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We present a local time-correlation function method for real-time calculations of core level x-ray spectra
(RTXS). The approach is implemented in a local orbital basis using a Crank-Nicolson time-evolution algorithm
applied to an extension of the SIESTA code, together with projector augmented wave (PAW) atomic transition matrix
elements. Our RTXS is formally equivalent to �SCF (� self consistent field) Fermi’s golden rule calculations with
a screened core-hole and an effective independent particle approximation. Illustrative calculations are presented
for several molecular and condensed matter systems and found to be in good agreement with experiment. The
method can also be advantageous compared to conventional frequency-space methods.
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I. INTRODUCTION

We present an approach for real-time calculations of x-
ray spectra (RTXS), including x-ray absorption (XAS) and
emission (XES), based on local time-correlation functions.
Formally such correlation functions form the starting point for
the many-body theory of x-ray spectra, e.g., in the classic work
of Nozières and De Dominicis (ND).1 Calculations based on
time-correlation functions can be advantageous both formally
and for practical calculations of many physical properties.2

They have recently been applied to problems ranging from
nonlinear optical response3 to thermal vibrations.4 Neverthe-
less, x-ray spectra for deep core-levels have traditionally been
calculated in frequency space using Fermi’s golden rule.5–8

Calculations of time-dependent response have been of
increasing interest, especially with the advent of high
brightness pulsed x-ray sources.9 One approach to such
calculations is based on time-dependent density functional
theory (TDDFT).10,11 Real-space, real-time implementations
of TDDFT have been developed for both linear and nonlinear
optical responses.3,10 However, these approaches are currently
restricted to the UV-VIS range due to basis set limitations,
the need for very short time steps to treat the x-ray regime and
very long simulation times to account for the valence response.
The many-body formulation based on time-dependent Green’s
functions is particularly useful, e.g., to describe the x-ray
edge singularity.1,12 However, calculations of XAS within the
ND formalism require transient Green’s functions and the
response to the sudden creation and destruction of a core hole,
for which a number of approaches have been proposed.13–15

Nevertheless, edge-singularity effects are most important in
metallic systems near threshold, and are typically suppressed
due to lifetime and other broadening effects.

For the above reasons, we restrict our attention in this paper
to the simpler, limiting case of x-ray response in the presence
of a static, adiabatically screened core-hole. The extension to
dynamical response will be reserved for a subsequent paper.
This initial step is interesting in its own right, since it facilitates
comparison with frequency-domain calculations and is often a
good approximation for molecular and nonmetallic materials.
In particular, this limiting case is equivalent to Fermi’s golden
rule within a �SCF approximation in an effective, independent
particle picture. For XAS, this picture is referred to as the final-
state rule.16 Like Green’s function approaches in frequency

space,17 the time-correlation function method is efficient,
since it avoids the need for explicit sums over occupied
or unoccupied states and depends only on local properties.
Indeed, the approaches are similar and can be related via
time-Fourier transforms. Our approach is implemented using a
real-time extension of the SIESTA code3 with a Crank-Nicolson
time-evolution operator,18 and projector augmented wave
(PAW) transition matrix elements.19 This implementation
results in a practical and generally applicable code that
builds in full-potential electronic structure and self-consistent
core-hole screening. Moreover, for the systems investigated,
the code yields results in as good or better agreement with
experiment than conventional frequency-space methods.

II. FORMALISM

A. Time-correlation function

Assuming that the core- and valence-electron states can
be treated as independent, factorizable subspaces, our starting
point is an expression for the core-level XAS μ(ω) in terms of
a local time-correlation function 〈ψ+(0)|ψ+(t)〉 defined below,

μ(ω) = 1

π
Re

∫ ∞

0
dt eiωtGc(t)〈ψ+(0)|ψ+(t)〉. (1)

