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Braiding statistics approach to symmetry-protected topological phases
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We construct a two-dimensional (2D) quantum spin model that realizes an Ising paramagnet with gapless
edge modes protected by Ising symmetry. This model provides an example of a “symmetry-protected topological
phase.” We describe a simple physical construction that distinguishes this system from a conventional paramagnet:
We couple the system to aZ2 gauge field and then show that the π -flux excitations have different braiding statistics
from that of a usual paramagnet. In addition, we show that these braiding statistics directly imply the existence of
protected edge modes. Finally, we analyze a particular microscopic model for the edge and derive a field theoretic
description of the low energy excitations. We believe that the braiding statistics approach outlined in this paper
can be generalized to a large class of symmetry-protected topological phases.
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I. INTRODUCTION

We now know that there are two distinct types of time
reversal invariant band insulators: topological insulators and
conventional insulators.1–6 The two families of insulators are
distinguished by the fact that topological insulators have
protected gapless boundary modes while trivial insulators do
not. It is important to remember that time reversal and charge
conservation symmetry play a crucial role in this physics:
If either of these symmetries are broken (either explicitly
or spontaneously), the boundary modes can be gapped out
and the sharp distinction between topological insulators and
conventional insulators disappears.

This observation motivates a generalization of topologi-
cal insulators called “symmetry-protected topological (SPT)
phases.”7–15 To define this concept, consider a general quantum
many-body system. The system may be built out of fermions
or bosons/spins, and can live in any spatial dimension. We will
say that such a system belongs to a nontrivial SPT phase if it
satisfies four properties. The first property is that the system
has a finite energy gap to excitations in the bulk. The second
property is that the Hamiltonian is invariant under some set of
internal (on-site) symmetries, and none of these symmetries
are broken spontaneously. The third property is that the ground
state belongs to a distinct quantum phase from a “trivial state”
with the same symmetry. That is, one cannot continuously
connect the ground state with a trivial state without breaking
one of the symmetries or closing the energy gap. Here, by a
trivial state, we mean a product state (in the boson/spin case)
or an atomic insulator (in the fermion case). The final property
of an SPT phase is that the ground state can be continuously
connected with a trivial state without closing the energy gap if
one or more of the symmetries are broken during the process.
We note that nontrivial SPT phases typically exhibit robust
gapless boundary modes analogous to that of topological insu-
lators, though we will not include this property in the formal
definition.

Symmetry-protected topological phases have a long history
in the one-dimensional (1D) case. Most famously, the Haldane
phase of the S = 1 Heisenberg antiferromagnet16 is known to
belong to this class.7,12,13 More recently, a complete classifi-
cation of 1D SPT phases was obtained for both boson/spin
systems8,9,14 and fermion systems.9,15

Much less is known about higher dimensional SPT phases.
In the case of fermion systems, our understanding is largely
limited to noninteracting models such as topological insulators
or superconductors. For these systems, an (almost) complete
classification of SPT phases was obtained by Refs. 17 and 18.
In some cases it is known that this classification scheme
is not affected by interactions (e.g., the Z2 classification of
topological insulators in two19 and three20,21 dimensions). In
general, however, this need not be the case22 and consequently
our understanding of interacting fermionic SPT phases in
higher dimensions is incomplete.

The boson case has received even less attention, and will be
our focus here. In this case, a major advance was made by the
recent paper (Ref. 11). In that paper, the authors proposed
a general classification scheme for bosonic SPT phases
in general spatial dimension. Also, the authors constructed
concrete microscopic models realizing each of these phases.
This work established that the boson case is tractable even for
interacting systems.

Nevertheless, a number of questions remain open. One
problem is that we have not identified any physical properties
that distinguish different SPT phases in the bulk. The boundary
physics is also poorly understood: While Ref. 10 showed that
the 2D SPT states have symmetry-protected gapless boundary
modes, the problem for higher dimensions remains open.

In this work we address these (and other) questions in
the context of a simple example. Specifically, we consider
the case of 2D spin systems with a Z2 Ising-like symmetry.
According to Refs. 10 and 11, there is exactly one nontrivial
SPT phase with this symmetry. This phase can be thought of as
a new kind of Ising paramagnet. Here we construct an exactly
soluble spin model that realizes this phase. We then derive
three main results. Our first result is a simple argument that
this model belongs to a distinct phase from a conventional Ising
paramagnet. We derive this result by coupling the model to a
Z2 gauge field. After following this procedure we find that the
resulting gauged spin model supports quasiparticle excitations
with different braiding statistics from that of a conventional
(gauged) paramagnet. More specifically, we find that in a
conventional paramagnet, the π -flux excitations have bosonic
or fermionic statistics, while in the new paramagnet they
have semionic statistics. It then follows immediately that the
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two paramagnets cannot be continuously connected without
breaking the Z2 symmetry or closing the energy gap. Closely
related to this observation, we show that the two spin models
are “dual” to two previously studied lattice models—each of
which realizes a different type of Z2 gauge theory. This duality
establishes a connection between SPT phases and previous
work23 on the classification of topological gauge theories.

Our second result is a proof that the new paramagnet has
gapless edge modes protected by Ising symmetry. Interest-
ingly, our argument reveals that the protected edge states are
deeply connected to the braiding statistics of the π fluxes.
This approach to proving edge state protection is somewhat
different from the original argument of Ref. 10 and may be
more amenable to higher dimensional generalizations. In the
final part of the paper we analyze the protected edge modes
at a more concrete level, focusing on a particular microscopic
model of the edge. We derive a field theoretic description of the
low energy modes, and analyze their stability to perturbations.

Although we focus our discussion on a particular SPT
phase, we believe that our basic approach is more general.
That is, we expect that in a large class of SPT phases, braiding
statistics can be used to uniquely characterize the bulk and to
derive the existence of protected boundary modes. We discuss
these potential generalizations in the conclusion.

This paper is organized as follows. In Sec. II we describe
spin models that realize both the conventional and the new
kind of Ising paramagnet. In Sec. III we show that the two
spin models can be distinguished by the braiding statistics of
the π -flux excitations. In Sec. IV we show that the two spin
models are dual to two previously studied lattice models. In
Sec. V we show that the π -flux braiding statistics are directly
connected to the existence of protected edge modes. Finally,
in Sec. VI we analyze a particular microscopic model for the
edge.

II. TWO KINDS OF ISING PARAMAGNETS

To begin, consider the following spin-1/2 model defined
on the triangular lattice [Fig. 1(a)]:

H0 = −
∑

p

σ x
p . (1)

This model describes a (conventional) Ising paramagnet.
To see this, note that the system satisfies two properties.
First, the Hamiltonian is invariant under the Ising symmetry
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FIG. 1. (Color online) The Hamiltonians H0,H1 [Eqs. (1) and
(2)] for the two spin models. (a) The Hamiltonian H0 is a sum of
single spin terms σ x

p . (b) The Hamiltonian H1 is a sum of seven spin

terms Bp = −σ x
p

∏
〈pqq ′〉 i

1−σ
z
q σ

z
q′

2 , where the product runs over the six
triangles 〈pqq ′〉 containing p.

S = ∏
p σ x

p . Second, the ground state |�0〉 ≡ |σx
p = 1〉 is

gapped and unique—implying that the symmetry is not broken
spontaneously.

Surprisingly, there is another type of Ising paramagnet
which is qualitatively different from H0 and represents a
distinct quantum phase. A microscopic model for this new
type of paramagnet was first constructed in Ref. 10. Here
we describe another model which is more convenient for our
purposes. The model we consider is a spin-1/2 system on the
triangular lattice. The Hamiltonian is given by [Fig. 1(b)]

H1 = −
∑

p

Bp, Bp = −σx
p

∏
〈pqq ′〉

i
1−σ

z
q σ

z
q′

2 , (2)

where the product runs over the six triangles 〈pqq ′〉 containing
the site p. We note that this Hamiltonian is Hermitian despite
the factors of i. To see this, notice that the product includes
a factor of i for each pair of neighboring spins q,q ′ that have
opposite values of σ z. In particular, since the number of such
pairs is necessarily even, the product always reduces to a factor
of ±1. It is then clear that H

†
1 = H1. (For readers who are

curious as to how this model was constructed, see Sec. IV).
First we show that H1 describes a paramagnetic phase—

that is, the Ising symmetry is not spontaneously broken. To
establish this fact, we solve H1 explicitly. The key point is that

[Bp,Bp′ ] = 0 (3)

as can be verified by straightforward algebra. As a result
we can simultaneously diagonalize {Bp}. We will label the
simultaneous eigenstates by |{bp}〉, where bp = ±1 denotes
the eigenvalues of Bp. It is not hard to show that there is
an unique state for each choice of {bp}, assuming a periodic
geometry (i.e., a torus). In other words, the {bp} are a complete
set of quantum numbers. We therefore have the full energy
spectrum: Each state |bp〉 is an energy eigenstate with energy

E = −
∑

p

bp. (4)

In particular, the ground state |�1〉 ≡ |bp = 1〉 is unique and
gapped—implying that the Ising symmetry is not sponta-
neously broken.

