Lf =

∑
〈ij〉σ

f̄iσ [∂τ − t̃ + (ε − μ − λ)δij ]fjσ ,

Lc =
∑
〈ij〉σ

c̄iσ (∂τ − g − μδij )cjσ .

When one considers a square or a cubic lattice, one can find a
continuum theory as

S0 =
∫

dτ (LI + Lf + Lc),

LI =
∫

ddx
1

2g
[(∂τϕ)2 + c2(∇ϕ)2], (B4)

Lf =
∑
kσ

f̄kσ [∂τ + ε̃(k)]fkσ , Lc =
∑
kσ

c̄kσ [∂τ + g(k)]ckσ ,

where ε̃(k) = t̃ k2 − 2t̃ + ε − μ − λ, g(k) = gk2 − 2g − μ.
To facilitate the RG argument, it is helpful to derive a one-

patch theory of the above action as has been done in Refs. 1
and 59,

S0 =
∫

dτ

∫
dxdd−1y(LI + Lf + Lc),

LI = 1

2g
[(∂τϕ)2 + c2(∂yϕ)2],

(B5)

Lf =
∑

σ

f̄σ

(
∂τ − iv∂x − vq − 1

2m
∂2
y

)
fσ ,

Lc =
∑

σ

c̄σ

(
∂τ − iv0∂x − 1

2m0
∂2
y

)
cσ .

Here, we have assumed a circular or sphere Fermi surface
both for the f fermion and conduction electrons c, which
corresponds to the simplified quasiparticle spectrum ε̃(k)
and g(k). v =

√
t̃(2t̃ − ε + μ + λ) and v0 = √

g(2g + μ)
denotes the Fermi velocity for the f fermion and conduction
electrons, respectively. And m = 1/2t̃ , m0 = 1/2g is the effec-
tive mass. Besides, q = kF − kF0 = √

(2t̃ − ε + μ + λ)/t̃ −√
(2g + μ)/g is the mismatch of the Fermi surface for the f

fermion and conduction electrons since the two Fermi surfaces
need not be the same except for in the case of fine tuning.

Then, one may add interaction terms into the above effective
action. It is easy to see that the leading term will be the
hybridizing term [see the path-integral representation Eq. (9)]

Lf c = V
∑

σ

ϕ(f̄σ cσ + c.c.) (B6)

while terms such as (∂yϕ)2f̄σ fσ and f̄σ fσ f̄σ ′fσ ′ are sublead-
ing, which come from −∑

ijσ tij ϕiϕj f̄iσ fjσ and the constraint

term
∑

i i
π
4 (1 − σi)[1 − 2(nf

i )2], respectively.
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APPENDIX C: CALCULATION OF THE INTEGRAL IN EQ. (28)

This section is devoted to the discussion of Eq. (28) and we will follow the treatment of Eq. (17) in Ref. 40. The integral in
Eq. (28) reads

�f c(k,i�n) = 2ρ0

4π

∫
dεdωd cos θ

[
1

(iω + i�n − ε − v0k cos θ )(iω − αε − αv0q)
+ (k → −k)

]

= −ρ0

2v0α′k(1 − α′)
{[−α′i�n + α′v0(k − q)]ln[−α′i�n + α′v0(k − q)] − [−α′i�n + α′v0(−k − q)]

× ln[−α′i�n + α′v0(−k − q)] − [−i�n + α′v0(+k − q)]ln[−i�n + α′v0(+k − q)] + [−i�n + α′v0(−k − q)]

× ln[−i�n + α′v0(−k − q)]} + (k → −k).

Here, we have defined α′ = vkF0ρ0. It is easy to see that the
second term with k → −k contributes identically like the
first lengthy term, thus the above result can be simplified
as has been done in Ref. 40. Due to the Fermi-surface
mismatch q, we could define a characteristic energy scale
E� = 0.1 vkF0

2 (q/kF0)3 and expand the above equation in four
different regimes.

(1) �f c(k,i�n) ≈ 2ρ0V
2lnα′/(1 − α′) − 4 i�n

α′v0q
for k �

q,|�n| � E�. The dynamical critical exponent is z = 2 and the
slave spin is an undamped bosonic mode, which corresponds
to a dilute boson gas universal class.

(2) �f c(k,i�n) ≈ 2ρ0V
2lnα′/(1 − α′) + 4 ln|�n|

α′v0q
for k �

q,|�n| � E�. In this regime, the dynamical critical exponent
is z = ∞.

(3) �f c(k,i�n) ≈ 2ρ0V
2lnα′/(1 − α′) + 4 ln|�n|

α′v0k
for k >

q,α′v0k � |�n| � v0k, where dynamics is controlled by the
critical exponent z = 1.

(4) Finally, �f c(k,i�n) ≈ 2ρ0V
2lnα′/(1 − α′) + 4 |�n|

α′v0k

when k > q,|�n| � v0k. It has been shown that the spectral

weight in the (ω,q) space is most entirely centered in this
regime with z = 3.40

As discussed in Ref. 40, at low momentum and low
energy, the particle-hole continuum is gapped due to the
mismatch of the two Fermi surfaces. Thus there exists a
propagating single boson mode with exponent z = 2. In
contrast, at high momentum and high energy, one can safely
neglect the mismatch of the two Fermi surfaces since the two
fermion species behave as if they were identical. Therefore
the resulting polarization �f c(k,i�n) behaves like a usual
Lindhard function with z = 3.

It is also noted that the characteristic energy scale E� =
0.1 vkF0

2 (q/kF0)3 would be rather small due to its depen-
dence of (q/kF0)3 with mismatch q smaller than the Fermi
wave vector kF0, in general.40 Thus the critical behaviors
will be dominated by the z = 3 Landau damped modes
at most regions of quantum critical regime except for the
very low-temperature region where the undamped modes
dominate.
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44P. Coleman, C. Pépin, Q. Si, and R. Ramazashvili, J. Phys.:

Condens. Matter 13, R723 (2001).
45V. A. Khodel, J. W. Clark, and M. V. Zvereva, JETP Lett. 90, 628

(2009).
46M. A. Continentino, Quantum Scaling in Many-Body Systems

(World Scientific, Singapore, 2001).
47X. G. Wen, Phys. Rev. B 44, 2664 (1991).
48P. Coleman, J. B. Marston, and A. J. Schofield, Phys. Rev. B 72,

245111 (2005).
49A. Hackl and M. Vojta, Phys. Rev. B 77, 134439 (2008).

50H. Weber and M. Vojta, Phys. Rev. B 77, 125118 (2008).
51M. Vojta, Phys. Rev. B 78, 125109 (2008).
52I. Paul and M. Civelli, Phys. Rev. B 81, 161102(R) (2010).
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