The time correlation function characterizes the response to
x-ray excitation via an interaction Hamiltonian (e.g., the dipole
interaction) from a given core-orbital |c〉 with energy εc. Here
Gc(t) = iθ (t) exp[i(εc + i�)t] is the bare core-hole Green’s
function with core-hole lifetime �. The time-evolution of
|ψ+(t)〉 is governed by the single-particle equation of motion:2

i
∂|ψ+〉

∂t
= H′(t)|ψ+(t)〉, (2)

where H′(t) is the dynamic, final-state one-electron Hamil-
tonian in the presence of a core-hole in level |c〉. Here and
elsewhere below, we use atomic units e = h̄ = m = 1, and a
prime denotes the presence of a core hole. For deep core states,
the initial “seed state” |ψ+(0)〉 created by the dipole interaction
d(x) exp(iωt) in XAS is

|ψ+(0)〉 ≡ P |ψ(0)〉 = P d(x)|c〉, (3)

which is localized with respect to the absorption site. Here,
P = 1 − 
occ

k |k〉〈k| is the projector onto the subspace of
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unoccupied valence and continuum states |k〉, i.e., energy
eigenstates of the ground-state Hamiltonian above the Fermi
energy EF . This projection reflects the fact that transitions to
occupied states are excluded in the full many-body treatment
of XAS. For an inhomogeneous system, one must also
average over the chemical shifts for all core-state energy
levels. A typical time correlation function for the dipole
response for the C K-edge XES of benzene is shown in
Fig. 4.

The projectorP can be handled in several ways: (i) one way
is to construct P = 1 − 
occ

k |k〉〈k| explicitly from the initial
occupied Kohn-Sham states |k〉. (ii) A simpler alternative is
to start with an unprojected seed state |ψ(0)〉 = d|c〉. With
this latter choice the restriction to unoccupied states is added
ex post facto through Fourier filtering and the introduction of
an ad hoc factor θ (E − EF ) in Eq. (1), where E = ω + εc.
In practice, the Fermi energy EF is set at midgap between
the occupied and unoccupied states. In this paper, we have
generally used this alternative approach (ii). However, a
potential drawback is that the seed state may contain rapidly
oscillating energy states that require relatively short time steps
to treat accurately.

X-ray emission spectra (XES) can be calculated similarly
from the correlation function 〈ψ−(0)|ψ−(t)〉 and a time-
evolution similar to that in Eq. (2) governed by the initial
state Hamiltonian H(t) (i.e., the initial state rule). Here, the
seed state is |ψ−(0)〉 = Pocc|ψ(0)〉 i.e., with the projector P
replaced by the projector Pocc = 
occ

k |k〉〈k| onto occupied
states below EF . Unless otherwise specified, we will focus
below on the XAS case, with the understanding that the
treatment for XES is similar apart from the treatment of the
core-hole potential and projector P .

A number of many-body effects can be incorporated in
RTXS. For example, intrinsic losses from the dynamical
response to the core-hole can be added subsequently via
convolution with an additional broadening function given
by the Fourier transform of the exponential eC(t), where
the cumulant C(t) can also be obtained from the transient
Green’s function.1,12 Final state lifetime effects due to ex-
trinsic processes and interference effects lead to additional
damping, which here are crudely represented as an additional
exponential decay factor e−γ t . Note that the core-hole lifetime
� as well as the decay of the correlation function serve as
natural convergence factors in the calculation of the XAS,
which limit the maximum time in the evaluation of Eq. (1).
These effects will be considered in more detail in a subsequent
paper.

To evaluate the time-correlation function, we use a fixed,
local, nonorthogonal basis set φj (�x) ≡ |j 〉, as in the SIESTA

code.20 It is also convenient to define dual states 〈j̃ | =

j ′S−1

jj ′ 〈j ′|, where Sjj ′ = 〈j |j ′〉 is the overlap matrix. These
states satisfy the orthogonality relations 〈j̃ |j ′〉 = δjj ′ , and are
also well localized with respect to atomic sites to the extent
the overlap matrix and its inverse are short ranged. In this
local orbital orbital basis, the time-evolved state |ψ(t)〉 can be
expanded as

|ψ(t)〉 =
∑

j

|j 〉cj (t). (4)

At t = 0, the coefficients cj (0) = Mjc are given by quasilocal
transition-matrix elements:

Mjc = 〈j̃ |d|c〉 =
∑
j ′

S−1
jj ′ 〈j |d|c〉. (5)

As noted above, the time evolution of |ψ(t)〉 can be expressed
in terms of the unitary time-evolution operator U (t,0) such
that |ψ(t)〉 = U (t,0)|ψ(0)〉, where

U (t,0) = T exp

[
−i

∫ t

0
dt H′(t)

]
, (6)

and T is the time-ordering operator. Thus the time-correlation
function can be calculated directly using the transition-matrix
elements and the local matrix elements of U:

〈ψ(0)|ψ(t)〉 =
∑
jj ′

〈c|d†|j 〉Ujj ′(t,0)〈j̃ ′|d|c〉. (7)

Calculations starting from |ψ+(0)〉 or |ψ−(0)〉 are similar, and
make use of the same operator U (t,0). Due to the local nature
of the transition-matrix elements 〈j̃ |d|c〉 for deep core-orbitals
|c〉, the sums over orbitals in these basis-set expansions are
limited to a small neighborhood of the core site. Moreover,
since the final-state Hamiltonian is constant during the period
of integration, the calculation of the time-evolution operator is
highly efficient.

