
PHYSICAL REVIEW B 86, 104507 (2012)

Quantum oscillations in a π-striped superconductor
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Within Bogoliubov–de Gennes theory, a semiclassical approximation is used to study quantum oscillations and
to determine the Fermi surface area associated with these oscillations in a model of a π -striped superconductor,
where the d-wave superconducting order parameter oscillates spatially with period 8 and zero average value.
This system has a nonzero density of particle-hole states at the Fermi energy, which form Landau-like levels in
the presence of a magnetic field B. The Fermi surface is reconstructed via Andreev-Bragg scattering, and the
semiclassical motion is along these Fermi surface sections as well as between them via magnetic breakdown.
Within the approximation, oscillations periodic in 1/B are found in both the positions and widths of the lowest
Landau levels. The area corresponding to these quantum oscillations for intermediate pairing interaction strength
is similar to that reported for experimental measurements in the cuprates. A comparison is made of this theory to
data for quantum oscillations in the specific heat measured by Riggs et al.
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I. INTRODUCTION

The nature of the normal state in the cuprates remains a
mystery after decades of research and exploration. There is
general agreement that these are strongly correlated systems
and considerable evidence for non-Fermi-liquid behavior,
particularly in the low-doping region of the phase diagram,
the so-called pseudogap phase.1,2 There is also evidence
for competing, broken-symmetry phases, including stripe
behavior in the charge and spin density. The possibility of
coexisting or close-by phases suggests that these might be
stabilized by the variation of some external parameter, such as
pressure or magnetic field.

The observation of quantum oscillations in the electrical re-
sistivity of cuprates in 2007 added one more piece to the puzzle
of high-temperature cuprate superconductivity.3 Since then,
quantum oscillations have been observed in other physical
properties and are now a well-established phenomenon in the
cuprates.4–12 The observed quantum oscillations are indicative
of a Fermi surface (FS) with an electron pocket13 with an area
of about 2% of the Brillouin zone (BZ), which is significantly
smaller than the area one would expect from band structure
calculations. A FS reconstruction approach due to some form
of translational symmetry breaking order may explain quantum
oscillations and the small area.14,15 However, there are other
observations that do not agree with the FS reconstruction
approach. One is the ARPES experiments which see only
disconnected sections of FS, the so-called Fermi arcs.16,17

Another observation is the specific heat5 which suggests that
the

√
H dependence of the Sommerfeld coefficient persists

above the resistive transition. This dependence is associated
with d-wave superconductivity. However, its persistence above
Tc is surprising. Furthermore, it was found that the typical FS
reconstruction approach produces a specific heat that is too
large to be consistent with experimental measurements.5

In an earlier study,18 we considered the mixed states of a
π -striped superconducting model where a spatially periodic

d-wave pairing interaction leads to a reconstructed FS.19 This
model has been proposed to explain the 1/8 anomaly which
is observed in some of the lanthanum cuprates.20 Surprisingly,
we found that despite particle-hole mixing, Landau levels
(LLs)—a necessary prerequisite for quantum oscillations—are
formed in the low-energy DOS for values of the pairing
interaction where the spectral function exhibits Fermi arcs.
Additionally, the cyclotron effective mass for this model,
defined based on the LL spacing, was shown to be equal to the
specific-heat effective mass, indicating that FS reconstruction
for a π -striped phase does not necessarily lead to too large
a specific heat. Therefore, with the exception of the

√
H of

the background specific heat, which does not occur in this
model, the properties of the π -striped superconductor that
we calculated were consistent with those of cuprates in the
presence of a magnetic field. However, our earlier study, which
was limited to discrete, well-separated values of magnetic
field, did not allow direct calculation of quantum oscillations
to obtain an area that could be compared to experiment.

In the present study, we employ a semiclassical, approx-
imate method that overcomes the limitations of the previous
study and enables us to make more quantitative comparison
with experiments. This approximation and a detailed analysis
of the behavior as a function of magnetic field, chemical poten-
tial, and pairing strength allow us to connect the area associated
with quantum oscillations directly to the reconstructed FS of
the π -striped superconductor. For a physically plausible value
of the gap amplitude, the quantum oscillation frequency for the
specific heat is found to be close to the experimental value.5

The remainder of this paper is organized as follows. In
Sec. II we briefly review the π -stripe model in zero field and
the Fermi surfaces that result for very small and larger gaps. In
Sec. III, we introduce the approximate semiclassical numerical
method used to study quantum oscillations. Section IV con-
tains a critical discussion of this semiclassical approximation,
comparing the modulated case to previous work on uniform d
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wave and also further elucidating the nature of the “broadened
Landau levels” found in our earlier work.