It is illuminating to compare the ground state wave
functions of H0,H1. The ground state of H0 is the state where
σx

p = 1 everywhere. Working in the σ z basis, the wave function
is given by

�0({αp}) = 1 (5)

for all spin configurations {αp = ↑, ↓} [Fig. 2(a)]. As for
H1, we note that the ground state is the unique state with
Bp = 1 everywhere. It is straightforward to check that the
corresponding wave function is given by

�1({αp}) = (−1)Ndw , (6)

where Ndw is the total number of domain walls in the spin
configuration {αp = ↑, ↓} [Fig. 2(b)]. We can see that the two
ground states are nearly identical, differing only by some phase
factors. Nevertheless, these two states belong to two different
quantum phases, as we now show.
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FIG. 2. (Color online) A schematic plot of the ground states �0

and �1 for the two paramagnets H0,H1. (a) In terms of domain wall
configurations, the ground state �0 is a equal weight superposition of
all configurations. (b) The ground state �1 is also a superposition
of all domain wall configurations, but each configuration enters
with a sign (−1)Ndw , where Ndw is the total number of domain
walls.

III. COUPLING THE SPIN MODELS TO A Z2

GAUGE FIELD

In this section we show that H0,H1 belong to distinct
quantum phases. Our strategy is as follows. Because H0,H1

have a Z2 symmetry, we can couple them to a Z2 gauge
field μz

pq = ±1 which lives on the links 〈pq〉 of the trian-
gular lattice. We then show that the resulting gauged spin
models have quasiparticle excitations with different braiding
statistics. More specifically, we show that the two systems
differ in the statistics of the π -flux excitations: While the
π fluxes have bosonic or fermionic statistics in the case
of H0, they have semionic statistics in the case of H1. It
then follows immediately that H0,H1 cannot be continuously
connected without breaking the Z2 symmetry or closing the
energy gap.

Coupling H0,H1 to aZ2 gauge field requires several steps.24

The first step is to apply the minimal coupling procedure,
replacing nearest neighbor spin-spin interactions like σ z

q σ z
q ′

with σ z
q μz

qq ′σ
z
q ′ . Next we multiply each term in the resulting

Hamiltonian (either σx
p or Bp) by the operator

Op =
∏
〈pqr〉

(
1 + μz

pqμ
z
qrμ

z
rp

)
/2, (7)

where the product runs over the six triangles 〈pqr〉 adjacent
to site p. The operator Op is a projector which projects onto
states that have vanishing flux through each of the adjoining
triangles. We include this projection operator in order to ensure
that our gauged Hamiltonian is Hermitian, and also to make the
minimal coupling procedure unambiguous. (For more general
models we would replace Op with an operator that projects
onto states that have vanishing flux through all the triangles
in the vicinity of the spin-spin interactions.) The final step
is to add a term of the form −∑

〈pqr〉 μz
pqμ

z
qrμ

z
rp to the

Hamiltonian. This term ensures that the states with vanishing
Z2 flux have the lowest energy. The resulting models are given
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FIG. 3. (Color online) The Hamiltonians H̃0,H̃1 [Eq. (8)] for
the two gauged spin models. (a) The Hamiltonian H̃0 is a sum
of two terms. The first term is the gauge flux term μz

pqμ
z
qrμ

z
rp

(thick triangle), where μz
pq denotes the Z2 gauge field on the

link 〈pq〉. The second term is the spin interaction σx
p Op , where

Op = ∏
〈pqr〉(1 + μz

pqμ
z
qrμ

z
rp)/2 and the product runs over the six

triangles adjacent to p. (b) The Hamiltonian H̃1 includes the same
gauge flux term μz

pqμ
z
qrμ

z
rp but has a more complicated seven spin

interaction B̃pOp [Eq. (9)].

by (Fig. 3)

H̃0 = −
∑

p

σ x
pOp −

∑
〈pqr〉

μz
pqμ

z
qrμ

z
rp,

(8)
H̃1 = −

∑
p

B̃pOp −
∑
〈pqr〉

μz
pqμ

z
qrμ

z
rp,

where

B̃p = −σx
p

∏
〈pqq ′〉

i
1−σ

z
q μ

z
qq′ σz

q′
2 . (9)

Like all gauge theories, these models are defined on a Hilbert
space consisting of gauge invariant states—that is, all states
satisfying the constraint∏

q

μx
pq = σx

p (10)

for all sites p.24 This constraint can be thought of as a Z2

analog of Gauss’ law ∇ · E = 4πρ.
Importantly, all the terms in H̃0,H̃1 commute with one

another so these Hamiltonians can be solved exactly just like
the ungauged spin models H0,H1. In particular, it is easy to
verify that both models have a finite energy gap.

The next task is to construct the quasiparticle excitations
and show that they have different braiding statistics in the
two systems. The quickest way to derive this fact is to
note that H̃0,H̃1 can be exactly mapped onto the previously
studied “toric code”25,26 and “doubled semion”26 models.
These two models have been analyzed in detail and are known
to support quasiparticle excitations with different statistics.26

A description of these models as well as the mapping to H̃0,H̃1

is given in Sec. IV.
Alternatively, we can directly compute the quasiparticle

statistics of H̃0,H̃1 and show that they are different. The first
type of excitation is a “spin flip,” which we will denote by e.
These excitations correspond to sites p where σx

p = −1 for the
case of H̃0, or B̃p = −1 for the case of H̃1. The second type of
excitation is the “π flux” m. These excitations correspond to
triangular plaquettes 〈pqr〉 where μz

pqμ
z
qrμ

z
rp = −1. In fact,

there are two types of π -flux excitations, which differ by the
addition of a spin flip mb = ma · e.
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FIG. 4. (Color online) The string operator V 0
β (11) is defined for

any path β on the dual honeycomb lattice and is given by a product
of μx

pq over all links 〈pq〉 crossing β (thickened lines). Applying this
operator to the ground state |�0〉 creates two π fluxes at the endpoints
of β (shaded triangles).

It is clear that in both systems, if we braid a spin-flip
excitation e around either of the π -flux excitations ma,mb,
the resulting statistical Berry phase is π (in some sense this is
the definition of a π -flux excitation). It is also intuitively clear
that the spin-flip excitation e is a boson in both models. All
that remains is to understand the statistics of the π fluxes. As
we will now show, this is where the two models differ.

To determine the π -flux statistics, we first identify operators
that create these excitations. Like all quasiparticles with
nontrivial braiding statistics, the π fluxes can be created using
an extended stringlike operator.27 If we apply these stringlike
operators to the ground state, the result is a pair of π -flux
excitations—one at each end of the string. In the case of H̃0,
the following string operator does the job:

V 0
β =

∏
〈pq〉⊥β

μx
pq. (11)

Here β is a path in the dual honeycomb lattice joining the
two triangular plaquettes, and the product runs over all links
〈pq〉 crossing β (Fig. 4). We can verify that V 0

β creates
π -flux excitations at the two endpoints of β by noting that
V 0

β anticommutes with the flux μz
pqμ

z
qrμ

z
rp through the two

triangles at the ends of β. At the same time, this operator
commutes with all the other terms in H̃0 so it does not create
any additional excitations.28 Closely related to this fact,
one can check that the state V 0

β |�0〉 does not depend on the
choice of path β, but only on the endpoints of β—a general
feature of such stringlike operators.25–27 We will denote the
π -flux excitation created by V 0

β by ma . A similar string
operator creates the other type of π flux mb = ma · e.

In general, one of the most important aspects of string oper-
ators is the commutation relations satisfied by two intersecting
strings. Let β,γ be two paths on the dual honeycomb lattice
that intersect one another. Using the definition (11), we can
see that the two corresponding string operators commute with
one another:

V 0
β V 0

γ = V 0
γ V 0

β . (12)

This string algebra is important because we can use it to find
the statistics of the quasiparticle ma .25–27 One way to see this is
to consider the special case where β is a closed path and γ is an
open path, as in Fig. 5. In this case, the two operators V 0

β and V 0
γ

have different physical interpretations: While the operator V 0
γ

can be thought of describing a physical process in which two
π fluxes are created and then moved to the endpoints of γ , the
operator V 0

β does not create any excitations at all. In fact, it is

= e2ιθ

β
γ

β
γ

FIG. 5. (Color online) A schematic picture of the two states
V 0

β V 0
γ |�0〉, V 0

γ V 0
β |�0〉. The first state (left) is obtained from a process

in which two π fluxes are created at the endpoints of γ , and then
two more fluxes are created, braided around the path β and then
annihilated. The second state (right) corresponds to executing these
two steps in the opposite order. We expect these two states to differ
by the Berry phase e2iθ associated with braiding one π -flux excitation
around another. The same is true for V 1

β ,V 1
γ .

easy to check that V 0
β exactly commutes with the Hamiltonian

H̃0 whenever β forms a closed loop. This suggests that V 0
β

should be thought of as describing a three step process in which
(1) two π fluxes are created, (2) one of the π fluxes moves all
the way around the closed path β, and then (3) the two π fluxes
are annihilated. Using this interpretation, we can see that the
state V 0

β V 0
γ |�〉 is the end result of a process in which two π

fluxes are created at the endpoints of γ , and then afterwards
another π flux is braided around one of the endpoints and
annihilated with its partner. In contrast, the state V 0

γ V 0
β |�〉

corresponds to executing these two steps in the opposite order.
Comparing these two processes, we expect that they will differ
by a phase factor which is exactly the statistical Berry phase
associated with braiding one π flux around another. In other
words, the phase difference between these two states should
be e2iθ , where θ is the exchange statistics for the particles:

V 0
β V 0

γ |�0〉 = e2iθ · V 0
γ V 0

β |�0〉. (13)

In light of this relation, Eq. (12) implies that θ = 0 or π . That
is, ma is either a boson or a fermion. A similar analysis shows
that the other π -flux excitation mb is also either a boson or
fermion. In fact, with a bit more work one can establish the
more precise result that ma is a boson and mb is a fermion.
The difference in statistics between ma,mb comes from the
fact that mb = ma · e, where e,ma have mutual statistics π .
However, we will not need this more detailed result here. (See
Refs. 26 and 27 for an analogous calculation for the closely
related “toric code” model.)