In our implementation for RTXS, the time evolution
operator Ujj ′(t,t ′) is evaluated as a product over many small
time-steps � using a Crank-Nicolson algorithm, i.e., cj (t +
�) = ∑

j ′ Ujj ′(t + �,t)cj ′(t), where (in matrix notation) the
differential time-evolution operator is

U(t + �,t) = 1 − iS−1H′(t̄)�/2

1 + iS−1H′(t̄)�/2
, (8)

and t̄ = t + �/2. This approximation is manifestly unitary
and also time reversible to second order in the time interval
�, due to evaluating the operators at the interval midpoint
t̄ . This prescription has been found to be stable for relatively
long-time intervals �. H′(t) is the Hamiltonian of the final state
evaluated in the local basis, which is independent of time over
the region of integration. In XAS, a core hole is created during
the photoelectron excitation while the remaining electrons
relax to provide a screening charge. Thus, in addition to
the Hartree Hamiltonian hH and final-state self-energy 
,
H′(t) includes the screened core-hole potential vch with matrix
elements H ′

jj ′ = 〈j |hH + vch + 
|j ′〉.
In practice, the core-hole effect is introduced by substituting

the neutral pseudopotential of the absorbing atom, with one
that matches the full core-hole potential for the core-state
|c〉. The system is then relaxed self-consistently in SIESTA

in the presence of the core-hole. This produces, in a single
initialization calculation, a Hartree Hamiltonian including
the Coulomb potential obtained from the core-hole relaxed
density, and a local pseudocharge. The resulting Hamiltonian
is used for the subsequent propagation. For XES simulations,
vch is not applicable, and the Hamiltonian matrix elements
used are Hjj ′ = 〈j |hH + 
|j ′〉. Although all matrix elements
of H ′

jj ′ and Sjj ′ are needed in the time evolution, only the local
matrix elements Ujj ′(t,0) for j and j ′ in the neighborhood
of the core-orbital are needed in the calculation of μ(ω). In
practical RTXS calculations, SIESTA is used only to obtain the
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matrix elements of H′ (or H) and S, the Fermi energy EF

and the basis functions φj (�x) needed to construct the atomic
matrix elements. The time-evolution operator matrix elements
are calculated subsequently.

Physically, the Fourier transform of the time-correlation
function can be interpreted as a local density of final, unoccu-
pied electron states ρ+(ω) defined for the state |ψ+〉; i.e., the
levels and amplitudes allowed by the transition operator in the
presence of the core hole,

ρ+(ω) = 1

π‖ψ+‖2
Im

∫ ∞

0
dt eiωt 〈ψ+(0)|ψ+(t)〉, (9)

where ‖ψ+‖2 ≡ 〈ψ+(0)|ψ+(0)〉 is the normalization constant.
For example, for K-shell absorption, the state |ψ+(0)〉 is
a superposition of local atomic-like p orbitals and ρ+(ω)
corresponds to the local final, unoccupied state p DOS,
projected onto those orbitals. Similarly the density ρ−(ω)
corresponds to the density of occupied states of the initial-state
Hamiltonian.

B. Equivalence to Fermi’s golden rule

As noted in the introduction, the time-correlation approach
discussed herein for dipole mediated transitions is equivalent
to Fermi’s golden rule within an effective independent particle
picture and the �SCF approximation. To show this, one may
evaluate the time correlation function formally in terms of the
scattering eigenstates |k′〉 of H ′ calculated in the presence of
a core hole. By expanding in one-particle states and applying
the projector P , we obtain the conventional sum-over-states
expression for the golden rule in the independent particle
approximation:

μ(ω) =
∑
k′

|〈c|d|k′〉|2δ�(E − εk′)θ (E − EF ), (10)

where E = ω + εc and δ� is a δ-like function of unit weight
broadened by the core-hole lifetime �.