In Sec. V we discuss the semiclassical picture of Pippard
for motion of electrons in a magnetic field in the presence of
a one-dimensional periodic potential, based on linked orbits
in position space, and generalize this picture to the case of
a periodic pairing potential. Section VI shows the result of
this method for very small values of the pairing interaction
where the shape of the spectral function at zero energy is
close to the unperturbed FS. In Sec. VII, results are shown
for larger values of the pairing interaction where the shape of
the spectral function resembles Fermi arcs. In addition, some
special cases, e.g., half filling and very large gap amplitude,
are examined here in order to facilitate identification of the
orbits. Section VIII shows how quantum oscillations in the
specific heat behave for this model. Finally, the plausibility
and implications of such a superconducting π -striped model
and issues surrounding quantum oscillations in this model are
discussed in Sec. IX.

II. THE π -STRIPE MODEL IN ZERO FIELD

The tight-binding mean-field Hamiltonian21 describing a
model of a two-dimensional π -striped superconductor is given
by

H = H0 +
∑
x,y

�{cos(qxx)[c†x,y↑c
†
x+1,y↓ − c

†
x,y↓c

†
x+1,y↑]

− cos(qx(x−1/2))[c†x,y↑c
†
x,y+1↓− c

†
x,y↓c

†
x,y+1↑] + H.c.},

(1)

where c
†
x,yσ creates an electron with spin σ on site (x,y).

H0 is the kinetic part of the Hamiltonian with only the first-
nearest-neighbor hopping term, t , present. The d-wave-type
order parameter has a periodicity of 2π/qx in the x direction
in position space. Here qx = π/4 corresponds to an 8-site
periodicity of the order parameter.

More details about the model and its dependence on �

are provided in Ref. 18. In addition, we make the following
observations: (1) In momentum space the periodic pairing
potential connects particle states with wave vector k plus an
even multiple of qx to hole states with wave vector −k plus an
odd multiple of qx and vice versa. In other words, these two
sets of particle-hole states are decoupled. This implies that the
Bogoliubov–de Gennes Hamiltonian, which is in principle a
16 × 16 matrix, can be written as two decoupled 8 × 8 blocks.
(2) When plotted in the proper Brillouin zone for this period
8 system, for example −qx/2 < k � qx/2, it is found that the
bands stick together at the zone boundary. This is a result of an
additional symmetry of the Hamiltonian under the operation
of a translation by 4 lattice spacings, combined with taking
� to −�. It is similar to what can happen in the presence of
nonsymorphic space group operations.

In this study, we focus on two ranges of values of �. One is
the range of very small �, � < 0.05, where one can understand
the shape of the FS based on a simple perturbative approach.
The other is the range of intermediate values of �, 0.2 �
� � 0.3. The one-electron spectral function at zero energy
for two such cases is shown in Fig. 1. For � = 0.02, for the
one-particle spectral functions shown in the left-hand panel of

FIG. 1. (Color online) One-particle spectral functions at zero
energy for the period 8 pair density wave system. The left panels
show the spectral weight for adding or removing an electron (or hole)
at E = 0 in the extended BZ while the right panels show the same
spectral weight folded into the reduced BZ and then repeated, which
illustrates the complex shape of the Fermi surface. All panels are at
1/8 doping for (a) � = 0.02 and (b) � = 0.25.

Fig. 1(a), only the small parts of the � = 0 FS near (0,±π )
that are connected by ±qx are gapped out. The right-hand side
of the figure shows the same zero-energy, one-electron spectral
function folded back into the reduced BZ and then repeated
in the kx direction. This locus of nonzero spectral weight at
zero energy illustrates the complex Fermi surface of this pair
density wave (PDW) system for small �.

The shape of the spectral function for � = 0.25, shown in
the left-hand panel of Fig. 1(b), is similar to Fermi arcs. The
corresponding FS is illustrated in the right-hand panel. Other
values of � are also discussed in this paper to illustrate the
evolution of quantum oscillations from one regime to another.