We can repeat the same analysis for H̃1. In this case, the
following string operator creates a π -flux excitation:

V 1
β =

∏
〈pq〉⊥β

μx
pq

∏
〈pqq ′〉,r

i
1−σ

z
q μ

z
qq′ σz

q′
2

∏
〈pqq ′〉,l

(−1)̃spqq′

×
∏

〈pqq ′〉∈β

(
1 + μz

pqμ
z
qq ′μ

z
pq ′

)
/2. (14)

Here the first product runs over all links 〈pq〉 crossing β.
The next two products run over all triangles 〈pqq ′〉 along the
path such that q,q ′ are to the right of β or to the left of β,
respectively (Fig. 6). The last product runs over all triangles
along β. The operator s̃pqq ′ is defined by

s̃pqq ′ = 1
4

(
1 − σ z

pμz
pqσ

z
q

)(
1 + σ z

pμz
pq ′σ

z
q ′
)
. (15)

As in the previous case, one can check V 1
β anticommutes with

the flux μz
pqμ

z
qrμ

z
rp through the two triangles at the ends

of β, but commutes with the Hamiltonian H̃1 everywhere

115109-4



BRAIDING STATISTICS APPROACH TO SYMMETRY- . . . PHYSICAL REVIEW B 86, 115109 (2012)

FIG. 6. (Color online) The string operator V 1
β [Eq. (14)] is defined

for any path β on the dual honeycomb lattice. It acts on all triangles
〈pqq ′〉 along the path β (thickened lines). The action is different
depending on whether q,q ′ are to the left of β (purple sites) or to the
right of β (blue sites). Applying this operator to the ground state |�1〉
creates two π fluxes at the endpoints of β (shaded triangles).

else. Hence, if we apply V 1
β to the ground state, it creates

π fluxes at the two endpoints of β. We will again denote
this π -flux excitation by ma . (For readers who are curious,
V 1

β was constructed from the “doubled semion model” string
operators26 using the exact mapping of Sec. IV.)

In this case, one can check that the string operators satisfy
a slightly different algebra: For any two paths β,γ intersecting
one another, we have

V 1
β V 1

γ = −V 1
γ V 1

β . (16)

Therefore, by the same reasoning as in (13), we conclude that
the statistical angle θ satisfies 2θ = π , so that θ = ±π/2. In
other words, ma is a semion. A similar analysis shows that the
other π -flux excitation mb is also a semion. With a bit more
work,26 one can show that ma,mb have opposite statistics—that
is θ = π/2 in one case and θ = −π/2 in the other—but again
we do not need this more detailed result here.

We have shown that the π fluxes have different statistics
in the two gauged spin models: These excitations are bosons
or fermions in the case of H̃0, and are semions in the case of
H̃1. This result provides a simple physical distinction between
the two systems. It also proves that the two spin models
H0,H1 cannot be continuously connected with one another
without breaking the Z2 symmetry or closing the energy
gap. Indeed, if such a path existed, then we could construct
a corresponding path connecting the gauged spin models
H̃0,H̃1—a contradiction. We note, however, that the above
argument does not rule out the possibility of connecting H0,H1

if the Ising symmetry is broken during the process. Indeed, in
Appendix A we construct an explicit path H (s) of this kind.

IV. DUALITY BETWEEN SPIN MODELS
AND STRING MODELS

In this section we explain the relationship between the
spin Hamiltonians H0,H1 and previously known models.
Specifically, we show that H0,H1 are related via a duality map
to two previously studied lattice models—the “toric code”
model25,26 and the “doubled semion” model.26 The latter two
models are sometimes called “string models” and are special
cases of the general class of “string-net” models constructed
in Ref. 26. This duality provides another point of view on
the braiding statistics analysis in the previous section, and also
suggests a natural classification scheme for general 2D bosonic
SPT phases with finite unitary symmetry groups.

FIG. 7. (Color online) The toric code and doubled semion models
Ht.c,Hd.s [Eq. (19)]. In both systems, the Hilbert space is equivalent
to a spin-1/2 model where the spins live on the links l of the
honeycomb lattice. (a) The toric code Hamiltonian Ht.c is a sum
of two terms. The first term Qv [Eq. (17)] is a product of τ z

l over
the three links adjacent to the vertex v. The second term involves
the interaction

∏
l∈p τ x

l which acts on the six links adjacent to the
plaquette p. (b) The doubled semion Hamiltonian Hd.s includes the
same vertex term Qv , but contains a more complicated plaquette term∏

l∈p τ x
l

∏
l∈legs of p f (τ z

l ), where f (x) = i(1−x)/2.

We begin by defining the duality map: We note that
every spin configuration {σ z

p = ±1} on the triangular lattice
defines a corresponding domain wall configuration on the
honeycomb lattice. Formally, this correspondence is given
by τ z

l = σ z
pσ z

q , where l is the link separating sites p,q and
τ z
l = ∓1 corresponds to the presence or absence of a domain

wall. We will refer to these domain walls as “strings.” An
important point is that the dual string degrees of freedom
always form closed loops—that is, they satisfy the condition
Qv = 1 where (Fig. 7)

Qv =
∏
l∈v

τ z
l . (17)

Using this correspondence, we can map our spin Hamilto-
nians H0,H1 [Eqs. (1) and (2)] onto dual string Hamiltonians:

Hd
0 = −

∑
p

⎛⎝∏
l∈p

τ x
l

⎞⎠ , Hd
1 =

∑
p

⎛⎝∏
l∈p

τ x
l

∏
l∈legs of p

i
1−τ

z
l

2

⎞⎠ .

(18)

These Hamiltonians are defined on a Hilbert space consisting
of closed string states (i.e., states satisfying Qv = 1 every-
where).

The dual Hamiltonians Hd
0 ,Hd

1 are closely related to two
models studied in Ref. 26: The toric code model25 and the
doubled semion model. To understand the precise relationship,
recall that the latter two models are defined on a Hilbert space
consisting of all string states on the honeycomb lattice—both
open and closed. The two Hamiltonians are (Fig. 7)

Ht.c = −
∑

v

Qv −
∑

p

⎛⎝∏
l∈p

τ x
l

⎞⎠ Pp,

(19)

Hd.s = −
∑

v

Qv +
∑

p

⎛⎝∏
l∈p

τ x
l

∏
l∈legs of p

i
1−τ

z
l

2

⎞⎠ Pp.
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Here Pp denotes the projector Pp = ∏
v∈p(1 + Qv)/2. This

operator defines a projection onto states that satisfy the closed
string constraint Qv = 1 at all vertices of the plaquette p.

Comparing (19) and (18) we see that Hd
0 ,Hd

1 can be
obtained by restricting Ht.c,Hd.s to the closed string (Qv = 1)
subspace. In other words, the spin models H0,H1 are dual to a
restricted variant of the toric code and doubled semion models.

In fact, this duality can be extended to one that maps the
gauged spin models H̃0,H̃1 onto the unrestricted toric code
and doubled semion models (19). The extended duality is
defined by setting τ z

l = σ z
pσ z

q μz
pq,τ

x
l = μx

pq , where l is the
link separating sites p,q. Substituting these expressions into
Ht.c,Hd.s and making use of the gauge invariance constraint
(10) it is easy to check that the result is exactly H̃0,H̃1. We
note that this duality maps local operators onto local (gauge
invariant) operators and should therefore be thought of as an
exact equivalence between two quantum systems. Thus the
gauged spin models H̃0,H̃1 are physically identical to the toric
code and doubled semion models.

The above dualities are variants of the well-known corre-
spondence between the 2D Ising model and 2D Z2 gauge
theory.24,29 To see this, note that the closed string models
Hd

0 ,Hd
1 are simply Z2 gauge theory Hamiltonians, phrased

in the language of strings. The Hamiltonian Hd
0 is the

conventional24,29 Z2 gauge theory Hamiltonian (in the zero
coupling limit where there is no electric energy term

∑
l τ

z
l ),

while Hd
1 is another kind23 of Z2 gauge theory. From this point

of view, the correspondence between H0,H1 and Hd
0 ,Hd

1 is a
duality between two types of 2D Ising paramagnets, and two
types of 2D Z2 gauge theory.

We can understand the duality between H̃0,H̃1 and
Ht.c,Hd.s in a similar way. We note that the first two models
can be thought of as two types of Ising paramagnets coupled
to (conventional) Z2 gauge theory, while the latter two models
can be thought of as two types of Z2 gauge theory coupled to
a (conventional) Ising paramagnet. Hence the duality between
H̃0,H̃1 and Ht.c,Hd.s is a variant of the well-known self-duality
of 2D Z2 gauge theory coupled to Ising matter.24

We expect that these dualities can be generalized from Z2

to any finite unitary symmetry group G: Each SPT phase
with symmetry group G is dual to a corresponding gauge
theory with gauge group G. This correspondence immediately
suggests a classification scheme for 2D bosonic SPT phases
with finite unitary symmetry groups: It is known that the
different types of 2D gauge theories with group G (or equiv-
alently, different string-net models corresponding to G) are
in one-to-one correspondence with elements of H 3[G,U (1)].
(For a derivation of this result see Ref. 23, and also section
10.1.E.3 of Ref. 30). Hence, the duality map suggests that
different SPT phases associated with symmetry group G can
also be classified by H 3[G,U (1)]. This classification scheme
is identical to the proposal of Ref. 11.