Alternatively one can demonstrate the equivalence from a
spectral representation of the time-evolution operator. Given
that the time-Fourier transform of U is proportional to the
one-particle Green’s function G′(E) for the final state, [cf.
Eq. (9)] calculated (for XAS) in the presence of a core-hole,
the XAS from a core level at energy εc is

μ(ω) = − 1

π
Im 〈c|d†P G′(E)Pd|c〉, (11)

which agrees with the formalism in the real-space Green’s
function (RSGF) approach used, e.g., in the FEFF codes.21

Here, G′(E) = [E − H ′ + i�]−1 is the retarded one-particle
Green’s function at energy E = ω + εc, H ′ is the one-
electron Hamiltonian of the final quasiparticle state including a
screened core hole and a final-state self-energy 
, and again P
is the projector onto unoccupied states above the Fermi energy.
Finally, in the limiting case of an empty conduction band
described by Wannier orbitals, this result for μ(ω) reduces to

μ(ω) = |M0c|2ρ ′
00(E), (12)

in agreement with Eq. (41) of Ref. 13. Here, E = εc + ω and
ρ ′

00(E) is the local density of states at the absorption site 0 in
the presence of a core hole.

C. Local projection

In practice, it is computationally useful to simplify the
above by projecting the initial state onto basis functions
centered on the excited atom, when the initial state has a small
overlap with other basis functions. For the systems studied in
this paper, this produces good agreement with other theories
and experiment as long as the projector is applied to the energy
eigenvectors as well. Given a complete set of eigenvectors {|k〉}
with eigenvalues Ek so that |k〉 = ∑

j akj |j 〉, we may expand
the seed state as

|ψ(0)〉 =
∑

j

cj (0)|j 〉 =
∑
k,ij

a∗
kiSij cj (0)|k〉, (13)

and the absorption/emission intensity for a given eigenvalue
Ek as

Wk = |〈k|ψ(0)〉|2 =
∑
ij

|a∗
kiSij cj (0)|2. (14)

Due to the highly localized nature of the core states, the seed
state can be approximated as a local initial state PA|ψ(0)〉,
where PA projects onto the subset of basis set vectors centered
on the excited atom A,

PA =
∑
i∈A

|i〉〈ĩ|. (15)

Within this approximation, the local spectral weight is

WA
k = |〈k|P†

APA|ψ(0)〉|2 =
∑
ij∈A

|a∗
kiSij cj (0)|2, (16)

and the time-correlation function C(t) = 〈ψ(0)|ψ(t)〉 can be
approximated as a local quantity:

CA(t) = 〈ψA(0)|ψA(t)〉, (17)

where

|ψA(t)〉 = U(t,0)P†
APA|ψ(0)〉. (18)

Although this simplification provides only minor performance
improvements, it highlights the local nature of the process
where a photoelectron state is created.

D. Transition matrix elements

To obtain the seed state for the time correlation formalism,
we must first compute the transition matrix elements Mjc in
Eq. (5). These matrix elements involve a core state |c〉, a
local basis function |j 〉, and the dipole interaction d(x) (in
position representation). Since the SIESTA |j 〉 basis functions
are atomic orbitals of the pseudoatom, the core regions must be
reconstructed to find the correct matrix elements.22,23 For this
purpose we use the projector augmented wave (PAW) engine
from the core-level spectroscopy code OCEAN.24

Given an arbitrary all-electron wave function |ψae〉 and
its associated pseudowave |ψps〉, the PAW reconstruction
transformation operator T is defined as

|ψae〉 = T |ψps〉. (19)

Thus the pseudowave {|φi
ps〉} and all-electron basis orbitals

{|φi
ae〉} satisfy the relation∣∣φi

ae

〉 = T
∣∣φi

ps

〉
. (20)
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We may therefore define a projector basis set {〈pi |} that
satisfies 〈pi |φj

ps〉 = δij inside some cutoff rc, to be specified
below; {|φi

ps〉}, {|φi
ae〉}, and {〈pi |} are set to zero outside rc.

This cutoff is chosen so that it satisfies OCEAN’s requirement
that it be large enough that the pseudo- and all-electron wave
functions agree beyond it. Furthermore, we require rc to be
greater than the SIESTA pseudo-wave-function cutoff, beyond
which the basis functions are set to zero.