III. SEMICLASSICAL THEORY IN A FIELD:
BdG WITHOUT VORTICES

In our earlier study,18 a magnetic field was incorporated into
the model using the so-called Franz-Tesanovic (FT) singular
gauge transformation,22,23 and the resulting Bogoliubov–de
Gennes (BdG) equations were solved numerically. A re-
quirement of this approach is that one needs to introduce
a bipartite lattice of vortices that are commensurate with
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the superlattice. As a result, the magnetic field can only
be changed in very large steps which makes it impossible
to measure the area associated with quantum oscillations.
In addition, commensuration effects, due specifically to the
assumed perfect order of the vortex lattice, further complicate
the analysis.

In this study, we use a different approach. Consider the
� = 0 case which describes two-dimensional electrons with
tight-binding hopping. To apply a magnetic field to the system,
one introduces magnetic unit cells. The phase of the hopping
term changes by 2π in going around a magnetic unit cell. In
this case, either choice of a square or rectangular unit cell
results in the same DOS spectrum for a given magnetic field
provided the magnetic unit cells have the same number of
sites. Consequently, one can go the limit where the unit cell is
a single row of sites. The advantage of using a row unit cell
is that one can add only one site to a unit cell to proceed to
the next available unit cell size. For a row of length L, the
fractional decrease in the field for adding one site is −1/L. If
one uses a wider, shorter magnetic unit cell, say (L/m) × m

(for L a multiple of m), then the fractional decrease in field
from increasing L/m by one is −m/L. The field increments
are even larger if one maintains a square aspect ratio. Thus
a magnetic unit cell formed by a single line of sites allows
field increments of the smallest fractional size. For the rest
of this paper, we use L to refer to the number of sites in
a magnetic unit cell so that L = 256 could correspond to a
row unit cell of length 256 or a square unit cell with a linear
size l = 16.

In a superconductor, one cannot go to the row limit for a
magnetic unit cell because of the supercurrent field associated
with the vortex lattice. However, if one assumes that the effect
of vortices is negligible, then row unit cells can be used. This
enables us to change the magnetic field in much smaller steps
and eliminates commensuration effects (which are probably
unrealistic for the cuprates), allowing us to study quantum
oscillations and determine their frequencies, which can then
be associated with orbits in k space. We will refer to the
approximation of neglecting the superfluid velocity as the
semiclassical approximation or the no-vortex case.

In order to formulate this approximation more explicitly,
we consider how vortices enter into the BdG Hamiltonian,
starting from the BdG Hamiltonian in a magnetic field:

H =
⎛
⎝ −t

∑
δ
e−iAδ (r)ŝδ − μ

∑
δ
�δe

iφ(r)/2ŝδe
iφ(r)/2

∑
δ
�δe

−iφ(r)/2ŝδe
−iφ(r)/2 t

∑
δ
eiAδ (r)ŝδ + μ

⎞
⎠,

(2)

where ŝδ is defined as the operator, ŝδu(r) = u(r + δ). For
a model of a π -striped superconductor, the space-dependent
pairing interaction is �δ = � cos (qx(x − 1/2 ± 1/2)) if δ =
±x̂ and �δ = −� cos (qx(x − 1/2)) if δ = ±ŷ. Aδ(r) =
e
h̄c

∫ r+δ

r
A(r)dr where A(r) is the vector potential associated

with the magnetic field, and φ(r) is the phase of the order
parameter on site r . To eliminate the phase of the order param-
eter, we apply the following singular gauge transformation:

U =
(

eiφ(r) 0

0 1

)
, (3)

which is a single-valued transformation.24 This yields

H =
⎛
⎝−t

∑
δ
e−i[Aδ (r)−∇φδ (r)]ŝδ − μ

∑
δ
�δe

i∇φδ (r)/2ŝδ∑
δ
�δe

i∇φδ (r)/2ŝδ t
∑

δ
eiAδ (r)ŝδ + μ

⎞
⎠,

(4)

where ∇φδ(r) = φ(r + δ) − φ(r). Now using the definition
of the superfluid velocity, we can write the Hamiltonian as
follows:⎛
⎝−t

∑
δ
ei[Aδ (r)+2vδ

s (r)]ŝδ − μ
∑

δ
�δe

i[Aδ (r)+vδ
s (r)]ŝδ∑

δ
�δe

i[Aδ(r)+vδ
s (r)]ŝδ t

∑
δ
eiAδ (r)ŝδ + μ

⎞
⎠, (5)

where mvδ
s (r) = h̄∇φδ(r)/2 − e/cAδ(r).