Another application of these dualities is that they give
a simple method for constructing exactly soluble models
for bosonic SPT phases with finite unitary symmetry group
G. The first step is to construct the different string-net
models26 corresponding to the group G. These are models
with string types given by the group elements g ∈ G, and
branching rules given by group multiplication: {g1,g2,g3} is
an allowed branching if g1g2g3 = 1. In general, there will

be a finite number of different models with these branching
rules—each one corresponding to a different solution of the
self-consistency equations of Ref. 26.31 We then take the dual
of these models, and thereby construct exactly soluble models
for bosonic SPT phases. The models H0,H1 discussed here
were constructed using this approach. In Appendix B we
show that an analogous duality in a space-time Lagrangian
description can be used to construct topological nonlinear
sigma models for SPT phases.

V. PROTECTED EDGE MODES AND BRAIDING
STATISTICS

The most dramatic distinction between the two types of
paramagnets is that H1 has protected gapless edge modes,
while H0 does not. In other words, if we define H1 in a
geometry with a boundary, then the energy spectrum always
contains gapless excitations. These gapless excitations are
guaranteed to be present as long as the Ising symmetry is not
broken (explicitly or spontaneously). In this section we give
a general argument proving this fact. Our argument reveals
that these edge modes are closely connected to the semionic
braiding statistics of the π -flux excitations in the gauged
spin model H̃1. We note that the existence of protected edge
modes was previously established in Ref. 10 using a different
approach.

The statement we prove is as follows. We consider a disk
geometry with a Hamiltonian of the form

H = Hbulk + Hedge, Hbulk = −
∑

p

Bp, (20)

where Bp is defined as in (2) and the sum runs over all
sites p lying strictly in the interior of the disk. We take the
edge Hamiltonian Hedge to be any Hamiltonian with local
interactions which acts on the spins on or near the boundary
of the disk. In this setup, it is clear that the ground state
|�〉 of H satisfies Bp = 1 when p is far from the edge; in
fact, in order to simplify the discussion, we will assume that
Bp = 1 for all p lying strictly in the interior of the disk. Given
these assumptions, we will show that |�〉 cannot be both
Ising symmetric and short-range entangled. Here, a state is
“short-range entangled” if it can be transformed into a product
state by a local unitary transformation—a unitary operator
generated from the time evolution of a local Hamiltonian over
a finite time t .8

To understand what this result means, recall that |�〉 is
always Ising symmetric and short-range entangled in the bulk
(see Appendix A). Thus, the implication of the above theorem
is that the edge either breaks the Ising symmetry or is not a
short-range state. In the latter case, the edge is presumably
gapless, so in this way we see that the edge is protected.

In Sec. V A we establish this result with an intuitive physical
argument. In Sec. V C we give a rigorous mathematical proof.
In Sec. V B we discuss generalizations to other systems.

A. Physical argument

The argument is a proof by contradiction: We assume that
|�〉 is both Ising symmetric and short-range entangled and
we show that these assumptions lead to a contradiction. The
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β β γ

(b)(a)

ba a c b d

FIG. 8. (Color online) (a) We consider a process in which two π

fluxes are created in the bulk, moved to the boundary along a path β

and then annihilated near points a,b. (b) We prove that the edge is
protected by considering two paths β,γ , and their corresponding flux
creation/annihilation processes.

first step is to consider a thought experiment in which we
create a pair of π fluxes in the bulk and move them along
some path β to two points a,b at the boundary [Fig. 8(a)].
This process can be implemented by applying an appropriate
unitary operator to the state |�〉. We will denote this operator
by Wβ . By construction Wβ |�〉 contains two fluxes located
near points a,b on the boundary.

We next assert that the π fluxes at the boundary can be
annihilated by local operators. In other words, there exist local
operators Ua,Ub acting near a,b such that UaUbWβ |�〉 = |�〉.
To see this, note that the effect of bringing the π -flux
excitations to the edge is to create two Ising domain walls at
points a,b. Given that |�〉 is Ising symmetric and short-range
entangled, these domain walls are local excitations—that
is, the two states, |�〉,Wβ |�〉 have identical expectation
values far from a,b. It then follows that these two states
can be connected by local operators Ua,Ub acting near these
points. We emphasize that this conclusion depends crucially
on the Ising symmetry of |�〉: If instead |�〉 broke the
Ising symmetry, the domain walls at a,b would be nonlocal
excitations, and there would be no way to annihilate them with
local operators.

We now use the fact that π fluxes can be annihilated
at the boundary to derive a contradiction. Consider a three
step process in which two π fluxes are (1) created in the
bulk, (2) moved to the boundary along the path β, and (3)
annihilated. Let Wβ be a unitary operator describing this
process. (Formally,Wβ is given byWβ ≡ UaUbWβ .) Consider
a second path γ with the geometry shown in Fig. 8(b),
and define Wγ in the same way. By construction we have
Wβ |�〉 = Wγ |�〉 = |�〉. Hence,

WβWγ |�〉 = WγWβ |�〉 = |�〉. (21)

At the same time, it follows from general principles that
Wβ,Wγ satisfy the commutation relation

WβWγ |�〉 = e2iθWγWβ |�〉, (22)

where θ is the exchange statistics for the π fluxes. [This
result can be derived in the same way as Eq. (13).] To
complete the argument we note that the π fluxes have semionic
statistics so e2iθ = −1. Equations (21) and (22) are therefore
in contradiction, implying that our assumption must be false
and the ground state |�〉 cannot be both Ising symmetric and
short-range entangled.

In this analysis we have skated over an important subtlety.
The issue is that we do not know whether Ua,Ub are even or
odd under the Ising symmetry. In other words, we do not know
whether the flux annihilation process involves flipping an even
or odd number of spins. To understand what this means, recall

that there are actually two types of π -flux excitations which
differ from one another by the addition of a spin-flip excitation
e. Thus, the Ua,Ub operators could describe the annihilation
of either one of the two types of π fluxes, depending on their
parity. Since this parity is ambiguous, the existence of Ua,Ub

only shows that at least one of the two types of π fluxes can
be annihilated at the boundary.

This subtlety becomes important in the last part of the
argument where we derive a contradiction between Eqs. (21)
and (22). In particular, since we can only guarantee that one of
the two types of π fluxes can be annihilated at the boundary,
the proof is only valid if we show that these equations are
inconsistent for both types of fluxes. Fortunately, this is not a
problem: The two types of π fluxes have exchange statistics
θ = ±π/2, so e2iθ = −1 in both cases.

B. Discussion and generalizations

The above argument does not use any properties of H1

except the braiding statistics of the π fluxes. Therefore, it
actually proves a more general statement: Any Z2 SPT phase
in which neither of the π fluxes is a boson or a fermion is
guaranteed to have a protected edge mode. Indeed, as long as
e2iθ �= 1 for both types of fluxes, the argument goes through
unchanged. On the other hand, if either of the π fluxes is a
boson or a fermion—as in a conventional paramagnet H0—
there is no contradiction between Eqs. (21) and (22) and the
argument breaks down completely. From this point of view,
the key reason that H1 has a protected edge mode and H0 does
not, is the difference in their π -flux braiding statistics.

It is not hard to generalize the argument to arbitrary bosonic
SPT phases with unitary abelian symmetry groups G. For
example, consider the case of G = Z3. Just as Z2 spin models
support π -flux excitations, models with Z3 symmetry support
flux excitations with flux 2π/3 and 4π/3. These 2π/3 fluxes
and 4π/3 fluxes each come in three different types—just
like the two types of π fluxes in the Z2 case. Using the
same arguments as above, one can see that a Z3 SPT phase
must have a protected edge unless there exists a set of two
fluxes—consisting of one 2π/3 flux and one 4π/3 flux—such
that (1) the fluxes in this set are bosons or fermions and (2) the
fluxes in this set have trivial mutual statistics with respect to
one another. Similarly to the Z2 case, this result can be derived
by considering thought experiments where we annihilate 2π/3
and 4π/3 fluxes at the boundary, and making use of the string
commutation algebra (22). In fact, by using the statistical
hopping algebra27 in place of (22), we believe that this result
can be strengthened even further: One can show the existence
of a protected edge mode unless the above set of fluxes are
all bosons. We expect that similar generalizations exist for the
nonabelian case although we will not discuss them here.

C. Mathematical argument

Like the physical argument sketched above, the mathemat-
ical argument is a proof by contradiction. We assume that |�〉
is both Ising symmetric and short-range entangled (i.e., it can
be turned into a product state by a local unitary transformation)
and we show that these assumptions lead to a contradiction.
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a b

FIG. 9. (Color online) The operator Wβ [Eq. (23)] is defined for
any path β on the dual honeycomb lattice that joins points a,b on
the edge. In the interior of the path β (shaded region), Wβ acts like
the symmetry transformation S = ∏

p σ x
p . The operator also acts on

all triangles 〈pqq ′〉 along the path β (thickened lines). The action is
different depending on whether q,q ′ are to the left of β (purple sites)
or to the right of β (blue sites).