The PAW reconstruction operator is given formally by

T = 1 + (∣∣φi
ae

〉 − ∣∣φi
ps

〉)〈pi |. (21)

Since |c〉 is well localized within rc, the reconstruction operator
simplifies to T = |φi

ae〉〈pi |. Then the matrix elements may be
expressed as 〈ĩ|T †d|c〉, resulting in the following expression
for the seed state:

|ψps(0)〉 =
∑
i,j

|i〉〈ĩ|pj 〉〈φj
ae

∣∣d|c〉. (22)

It should be noted that the calculation of 〈ĩ|pj 〉 is possible
because we choose rc greater than the |i〉 cutoff. More-
over, the core reconstruction calculation for XAS is done
without a core hole, consistent with the approach described
in Sec. II A.

III. COMPUTATIONAL DETAILS

A. Model systems

To demonstrate the versatility of the RTXS time-correlation
approach, we present illustrative calculations for three rep-
resentative systems: benzene (C6H6), trinitrotoluene (TNT,
C7H5N3O6) and diamond. Benzene (see Fig. 1) is simulated
in its gas phase conformation.25 For TNT we use one of the
symmetry-inequivalent molecules in its crystalline structure
(see Fig. 2).26 We have previously shown27 that this yields
well converged results compared to experiment. Diamond is
modeled using a C47H60 hydrogen-capped cluster, shown in
Fig. 3, generated using the experimental lattice constant of
3.5668 Å and including five carbon shells around a central
absorber. For comparison, diamond calculations were also
performed using periodic boundary conditions (PBC) on a
2 × 2 × 2 supercell of the conventional eight-atom orthogonal
cell with the same lattice constant.

FIG. 1. Gas phase structure of benzene (C6H6) used in the RTXS
and StoBe simulations,25 where C is dark gray and H is white.

FIG. 2. (Color online) Crystalline structure of a single symmetry-
inequivalent molecule of trinitrotoluene (TNT, C7H5N3O6) used in
the RTXS, StoBe, and FEFF simulations, where C is dark gray, H is
white, O is red (light gray), and N is blue (medium gray).

B. RTXS

The RTXS calculations use a SIESTA triple-ζ basis set with
two d-polarization functions on the C, N, and O atoms and two
p-polarization functions on the H atoms (TZDP). The cutoff
radii are set using an energy shift20 of 1 meV, which results in
typical cutoffs of about 5 to 10 Bohr. The SIESTA calculations
also use an auxiliary real-space grid with an equivalent
plane-wave cutoff of 150 Ry. This choice of polarization
functions and cutoff radii ensures a good representation of all
the valence occupied states as well as the valence unoccupied
states up to about 30 eV above threshold. For consistency with
the StoBe simulations described below, all RTXS simulations
used the PBE28 exchange-correlation functional. Typical total
RTXS simulations were carried out to tmax = 5–15 fs, long
enough that modes with frequencies above 0.5–1 eV do not

FIG. 3. Structure of the hydrogen-capped diamond cluster
(C47H60) used in the RTXS, StoBe, and FEFF simulations, where
C is dark gray and H is white. The cluster is generated using the
experimental structure of diamond with lattice constant 3.5668 Å,
and includes five carbon shells around the absorber.
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appear as nonperiodic trends. The typical time steps were
0.01 fs, which accommodate frequencies as high as 50 eV. The
final spectra are shifted to fit experimental peak positions and
broadened to match the experimental broadening. To do this,
first, an exponential damping is added to the raw correlation
such that the correlation is below 0.01 at the end of the time
series; this yields an initial Lorentzian broadening. Second,
Gaussian broadening is added to the Fourier transformed
spectra to match experimental broadening. For XAS, the
Gaussian broadening has a standard deviation σ (E), which
varies with energy:

σ (E) =

⎧⎪⎨
⎪⎩

σmin, E < E1,

σmin + γ (E − E1), E1 � E � E2,

σmin + γ (E2 − E1), E > E2,

(23)

where σmin, E1, E2, and γ depend on the system. For XES, the
Gaussian broadening is constant. This approach is analogous
to that implemented in StoBe.6,29

We use nonrelativistic, kinetic-energy optimized, norm-
conserving pseudopotentials, with and without a core hole.
These are generated with OPIUM,30 using the PBE exchange-
correlation functional. The neutral and core-hole pseudopoten-
tial cutoff radii are equal, except as needed by the introduction
of the core hole. In the systems simulated here, only C and N
atoms are excited. For the N pseudopotential, the reference
configuration is 1s22s22p3 and for C it is 1s22s22p2 or
1s12s22p2, depending on the presence of a core hole. For
carbon without a core hole, the core cutoff radii are 1.40 Bohr
for all l channels. For carbon with a core hole, the cutoff radii
are 1.25 Bohr for all l channels, except the 2p states, which
have a cutoff radius of 1.20 Bohr. For nitrogen without a core
hole, the cutoff radii are 1.25 Bohr for all l channels.