We note that although Eq. (5) was derived using the
Anderson gauge, essentially the same result can easily be
derived in the FT gauge because the superfluid velocity is
gauge invariant. The only difference is that for the FT gauge,
the vector potential, Aδ(r) in Eq. (5), is replaced by −vB

δ (r),
the superfluid velocity field of the B vortices, which in the
usual form of the FT Hamiltonian acts only on the holes.

If the effect of vortices is negligible, one can set vδ
s (r) = 0

in the BdG Hamiltonian and work with a row magnetic unit
cell. In the following sections, we apply this approximation
and compare the results to that of the full BdG equations with
vortices to check whether the approximation is useful.

The length of a row unit cell, which is spanned in the x

direction, is given by L = 8m where m is an integer. The
magnetic field associated with a unit cell L lattice constants
long is B = φ0/La2 where a is the lattice spacing. The number
of magnetic unit cells in the x direction can be taken to be only
one because adding more unit cells in the x direction results
in the same DOS spectrum. However, the number of unit cells
in the y direction, N , must be large to give a well-defined
DOS. Using Bloch’s theorem, one needs to diagonalize N

BdG matrices with linear size 2L so that the total number of
positive-energy states is NL. These properties of the spectra
and the broadened Landau levels that result are discussed in
more detail in the next section.

IV. CRITIQUE OF THE SEMICLASSICAL
APPROXIMATION

The electronic states of a d-wave superconductor in the
presence of a perpendicular magnetic field have been the
subject of intense theoretical scrutiny as well as some contro-
versy. Early on, it was suggested by Gor’kov and Schrieffer25

and by Anderson24 that the spectrum in a magnetic field
consisted of Landau levels with energies ±h̄ωH

√
n where n

is a positive integer and ωH = √
2ωc�/h̄, where ωc is the

cyclotron frequency and � is the maximum gap,26 which is
essentially the result for an anisotropic Dirac cone. A key
step in obtaining this result is the neglect of the superfluid
velocity due to vortices compared to the vector potential A.
However, it was soon shown by Mel’nikov27 that the superfluid
velocity is a strong perturbation for this problem, and not long
afterward Franz and Tesanovic23 developed a solution which
treated the superfluid velocity field and the vector potential
on an equal footing. These were expressed in terms of two
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superfluid velocity fields, one interacting with electrons and
the other with holes. The problem reduces to that of Dirac
quasiparticles in the presence of an effective scalar potential
and a vector potential corresponding to zero average magnetic
field, and the solutions can be expressed in terms of Bloch
functions. The resulting quasiparticle spectra are gapless and
bandlike, although Landau levels appear at high energies, well
above the scale of the gap.22,27

Vafek et al.22 give an elegant expression for the continuum
Hamiltonian near a single node in the FT gauge:

HN = vF (px + ax)τ3 + v�(py + ay)τ1 + mvF vsx, (6)

where τi are Pauli matrices, 2a = m(vA
s − vB

s ), and 2vs =
vA

s + vB
s . This expression shows that the difference of the

superfluid velocities associated with the vortices on the two
sublattices in the FT gauge, the so-called Berry gauge field,
acts like a vector potential coupled minimally to the momenta
of the Dirac quasiparticles, while the superfluid velocity enters
as a scalar potential. This symmetry of the Hamiltonian results
in the spectrum of d-wave quasiparticles in a magnetic field
remaining gapless.

We have reviewed the properties of a uniform d-wave
superconductor in a magnetic field in such detail in order
to emphasize the differences between that problem and the
one treated in this paper and in our earlier work.18 The main
difference is that the π -striped superconductor in zero field
does not have nodal points at EF with Dirac-like excitations.
Instead it has extended regions of Fermi surface which persist
in the presence of an off-diagonal potential that couples
electron states at k and hole states at −k ± q and which gaps
only parts of the Fermi surface. Furthermore, for not very large
pairing gap amplitude, it is as if v� in Eq. (6) is essentially zero
over most of the Fermi arcs. We also find that for these gap
amplitudes, the u’s and the v’s, the Bogoliubov quasiparticle
amplitudes, jump sharply upon crossing the FS (see Fig. 6 of
Baruch and Orgad21), as they do for a normal metal, rather
than varying smoothly as they do away from a Dirac point.
These features of the π -striped superconductor lead to very
different behavior in a magnetic field from that of a uniform
d-wave superconductor.