To begin, let β be a path on the dual (honeycomb) lattice
that joins two points a,b on the edge. We define an associated
unitary operator Wβ by

Wβ =
∏
p,int

σ x
p

∏
〈pqq ′〉,r

i
1−σ

z
q σ

z
q′

2

∏
〈pqq ′〉,l

(−1)spqq′ . (23)

Here the first product runs over all sites p in the interior of the
the path β, while the last two products run over all triangles
〈pqq ′〉 along the path such that q,q ′ are to the right of β or
to the left of β, respectively (Fig. 9). The operator spqq ′ is
defined by

spqq ′ = 1
4

(
1 − σ z

pσ z
q

)(
1 + σ z

pσ z
q ′
)
. (24)

As an aside, we note that the operator Wβ is closely related
to the string operator V 1

β (14). Indeed the two operators are
identical except for the fact that V 1

β is written in terms of the
formalism of the gauged spin model, while Wβ is written in
terms of the original “ungauged” spin model. This similarity
suggests a simple physical interpretation for Wβ : This operator
describes a process in which two π fluxes are created in the
bulk and then moved along the path β to points a,b at the
boundary. Much of what follows can be understood using this
physical picture, as discussed in Sec. V A.

Returning to the main argument, we note that the unitary
operator Wβ has several important properties:

(1) Wβ transforms local operators into local operators. That
is, W−1

β OWβ is local if and only if O is local.
(2) Let O be a local operator which acts on spins within

some convex region R not containing either of the endpoints
of β. Then O has the same expectation value in the two states
|�〉 and |� ′〉 = Wβ |�〉.

Property 1 follows from the fact that Wβ can be decomposed
into a product of two sets of commuting local unitary operators.
As for property 2, there are three cases to consider: The region
of support R may be contained entirely in the exterior of
β, it may be contained entirely in the interior, or it may
overlap the path β itself. In the first case, Wβ commutes with
O, immediately implying the desired equality 〈� ′|O|� ′〉 =
〈�|O|�〉. In the second case, W−1

β OWβ = S−1OS, since Wβ

acts like S in the interior of β. Then, since |�〉 is invariant
under S (by the Ising symmetry assumption), we again have
〈� ′|O|� ′〉 = 〈�|O|�〉. The only case where the expectation
value of O could be different in the two states is if R overlaps
the path β. However, one can check that Wβ |�〉 = Wβ ′ |�〉

for any two paths β,β ′ with the same endpoints.32 This means
that we can freely deform β so that it avoids R. Therefore the
expectation values must coincide in this case as well.

We now use properties (1) and (2) to prove a key result:
There exist local operators Ua,Ub acting near a,b (or more
accurately, exponentially localized operators) such that

UaUbWβ |�〉 = |�〉. (25)

The first step is to observe that Wβ |�〉 has short-range
correlations (i.e., for any well separated local operators O1,O2,
we have 〈O1O2〉 = 〈O1〉〈O2〉 up to corrections which are
exponentially small in the distance between O1,O2). To see
this, note that |�〉 has short-range correlations since33 it
can be transformed into a product state by a local unitary
transformation (by the short-range entanglement assumption).
It then follows that Wβ |�〉 also has short-range correlations
since Wβ transforms local operators into local operators
[property (1)].

Next we recall that |�〉,Wβ |�〉 share the same local
expectation values away from the endpoints a,b [property
(2)]. Putting these facts together, we can immediately deduce
the existence of the desired Ua,Ub. To see this, consider the
analogous question for the conventional paramagnet |�0〉 =
|σx = 1〉: Suppose that some short-range correlated state |� ′

0〉
has the same local expectation values as |�0〉 except near
two points a,b. In this case, the state |� ′

0〉 must have σx = 1
far from a,b, so it is clear that we can find local operators
Ua,Ub acting near a,b such that UaUb|� ′

0〉 = |�0〉. Having
established this property for |�0〉, it follows that the same
property must also hold for |�〉 since |�〉,|�0〉 are equivalent
up to a local unitary transformation (by the short-range
entanglement assumption).

A key question is to understand understand how Ua,Ub

transform under the Ising symmetry S. In Appendix C we
show that Ua,Ub can always be chosen so that they are either
both even or both odd under S. Furthermore, this even or odd
parity must be the same for all pairs of endpoints a,b. In other
words, either all the Ux operators are even under S, or all of
them are odd under S.

We now use (25) to derive a contradiction. To this end, we
consider a second path γ that connects two other points c,d on
the edge. We choose β,γ so that they intersect each other, and
so that their endpoints are well separated [see Fig. 8(b)]. As
above, we have UcUdWγ |�〉 = |�〉 for some local operators
Uc,Ud acting near c,d. Now, define

Wβ = UaUbWβ, Wγ = UcUdWγ . (26)

By construction Wβ |�〉 = |�〉 and Wγ |�〉 = |�〉. Hence,

WβWγ |�〉 = WγWβ |�〉. (27)

At the same time, Wβ,Wγ anticommute, as we now show.
To see this, we first note that Wβ,Wγ anticommute:

WβWγ = −Wγ Wβ. (28)

This relation can be checked using the explicit formula for Wβ

[similarly to Eq. (16)]. Next we recall that Wβ looks like S in
the interior of β and the identity map in the exterior of β so
that

WβUcUdW
−1
β = (SUcS

−1)Ud = ±UcUd, (29)
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where the sign is determined by the parity of Uc under S.
Similarly, we have

Wγ UaUbW
−1
γ = Ua(SUbS

−1) = ±UaUb, (30)

where the sign is determined by the parity of Ub under
S. Importantly, these two signs are the same since the Ux

operators all share the same parity. Hence, the two pairs
{Wβ,UcUd} and {Wγ ,UaUb} either both commute or both
anticommute. In either case, the anticommutation relation (28)
implies that Wβ,Wγ anticommute:

WβWγ = −WγWβ. (31)

Comparing (27) and (31), we arrive at a contradiction. Hence
our assumption must be false and |�〉 cannot be both Ising
symmetric and short-range entangled.

VI. MICROSCOPIC EDGE ANALYSIS

In this section we investigate the protected edge modes of
H1 at a more concrete level. We analyze a particular example of
a gapless edge for H1, derive a field theoretic description of the
low energy modes, and investigate the effect of perturbations.
As in Sec. V we consider a disk geometry, with a Hamiltonian
of the form H = Hbulk + Hedge. The bulk Hamiltonian Hbulk is
defined by Hbulk = −∑

p Bp, where the sum runs over all
sites that are strictly in the interior of the disk. The edge
Hamiltonian Hedge can be any Ising symmetric Hamiltonian
with local interactions which acts on the spins on or near the
boundary.

A. Zero energy edge states

We begin with the case where Hedge = 0—that is, the
edge Hamiltonian vanishes. In this case, we can compute the
energy spectrum in the same way as we did for the periodic
(torus) geometry. First, we simultaneously diagonalize the
Bp operators for all sites p that are strictly in the interior
of the disk. Next, we note that each of these simultaneous
eigenstates is an energy eigenstate with energy E = −∑

p bp,
where bp = ±1 is the eigenvalue under Bp. The final step is to
determine the degeneracy of these simultaneous eigenspaces.
A natural guess, based on dimension counting, is that each
simultaneous eigenspace {bp = ±1} has a degeneracy of 2N ,
where N is the number of spins along the boundary of the disk.
In particular, we expect that there are 2N degenerate ground
states.

We can verify this counting by constructing explicit wave
functions for these degenerate ground states. Specifically,
we define a wave function �{α} for each boundary spin
configuration {α1, . . . ,αN }, where αn = ↑, ↓ [Fig. 10(a)]. This
wave function is a function of the spins αint = ↑, ↓ lying
strictly in the interior of the disk, and is given by

�{α}({αint}) = (−1)Ndw , (32)

where Ndw is the the total number of domain walls in the
system. Here we define Ndw using a particular convention
where we close up all the domain walls that end at the boundary
by assuming that there is a “ghost” spin in the exterior of
the disk, pointing in the ↑ direction [Fig. 10(b)]. We will
denote these states by |α1, . . . ,αN 〉. As is apparent from this

FIG. 10. (Color online) A schematic picture of the zero energy
edge states in the case Hedge = 0. (a) The 2N zero energy edge states
can be parametrized by boundary spin configurations {α1, . . . ,αN },
where αn = ↑, ↓. (b) For each choice of {α}, the corresponding wave
function �{α} is defined by �{α}({αint}) = (−1)Ndw , where Ndw is the
total number of domain walls in the system. We use a convention
where we close up all the domain walls by assuming there is a ghost
spin in the exterior of the disk, pointing in the ↑ direction.

parametrization, we can think of these degenerate ground states
as zero energy edge states.

It is useful to define operators {σx
n,σ

y
n,σ

z
n} that act on

|α1, . . . ,αN 〉 just like the usual Pauli spin operators. We note
that the σ i

n operators should not be confused with the physical
boundary spin operators σ i

n which act on the full Hilbert space
of the spin system. In the σ z case, the two types of operators
are closely related—for example, σ z

n = P0σ
z
nP0, where P0 is

the projection operator onto the 2N dimensional edge state
subspace. However, this simple relation does not hold for the
σx or σy operators, or for more complicated products of spin
operators.