C. StoBe

For comparison, StoBe-deMon simulations were carried
out using the IGLO-III31 basis set for the absorbing atoms,
while the (311/211) ECP StoBe basis set32 was used for all
other atoms except H which used the 6–311 + G set.33 The
Coulomb and exchange correlation potentials were fitted and
expanded over auxiliary basis sets with (NC(s), NC(spd);
NXC(s), NXC(spd)) s and spd-type functions. Auxiliary sets
of (5,2;5,2) quality were used for the C, N, and O atoms, and
of (3,1;3,1) quality for the H atoms. All StoBe-deMon calcu-
lations used the PBE28 exchange-correlation functional. The
XAS6 and XES29 StoBe-deMon calculations use the “frozen-
orbital” approximation with Kohn-Sham single-particle or-
bitals. While the XES simulations use ground-state orbitals,
XAS results were obtained using the transition potential
approximation, a simplification of the Slater’s transition state
core-hole approximation, in which the core spin orbital is
populated with half an electron and the excited half electron
is neglected. This allows obtaining all excited states from one
diagonalization. In contrast, it should be noted that the RTXS
simulations use a full self-consistently screened core hole. For
comparison, we also performed test StoBe calculations using a
full core hole. For the systems studied here we find that, apart
from an energy shift, the half core-hole and full core-hole
spectra are quite similar.

D. FEFF

Additional comparisons were carried out using version 9
of the FEFF code.21 This approach is based on the RSGF
formalism, which includes approximate calculations of many-
body effects including inelastic losses and Debye-Waller
factors. For XAS, the final state is calculated in the presence
of a statically screened core hole, i.e., the final state rule
(FSR); for XES the calculations are done without a core
hole. In many respects, the RSGF approach in FEFF is the
frequency-space analog of the RTXS approach discussed in
this paper. FEFF uses a basis of relativistic, angular-momentum
scattering states |L,R〉 to describe electronic states. Therefore
it is expected to be more accurate than either RTXS and
StoBe at energies high above the edge. However, FEFF’s use
of spherical muffin-tin potentials makes the code less accurate
near the edge. The core-hole potential is obtained using a
self-consistent Dirac-Fock calculation for an atom with an
atomic configuration containing a hole in a given level, e.g.,
1s for the K-shell calculations presented here. Here, we have
used the FEFF9 code with 5-Å clusters for the generation of the
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FIG. 4. (Color online) (Top) Real part of the Fourier filtered
RTXS time correlation function for the C K-edge XES of benzene.
(Bottom) Real-time (RTXS, corresponding to the time correlation
function shown above) and StoBe simulations of the C Kα XES of
benzene gas (C6H6) compared to experiment in film34 and gas phase35

conditions. The gas phase measurement corresponds to electron rather
than photon excitation.
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self-consistent muffin-tin potentials and 9-Å clusters for the
calculations of the full multiple scattering XAS (or XES).

IV. RESULTS

A. Benzene

Given its structural and electronic simplicity, benzene is a
good system to test our approach. The XES autocorrelation
function, shown in Fig. 4, has a relatively simple structure
involving a few timescales. The associated spectrum (also in
Fig. 4), is dominated by three high intensity peaks 4, 6, and
8 eV below threshold, and three low-intensity ones at lower
energies. The width σ is set to 0.7 eV and the spectrum is
shifted by 286.0 eV to match experiment. The high intensity
peaks are associated with clearly visible 0.4–0.6 fs periods
in the autocorrelation function, and are due to emission from
orbitals with symmetry 1e1g (279.8 eV), 3e2g (277.5 eV), and
1b2u/3e1u (276.0 eV).

For comparison, Fig. 4 also shows experimental and StoBe
results. The agreement with StoBe is quite good and serves as a
validation of our methodology. The most noticeable difference
arises for the two most intense peaks. The small difference
in intensity ratio is due mostly to the projection onto local
basis orbitals from the initial state. Both RTXS and StoBe
calculations show good overall agreement with experiment,
and slightly underestimate the splittings in the triplet of intense
peaks.