An important question is to understand how the symmetry
S acts on the edge states. Using the definition (32), one finds
that the Ising symmetry S acts as

S|α1, . . . ,αN 〉 = ±
N∏

n=1

σx
αnβn

|β1, . . . ,βN 〉, (33)

where the sign depends on the configuration of αn = ↑, ↓ as
follows: The sign is − if the total number of domain walls
between the α is divisible by 4 and + otherwise. In other
words, the action of the Ising symmetry on the above basis
states is described by the operator

S = −
N∏

n=1

σx
n exp

[
iπ

4

N∑
n=1

(
1 − σ z

nσ
z
n+1

)]
. (34)

In order to gain some intuition about S, we note that the op-
erators σx,σ y,σ z transform under the symmetry according to

S−1σx
nS = −σ z

n−1σ
x
nσ

z
n+1,

S−1σy
nS = σ z

n−1σ
y
nσ

z
n+1, (35)

S−1σ z
nS = −σ z

n.
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B. An example of an edge Hamiltonian

We now imagine adding a nonvanishing edge Hamiltonian
Hedge. If Hedge is small, then we can analyze its effect using
degenerate perturbation theory. The first order splitting of the
2N degenerate ground states can be obtained by diagonalizing
P0HedgeP0, where P0 is the projection onto the zero energy
edge state subspace. In general, P0HedgeP0 can be expressed
as a function of the σ i

n operators. We can therefore find the
edge state spectrum by solving a 1D spin chain with an unusual
Ising symmetry (34).10

Here we will focus on a particular choice of Hedge which can
be solved exactly. We emphasize that this choice is not unique,
and that other edge Hamiltonians may give rise to different
edge spectra. Nevertheless, we believe that the particular Hedge

we consider is a useful illustrative example. We will derive a
low energy edge theory for this example, and investigate the
effect of perturbations.

Specifically, we consider an edge Hamiltonian

Hedge = −J

N∑
n=1

(B↑
n + B↓

n ), (36)

where B
↑
n is defined just like Bp, except with an additional

ghost spin in the exterior of the disk, pointing in the ↑ direction.
More explicitly,

B↑
n = −σx

n i
1−σ

z
n−1
2 i

1−σ
z
n+1
2

∏
〈nqq ′〉

i
1−σ

z
q σ

z
q′

2 , (37)

where the product runs over the three triangles 〈nqq ′〉
containing the boundary spin n, and where n + 1, n − 1 denote
the two neighboring boundary spins (Fig. 11). The operator B

↓
n

is defined the same way, except that we take the ghost spin to
point in the ↓ direction. That is,

B↓
n = −σx

n i
1+σ

z
n−1
2 i

1+σ
z
n+1
2

∏
〈nqq ′〉

i
1−σ

z
q σ

z
q′

2 . (38)

The above edge Hamiltonian has several nice properties.
First, the edge Hamiltonian is Ising symmetric. Indeed, this
follows from the fact that S−1B

↑
n S = B

↓
n , S−1B

↓
n S = B

↑
n .

Another property of Hedge is that [Hedge,Hbulk] = 0. This
property follows from the fact that the Bp operators commute
with B

↑
n ,B

↓
n (which in turn follows from the fact that the Bp

operators commute with each other). One consequence of this
commutation relation is that the low energy edge spectrum

n

q′q

FIG. 11. (Color online) The operator B↑
n is defined just like Bp

[Eq. (2)], except with an additional ghost spin in the exterior of the
disk pointing in the ↑ direction (dotted arrow). More explicitly, B↑

n

acts on the three triangles 〈nqq ′〉 containing the boundary spin n with
an action given by (37). The operator B↓

n is defined similarly.

obtained by diagonalizing P0HedgeP0 is exact, rather than just
being correct to first order in perturbation theory.

We now compute P0HedgeP0. Using the definition of the
basis states (32), it is easy to check that

P0B
↑
n P0 = σx

n (39)

from which it follows that

P0B
↓
n P0 = S−1σx

nS = −σ z
n−1σ

x
nσ

z
n+1. (40)

We conclude that

P0HedgeP0 = −J

N∑
n=1

(
σx

n − σ z
n−1σ

x
nσ

z
n+1

)
. (41)

A nice feature of this Hamiltonian is that it has a U (1)
symmetry: It conserves

∑N
n=1 σ z

nσ
z
n+1—the total number of

domain walls between the boundary spins. In order to make
this U (1) symmetry manifest and to simplify the analysis, it is
useful to rewrite the Hamiltonian in terms of the dual domain
wall variables. Naively we can accomplish this by defining

τ z
n = σ z

nσ
z
n+1 (42)

and reexpressing everything in terms of the τ . However, the
above duality transformation does not quite work for a system
with periodic boundary conditions since the τ z

n variables obey
the global constraint

∏N
n=1 τ z

n = 1, and therefore only describe
N − 1 independent degrees of freedom. (Equivalently, there is
no way to express σ z in terms of the τ z variables.)

In order to incorporate the missing degree of freedom and
make the dual description complete, we introduce an additional
Z2 gauge field μz

n−1,n that lives on the links 〈(n − 1)n〉
connecting neighboring boundary sites (n − 1),n. We then
define the duality transformation between σ and τ,μ by the
relation

μx
n−1,n = σ z

n (43)

together with the gauge invariance constraint

μx
n−1,nμ

x
n,n+1τ

z
n = 1. (44)

It is easy to check that there is a one-to-one correspondence
between configurations of σ z

n = ±1 and configurations of
μx

n = ±1,τ z
n = ±1 obeying the constraint (44). Similarly,

there is a one-to-one correspondence between physical opera-
tors written in terms of the σ and gauge invariant combinations
of μ,τ [i.e., operators that commute with the left-hand side of
(44)]. In particular, the operators σx,σ y,σ z are given by

σx
n = τ x

n−1τ
x
n μz

n−1,n,

σ y
n = −τ x

n−1τ
x
n μ

y

n−1,n, (45)

σ z
n = μx

n−1,n,

while the symmetry transformation S is given by

S = −
N∏

n=1

μz
n−1,n exp

[
iπ

4

N∑
n=1

(
1 − τ z

n

)]
. (46)

Using (45) to reexpress the Hamiltonian (41) in terms of
the domain wall variables τ , we find

P0HedgeP0 = −2J

N∑
n=1

(
τ+
n−1τ

−
n μz

n−1,n + H.c.
)
. (47)
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This Hamiltonian is the usual spin-1/2 XX chain, coupled to a
Z2 gauge field μz

n−1,n. The only effect of the Z2 gauge field is
to double the size of the Hilbert space so that is includes sectors
with both periodic and antiperiodic boundary conditions for the
τ variables. The two types of boundary conditions correspond
to the two possibilities

∏N
n=1 μz

n−1,n = ±1.

C. Edge theory

Given previous work on the spin-1/2 XX chain, it is now
straightforward to construct a field theory description of the
low energy edge modes. (We could also derive the exact edge
spectrum, but this is less useful to us, as we ultimately want
to analyze the effect of perturbations.) To be specific, the low
energy excitations of the spin-1/2 XX chain (47) are known34

to be described by the nonchiral Luttinger liquid

L = 1

4π
(∂xθ∂tφ + ∂xφ∂tθ ) − v

8π

[
K(∂xθ )2 + 4

K
(∂xφ)2

]
,

(48)

with Luttinger parameter K = 1, and velocity v = 4Ja, where
a is the lattice spacing. Here we are using a normalization
convention in which expressions of the form eikθ+ilφ with
integer k,l correspond to local spin operators (i.e., gauge
invariant combinations of τ,μ). For example,

τ+
n−1τ

+
n μz

n−1,n ∼ eiθ , μx
n−1,n ∼ cos(φ),

τ z
n

2a
∼ 1

π
∂xφ.

(49)

In the above normalization convention, the boundary
condition for θ is that θ (L) ≡ θ (0) (mod 2π ). This condition
automatically incorporates both the periodic and antiperiodic
sectors for τ : The two sectors correspond to the two cases
θ (L) = θ (0) + 4mπ and θ (L) = θ (0) + (4m + 2)π , as one
can see using the heuristic τ+ ∼ eiθ/2. The boundary condition
for φ is also φ(L) ≡ φ(0) (mod 2π ).

The last component of the edge theory (48) is to understand
how the Ising symmetry S acts in the new variables θ,φ. To
this end we note that (49) implies that

exp

(
−πi

4

N∑
n=1

τ z
n

)
= exp

(
− i

2

∫
∂xφdx

)
. (50)

Similarly we have

N∏
n=1

μz
n−1,n = exp

(
i

2

∫
∂xθdx

)
. (51)

This equality follows from the observation that the peri-
odic/antiperiodic sectors

∏N
n=1 μz

n−1,n = ±1 correspond to
the two boundary conditions θ (L) − θ (0) = 4mπ,(4m + 2)π ,
respectively.

Combining these two results, we see that our expression
(46) for S becomes

S = exp

(
i

2

∫
∂xθdx − i

2

∫
∂xφdx

)
(52)

(up to a phase factor). Using the commutation relation
[θ (x),∂xφ(y)] = 2πiδ(x − y), we deduce that

S−1θS = θ + π, S−1φS = φ + π. (53)

The transformation law (53) together with the action (48) gives
a complete description of the low energy edge physics.

D. Stability and instability of the edge modes

In this section we investigate the effect of perturbations on
the gapless edge (48). We find two results. Our first result is
that the edge is unstable: The edge modes can be gapped out
by arbitrarily small Ising symmetric perturbations. Our second
result is that the edge is protected: We find that in all cases
where perturbations gap out the edge, the Ising symmetry is
broken spontaneously. In other words, we do not find any
perturbations which gap out the edge without breaking the
Ising symmetry, explicitly or spontaneously. This result is
consistent with the general edge protection argument presented
in Sec. V.

We focus on a particular class of perturbations of the form

U (l1,l2) = U (x) cos[l1θ + l2φ − α(x)]. (54)

where l1,l2 are integers. Using (53) we can see that the
perturbation U (l1,l2) is even or odd under the Ising symmetry
depending on whether l1 + l2 is even or odd, respectively.

The above perturbations are all “local” in the sense that
they can be generated by adding appropriate short-range spin
interactions at the edge. For example, the case U (0,1) can be
generated by adding to the edge Hamiltonian (36) a term of
the form Uσz

n . Similarly, U (1,0) can be generated by the term
U (B↑

n − B
↓
n ). Higher values of l1,l2 can be generated by more

complicated spin interactions.
Of particular interest are perturbations of the form U (l,0)

and U (0,l). We know from the standard analysis of the sine-
Gordon model that these terms can drive the edge to a gapped
state by freezing the value of θ or φ. This gapping can occur
even for infinitesimal U , if U (l,0) or U (0,l) are relevant in the
renormalization group sense.

To determine whether any of these operators are relevant,
we note that their scaling dimensions are given by

h(l,0) = l2

K
, h(0,l) = Kl2

4
. (55)

Clearly the smaller the value of l, the more relevant the
perturbation. On the other hand, Ising symmetry (53) requires
even l. Thus, the most relevant Ising-symmetric operators
are U (2,0) and U (0,2). Setting K = 1, we see that the term
U (2,0) has a scaling dimension greater than 2 and is therefore
irrelevant, but U (0,2) is relevant. Hence, U (0,2) describes an
Ising-symmetric instability of the edge.

Microscopically, the term U (0,2) can be generated by
adding a staggered spin interaction

U

N∑
n=1

(−1)n(B↑
n + B↓

n ) (56)

to Hedge [Eq. (36)]. In this case, the resulting gapping of
the edge modes can be analyzed exactly. The analysis is
similar to the derivation above: First, one maps the perturbed
Hamiltonian onto an XX chain with a staggered coupling
constant Jn = J + (−1)nU . Then, one solves the resulting
system using a Jordan-Wigner transformation. One can check
that the effect of the perturbation is to induce backscattering
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for the noninteracting fermions, and hence open up a gap of
order U .

Before proceeding further we make two observations
about this edge instability. The first observation is that the
instability described by U (0,2) requires the breaking of
discrete translational symmetry. Indeed, as discussed in the
previous paragraph, U (0,2) corresponds to backscattering
between the left and right moving Jordan-Wigner fermions.
This backscattering process does not conserve the lattice
momentum and therefore requires the breaking of discrete
translational symmetry and the doubling of the unit cell.

The second observation is that the edge instability persists
for any value of the Luttinger parameter K . To see this, note
that (55) implies that h(2,0) · h(0,2) = 4. There are three cases
to consider: Either (a) h(2,0) < 2 < h(0,2), (b) h(0,2) < 2 <

h(2,0), or (c) h(2,0) = h(0,2) = 2. In the first two cases, either
U (2,0) or U (0,2) is relevant, implying that the edge is unstable.
In the third case, both operators are marginal, but the edge
is still unstable since small perturbations can affect K and
therefore make either U (2,0) or U (0,2) relevant. This analysis
implies that the above edge theory has an Ising symmetric
instability for any value of K . (This instability is closely related
to the fact that there is no stable algebraic long-range ordered
phase in the 2D Z4 clock model.35)

Although the perturbation U (0,2) can open up a gap at
the edge, it also spontaneously breaks the Ising symmetry. To
see this, note that U (0,2) drives the edge into a state where
φ is frozen at some fixed value. In such a state, the operator
cos[φ − α(x)] acquires a nonvanishing expectation value. But
this operator is odd under S (53) implying that the resulting
state spontaneously breaks the Ising symmetry. This result
is consistent with the general argument in Sec. V: The edge
modes can never be gapped out without breaking the Ising
symmetry, either explicitly or spontaneously.

We have seen that the above edge is unstable in the sense that
small perturbations can gap out the edge while simultaneously
breaking the Ising symmetry. We do not know whether a
different choice of edge Hamiltonian Hedge can give rise to
a stable edge. Nevertheless, whether or not a stable Z2 edge
is possible, we believe that the Zn generalizations of the Ising
paramagnet H1 support stable gapless edge modes for n > 2.
Our expectation is based on the following conjecture: We
believe that the Zn generalizations of H1 support edge modes
described by (48) with a Zn symmetry given by

S−1θS = θ + 2π/n, S−1φS = φ + 2πk/n, (57)

with k = 1, . . . ,n − 1. In this scenario, the most relevant Zn

symmetric perturbations are U (n,0),U (0,n). Examining (55)
we can see that both of these operators are irrelevant over the
finite range 8/n2 < K < n2/2. Hence, if K lies in this range,
then the edge is stable to small perturbations.

VII. CONCLUSION

In this paper we investigated a 2D bosonic SPT phase with
a Z2 Ising-like symmetry. This SPT phase can be thought of as
a new kind of Ising paramagnet. We showed that this phase can
be distinguished from a conventional paramagnet by coupling
the system to a Z2 gauge field and then analyzing the braiding
statistics of the π -flux excitations. We found that while the π

fluxes have bosonic or fermionic statistics in a conventional
paramagnet, they have semionic statistics in the new kind of
paramagnet. This result immediately implies that the two types
of paramagnets belong to distinct phases. We also showed that
these semionic braiding statistics directly imply the existence
of protected edge modes. To complete the picture, we analyzed
a particular microscopic edge model for this phase, derived a
field theoretic description of the edge modes, and investigated
their stability to perturbations.

While this paper has focused on a particular example, we
believe that our basic approach can be applied more broadly.
The simplest extension would be to consider 2D bosonic SPT
phases with arbitrary unitary symmetry groups G. Following
the same approach as above, we can couple each such SPT
phase to a gauge field with gauge group G. We can then
analyze the quasiparticle excitations in this system and find
their braiding statistics. By analogy with the Z2 case, we
expect that these braiding statistics can be used to uniquely
characterize each SPT phase and to derive the existence of
protected edge modes. The same approach could potentially
be used for 2D fermionic SPT phases with unitary symmetries.

One can also imagine a generalization to higher dimen-
sional bosonic/fermionic SPT phases with unitary symmetries.
Again we envision coupling each phase to the appropriate
gauge field and then analyzing the braiding statistics in the
resulting system. In the 3D case for example, we expect that
gauged SPT phases will contain both particlelike and looplike
excitations. The analog of braiding statistics is then the Berry
phase associated with braiding a particlelike excitation around
a looplike excitation. We find it plausible that these braiding
statistics could be used to distinguish different SPT phases and
to derive the existence of protected boundary modes just as in
2D. Similarly, the duality between bosonic 2D SPT phases
and 2D gauge theories (Sec. IV) may also extend to higher
dimensions.

On the other hand, it is not clear how to apply these ideas to
SPT phases with antiunitary symmetries such as time reversal
symmetry. The problem is that we do not know how to define
a gauge field for an antiunitary symmetry. This question, as
well as the potential generalizations discussed above, is an
interesting direction for future work.
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APPENDIX A: ADIABATIC EQUIVALENCE OF H0,H1 IN
THE ABSENCE OF THE SYMMETRY

While H0,H1 cannot be continuously connected when
the Ising symmetry is preserved, these two models can be
connected when the symmetry is broken. Indeed, consider the
one-parameter family of unitary transformations

Uθ =
∏
〈pqr〉

eiθ(3σ z
pσ z

q σ z
r −σ z

p−σ z
q −σ z

r ), (A1)
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where the product runs over all triangles 〈pqr〉. Using these
unitary transformations, we can define a one-parameter family
of Hamiltonians H (θ ) = U−1

θ H0Uθ . These Hamiltonians have
local spin-spin interactions and have a finite energy gap for
any value of θ . Moreover, H (0) = H0, and one can check that
H (π/24) = H1, using the identity

U−1
π/24σ

x
pUπ/24 = Bp. (A2)

Hence, this construction gives an explicit path that connects
H0,H1. We note that H (θ ) breaks the Ising symmetry for
intermediate values of θ , as required by the argument of
Sec. III.

APPENDIX B: TOPOLOGICAL NONLINEAR σ MODELS
FOR THE TWO PARAMAGNETS

In this section we explore the duality between the spin
models H0,H1 and the string models Ht.c.,Hd.s in a space-
time Lagrangian formulation. Using this space-time duality,
we construct topological nonlinear σ models describing each
of the two paramagnet phases, and thereby make a connection
to the analysis of Ref. 11.

We begin with the Lagrangian description of the toric
code and doubled semion models, Ht.c,Hd.s . These models—
like all string-net models26—have a Euclidean space-time
description in terms of Turaev-Viro36 invariants. In general,
these invariants define a space-time partition function for any
3D manifold M and any triangulation of M into tetrahedra.
For the above two models the Turaev-Viro invariants are of the
form

Z = 1

2Nv

∑
ijk...