B. Trinitrotoluene

Trinitrotoluene (TNT) poses a more significant challenge
to the theory due to its complex electronic structure and
multiple absorbing N atoms.27 As for C6H6, we find very good
agreement between RTXS and StoBe (see Fig. 5). For RTXS,
σ was set to 2.0 eV and the spectrum shifted by 407.0 eV to
match the K-shell experiment. Moreover, we also find fairly
good agreement with the RSGF approach in FEFF; however, the
discrepancies are likely due to the use of spherical muffin-tin
potentials in FEFF. As discussed in Ref. 27, the lower intensity
with respect to experiment in the 385–390 eV region is due to
an underestimation of the transition intensities associated with
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FIG. 5. (Color online) Real-time (RTXS), StoBe, and FEFF

simulations of the N Kα XES of trinitrotoluene (TNT, C7H5N3O6)
compared to experiment measured in a film.27

σNC bonds. In general, intensities associated with σ bonds are
more affected by vibrational distortions (not included in our
simulations) than π bonds.

C. Diamond

As a third example we present results for diamond, a
relatively simple yet challenging insulating crystalline solid.
Figure 6 shows the RTXS XES results in comparison with
StoBe calculations and experimental measurement. For RTXS,
σ was set to 1.9 eV and the spectrum is shifted by 285.6 eV to
match experiment. As in the previous examples, the agreement
between RTXS and StoBe is fairly good despite the slightly
different broadening schemes. The RTXS results are also in
very good agreement with experiment, accounting for the
broad 275–283 eV feature, and the small peak at 270 eV.
In RTXS, the broad feature is composed of two peaks at 279.8
and 276.9 eV, with almost equal intensity, and a less intense
peak at 274.7 eV. The two latter peaks form the broad shoulder
at about 275 eV. The overall width of this feature, about 7.9 eV,
corresponds to the occupied valence bandwidth and is in good
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FIG. 6. (Color online) (Top) Real part of the Fourier filtered
RTXS time correlation function for the C K-edge XES of diamond
(simulated using a C47H60 cluster). (Bottom) Real-time (RTXS,
corresponding to the time correlation function shown above) and
StoBe simulations of the C Kα XES of diamond compared to
experiment.36 The RTXS calculations used either a C47H60 cluster
or a 2 × 2 × 2 supercell of the conventional eight-atom orthogonal
cell with periodic boundary conditions (PBC).
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agreement with the experimental width of 7.2 eV. The broad
feature at 270 eV is composed of several low intensity peaks.
Figure 6 also shows the real-time autocorrelation function
associated with the RTXS XES. Given the number of states
involved in the XES, it is not surprising that the correlation
function is quite complex, exhibiting a variety of timescales.
Most noticeable are periods of about 0.5 and 0.4 fs, associated
with the broad 275–283 eV feature, overlaid with shorter
(about 0.2 fs) oscillations associated with the broad feature
at 270 eV.

Our RTXS implementation is currently able to compute
XES spectra using periodic boundary conditions (PBC), i.e.,
with the initial-state Hamiltonian without a core hole. Figure 6
shows a comparison between the C47H60 cluster model and
PBC model, where the PBC calculation used a 2 × 2 × 2
supercell of the conventional eight-atom orthogonal cell. Both
methods give similar results, with the cluster approach being
closer to experiment, in particular in the 270 eV region.

Figure 7 presents the XAS spectra of diamond computed
with RTXS, StoBe, and FEFF, compared to experiment. The
RTXS spectra uses broadening parameters σmin = 0.8 eV,
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FIG. 7. (Color online) (Top) Real part of the Fourier filtered
RTXS time correlation function for the C K-edge XAS of diamond
(simulated using a C47H60 cluster). (Bottom) Real-time (RTXS,
corresponding to the time correlation function shown above), StoBe,
and FEFF simulations of this system vs experiment.37 The RTXS XAS
is calculated with and without a core hole, while StoBe uses a half
core-hole prescription.