∏
link

di

∏
tetrahedron

G
ijm

kln , (B1)

where the degrees of freedom i,j,k, . . . live on the links of the
tetrahedra and run over the finite set {0,1}. The variable Nv

denotes the number of vertices in the triangulation.
To specify the two partition functions, we need to define

di,G
ijm

kln —the weights associated with the links and tetrahedra
in the triangulation. For toric code model we have d0 = d1 = 1
and26

G000
000 = 1, G000

111 = G110
001 = G011

100 = G101
010 = 1,

(B2)
G110

110 = G101
101 = G011

011 = 1, others = 0.

For double semion model we have d0 = 1,d1 = −1 and

G000
000 = 1, G000

111 = G110
001 = G011

100 = G101
010 = −i,

(B3)
G110

110 = G101
101 = G011

011 = −1, others = 0.

Our convention for ordering the indices of G is that the
three upper indices i,j,m live on one of the faces of the
tetrahedron, while the corresponding lower indices k,l,n live
on the opposite links (Fig. 12). There is no further ambiguity
in the index ordering since the G symbols for these models
have full tetrahedral symmetry.

An important property of these partition functions is that
they are independent of the choice of triangulation, and depend
only on the topology of the space-time manifold M . This
triangulation independence should not be taken for granted: It
only comes about because G

ijm

kln ,di,D satisfy highly nontrivial
algebraic relations.36

FIG. 12. (Color online) In the Turaev-Viro model (B1), the
degrees of freedom i,j,k = 0,1 live on the links of the triangulation
and G

ijm

kln gives a weight to each tetrahedron in the space-time
triangulation. In the dual spin model, the degrees of freedom are Ising
spins living on the vertices of the triangulation while the dual weight
G̃ is defined by mapping domain walls between spins onto the link
variables i = 0,1. For example, the above configuration corresponds
to G̃(↓, ↑, ↓, ↑) = G110

110. The thick red lines denote links with i = 1.

We are now ready to discuss the space-time description
of the duality between the spin models H0,H1 and the string
models Ht.c,Hd.s . By analogy with the Hamiltonian descrip-
tion (Sec. IV), we place the dual Ising spins on the vertices
of the tetrahedra and then define the duality by mapping
each Ising spin configuration onto its corresponding domain
wall configuration (Fig. 12). To be precise, given any Ising
spin configuration, we define a corresponding configuration
of i = 0,1 by placing i = 1 on the links where the adjoining
spins are antiparallel (i.e., where there is a domain wall) and
i = 0 on the links where the spins are parallel (i.e., where
there is no domain wall). Importantly we can see from (B2)
and (B3) that G vanishes for configurations of i,j,k, . . . which
do not correspond to valid domain wall configurations, so this
correspondence is (locally) one-to-one. In this way, we can
map the two Turaev-Viro models (B1) onto two spin partition
functions

Z̃ = 1

2Nv

∑
g0g1g2g3...

∏
link

d̃(g0,g1)
∏

tetrahedron

G̃(g0,g1,g2,g3),

(B4)

where gi =↑ , ↓ runs over the two Ising spin states. The
dual G symbols G̃(g0,g1,g2,g3) are defined by

G̃(↑,↑,↑,↑) = G̃(↓,↓,↓,↓) = G000
000,

G̃(↑,↑,↑,↓) = G̃(↓,↓,↓,↑) = G000
111,

G̃(↑,↓,↑,↑) = G̃(↓,↑,↓,↓) = G110
001,

G̃(↑,↑,↓,↑) = G̃(↓,↓,↑,↓) = G011
100,

(B5)
G̃(↓,↑,↑,↑) = G̃(↑,↓,↓,↓) = G101

010,

G̃(↑,↓,↑,↓) = G̃(↓,↑,↓,↑) = G110
110,

G̃(↑,↓,↓,↑) = G̃(↓,↑,↑,↓) = G101
101,

G̃(↑,↑,↓,↓) = G̃(↑,↑,↓,↓) = G011
011,

while d̃(g0,g1) is given by

d̃(↑,↑) = d̃(↓,↓) = d0,
(B6)

d̃(↑,↓) = d̃(↓,↑) = d1.
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By construction, G̃ and d̃ are invariant under Ising
symmetry:

G̃(gg0,gg1,gg2,gg3) = G̃(g0,g1,g2,g3),
(B7)

d̃(gg0,gg1) = d̃(g0,g1),

where g · ↑ = ↓, g · ↓ = ↑. Thus, the dual partition functions
(B4) both describe Ising symmetric phases. We expect that
these two phases correspond to the two types of paramagnets
H0,H1.

In addition, we note that the dual partition functions (B4)
satisfy the property that they are independent of the choice
of triangulation: This result follows from the corresponding
property of the Turaev-Viro partition function. This property
suggests that the two actions described by (B4) can be
regarded asZ2 topological nonlinear σ models similar to those
constructed in Ref. 11.

We expect that this construction of topological nonlinear σ

models can be generalized to arbitrary bosonic 2D SPT phases
with finite unitary symmetry group G. The first step is to find all
the Turaev-Viro models associated with the group G. In these
Turaev-Viro models—which are equivalent to the topological
gauge theories discussed in Ref. 23—the link labels i run over
the different group elements of G. (One can also construct
Turaev-Viro models by placing irreducible representations of
G on the links, but this approach is less convenient here.) One
can then construct dual models by placing group elements
(“spins”) on the vertices of the tetrahedra, and mapping the
domain walls between these generalized spins onto the group
elements living on the links. The result will be a set of
topological nonlinear sigma models with symmetry group G.

APPENDIX C: PARITY OF Ua,Ub UNDER S

In this section we show that the operators Ua,Ub defined by
UaUbWβ |�〉 = |�〉 can always be chosen so that Ua,Ub are
either both even or both odd under S. Furthermore, we show
that this even or odd parity must be the same for all pairs of
endpoints a,b.

We begin with the first claim—showing that Ua,Ub can
always be chosen so that they are either both even or both
odd under S. To derive this fact we define even and odd
combinations Ua± = 1

2 (Ua ± S−1UaS), and similarly for Ub.
We then have

|�〉 = (Ua+ + Ua−)(Ub+ + Ub−)|� ′〉, (C1)

where |� ′〉 = Wβ |�〉. We note that |�〉,|� ′〉 have the same
parity under S since Wβ is even under S. It then follows from

symmetry that

Ua+Ub−|� ′〉 + Ua−Ub+|� ′〉 = 0. (C2)

On the other hand, it is easy to see that the two states
Ua+Ub−|� ′〉,Ua−Ub+|� ′〉 must be orthogonal to one another:

〈� ′|U †
b−U

†
a+Ua−Ub+|� ′〉

= 〈� ′|(U †
a+Ua−)(U †

b−Ub+)|� ′〉
= 〈� ′|U †

a+Ua−|� ′〉〈� ′|U †
b−Ub+|� ′〉 = 0, (C3)

where the second equality follows from the fact that |� ′〉 has
short-range correlations, and the last equality follows from the
fact that |� ′〉 has a definite parity under S. Given that the two
states are orthogonal and sum to zero, both states must vanish:

Ua+Ub−|� ′〉 = Ua−Ub+|� ′〉 = 0. (C4)

Next, we use the fact that |� ′〉 has short-range correlations to
deduce that

0 = 〈� ′|U †
b−U

†
a+Ua+Ub−|� ′〉

= 〈� ′|(U †
a+Ua+)(U †

b−Ub−)|� ′〉
= 〈� ′|(U †

a+Ua+)|�〉〈�|(U †
b−Ub−)|� ′〉. (C5)

Hence, either Ua+|� ′〉 = 0 or Ub−|� ′〉 = 0. In the same
way we can show that either Ua−|� ′〉 = 0 or Ub+|� ′〉 = 0.
There are only two consistent possibilities: Either Ua−|� ′〉 =
Ub−|� ′〉 = 0 or Ua+|� ′〉 = Ub+|� ′〉 = 0. In the first case we
can replace Ua → Ua+,Ub → Ub+ so that both operators are
even under S. Similarly, in the second case, we can replace
Ua → Ua−,Ub → Ub− so that both operators are odd under S.
This establishes the first claim.

We now prove the second claim—that is, that this even
or odd parity is the same for all endpoints a,b. To see this,
let β be a path joining a,b and β ′ be a path joining a with
some other point c. Then, we have UaUbWβ |�〉 = |�〉 and
U ′

aU
′
cWβ ′ |�〉 = |�〉 for some operators Ua,Ub,U

′
a,U

′
c. Now,

by the result above, we know that Ua,Ub have the same parity
and U ′

a,U
′
c have the same parity. Also, it is not hard to see that

U ′
a,Ua have the same parity: In fact, we can always choose

U ′
a = Ua up to a phase factor since Wβ ′ |�〉,Wβ |�〉 have the

same local expectation values near a. It then follows that Ub,U
′
c

also have the same parity under S.
We now repeat this argument for a path β ′′ connecting c

with some other point d, letting U ′′
c U ′′

d Wβ ′′ |�〉 = |�〉. By the
same reasoning, we find that Ua,Ub,U

′′
c ,U ′′

d all have the same
parity under S for arbitrary points a,b,c,d. This establishes
the claim.
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