E1 = 297.9 eV, E2 = 302.9 eV, and γ = 0.4 eV, using the
notation in Eq. (23), and a shift of 285.7 eV to match
the energies of the experimental peaks. In the near-edge
region (285–310 eV), RTXS is in very good agreement with
experiment, showing better splittings and relative intensities at
292 and 298 eV than either FEFF and StoBe. RTXS also shows
very good agreement in the overall width of the unoccupied
valence band, with a predicted width of 11 eV versus 11.5 eV
observed in the experiment. In the edge region, FEFF has
limitations originating from the use of spherical potentials
that hinder its ability to represent highly directional bonds.
At higher energies (i.e., above 310 eV), RTXS yields worse
agreement than either FEFF or StoBe. This is likely due
to the limitations in the local basis sets—local numerical
atomic orbitals for SIESTA and Gaussian-type orbitals for
StoBe—which only provide a limited representation of the
delocalized states in the continuum. Exploratory calculations
show that with the present basis set, RTXS results begin to
exhibit variations due to the quality of the basis set 30 eV above
threshold. On the other hand FEFF provides the broadest overall
agreement with experiment due to the superior performance
of the RSGF approach at high energies. Figure 7 also shows
the associated autocorrelation function, which is significantly
more complicated than the XES one. Given that the spectrum
is composed of a large number of states, it is difficult to observe
any dominant timescales.

As described in Sec. II A, XAS spectra present an additional
challenge with respect to XES in that an adequate treatment
of the screened core-hole is required. In addition, it appears
that the treatment of core-hole screening is responsible for
much of the difference in diamond absorption spectra between
StoBe and RTXS. Therefore it is interesting to explore the
effect of ignoring the core-hole in the RTXS calculations. As
shown in Fig. 7, we find that the core hole has a noticeable
effect near the edge, increasing the intensity and narrowing
the width of the feature associated with the σ bonds at
292 eV. This reflects the large charge density relaxation and
consequent excitonic enhancement induced by the attractive
core-hole potential on the bond network surrounding the
absorber. At present, our RTXS implementation is limited
to the no core-hole or fully screened (i.e., with SCF-DFT
screening) core-hole approximations. More flexible core-hole
treatments, e.g., using partial core charging, would allow better
comparisons with other methods such as the half core hole used
in StoBe.

V. CONCLUSIONS

We have introduced a real-time approach (RTXS) for
the calculation of XAS and XES based on time-correlation
functions. The approach is equivalent to �SCF Fermi’s golden
rule calculations. The spectra are calculated from the Fourier
transform of the autocorrelation function of the time-evolving
wave function, together with the core-hole Green’s function.
The method is implemented as an extension of our real-time
time-dependent density functional SIESTA code, and includes
PAW transition matrix elements. We have compared RTXS
calculations of XAS and XES with spectra from experiment,
StoBe and FEFF. RTXS and StoBe produce similar emission
spectra, with RTXS slightly closer to experiment in the case of

115107-7



A. J. LEE, F. D. VILA, AND J. J. REHR PHYSICAL REVIEW B 86, 115107 (2012)

diamond. In contrast, notable differences are found between
RTXS and StoBe for XAS. In the case of diamond, RTXS
models the near-edge XAS region more realistically than
either FEFF or StoBe. The improvement compared to FEFF

is likely due to the inclusion of nonspherical potentials, while
differences with StoBe are probably due to the treatment of
core-hole screening.
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19P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
20J. M. Soler, E. Artacho, J. D. Gale, A. Garcı́a, J. Junquera,

P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14,
2745 (2002).

21J. J. Rehr, J. J. Kas, M. P. Prange, A. P. Sorini, Y. Takimoto, and
F. Vila, C. R. Phys. 10, 548 (2009).

22P. E. Blochl, Phys. Rev. B 41, 5414 (1990).
23B. Hetenyi, J. Phys. Chem. 120, 8632 (2004).
24J. Vinson, J. J. Rehr, J. J. Kas, and E. L. Shirley, Phys. Rev. B 83,

115106 (2011).
25G. Herzberg, Electronic Spectra and Electronic Struc-

ture of Polyatomic Molecules (Van Nostrand, New York,
1966).

26W. R. Carper, L. P. Davis, and M. W. Extine, J. Phys. Chem. 86,
459 (1982).

27F. D. Vila, T. Jach, W. T. Elam, J. J. Rehr, and J. D. Denlinger,
J. Phys. Chem. A 115, 3243 (2011).

28J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865
(1996).

29L. Triguero, L. Pettersson, and H. Ågren, J. Phys. Chem. A 102,
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