Our earlier work demonstrated that the low-energy excita-
tion spectra of the π -stripe phase in a magnetic field consists of
broadened but well-defined Landau-like levels, with spacings
that are linear in magnetic field, for certain ranges of gap
amplitude.18 Specifically we found that weakly perturbed
Landau levels are observed for 0 < � � 0.07. In this range
an electron LL is accompanied by a small reflected hole peak
and vice versa. For 0.07 � � � 0.13 and 1/8 doping, Landau
levels are not observed, possibly because they are broadened
or closely spaced because of sharp structure in the low-energy
density of states for this range of �. (See Fig. 2 of Zelli
et al.18) For 0.14 � � � 0.3, Landau levels reappear, but in
this region their amplitude is approximately equal, above and
below E = 0. Distinct Landau levels are not observed for
gap values larger than � ≈ 0.35, where the Fermi surface
resembles disconnected asymmetrical figure eights.

The above discussion applies to the full BdG equations
for a π -striped superconductor, assuming a square arrange-
ment of vortices positioned on the gap nodes, although the
equilibrium arrangement of vortices (and consequently the

equilibrium superfluid velocities) for this system has not yet
been determined. What can we say about the validity of the
approximation of neglecting the superfluid velocity in Eq. (5)?
First we note that the semiclassical calculation gives broadened
Landau levels for all nonzero values of the modulated gap
amplitude, unlike the full BdG equations. It also gives sharp
Landau levels in the limit when the gap goes to zero which
connect continuously to the weakly broadened levels for small
gap. One measure of the domain of validity of the semiclassical
approximation is how well the broadened Landau level spectra
agree with the density of states for the exact calculation when
the superfluid velocity is included. As we shall see below, for
small � the semiclassical result does a good job of modeling
weakly perturbed Landau levels. Furthermore, for the range
of larger values of � that we expect to be relevant to the
cuprates, 0.14 � � � 0.3, the semiclassical approximation
also agrees well with the exact spectrum (except for lattice
commensurability effects near E = 0 which will be discussed
below). Since quantum oscillations arise from the presence of
broadened Landau levels in the semiclassical approximation,
we expect this approximation to be valid in parameter ranges
where the exact calculation also exhibits Landau levels.
Conversely, if broadened Landau levels are not present in the
full BdG calculation, then the semiclassical approximation is
not applicable.

To further test the validity of the above arguments, we
have calculated the band structure of the excitations for the
system with and without vortices for the case � = 0.25
and μ = −0.3, using the FT gauge, for a magnetic field
corresponding to L = 256, along the directions Y → 	 → X

in the magnetic BZ. For the semiclassical approximation,
Fig. 2(a), the bands are flat along 	 → X due the symmetry
of the magnetic translation group. Dispersion arises along
the Y direction, resulting in one-dimensional density of states
peaks. To understand the dispersion along ky for vs = 0 we
refer to the continuum picture where, in Landau gauge, the
wave functions are plane waves of wave vector ky along y and

FIG. 2. (Color online) Low-lying energy levels for, from top to
bottom, modulated d wave ignoring the effects of vortices, modulated
d wave including the effects of vortices, and uniform d wave including
the effects of vortices. Here � = 0.25, μ = −0.3, and L = 256.
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localized in x around a position x0 ∼ ky . In the presence of a
spatially varying potential and a perpendicular magnetic field,
electrons move along equipotentials. For a potential modulated
along x, this motion is along y, at a position and energy that
depend on ky . This provides an interpretation of the meaning
of “broadened Landau levels.” The broadening is due to the
different ways that a Landau level wave function averages
over the periodic (pairing) potential, depending on its position
with respect to the modulation. Comparing Figs. 2(a) (without
vortices) and 2(b) (with vortices), we see that band structure
is relatively insensitive to the effect of vortices for these
parameters. Nevertheless it is clear that the broadened Landau
levels are further broadened and shifted by the vortices. To
complete this analysis, we also show, in Fig. 2(c), the energy
bands for a uniform d-wave gap of the same magnitude, with
vortices and with the same chemical potential and magnetic
field. There is no hint of broadened Landau levels for this
case. Although not shown in Fig. 2, the semiclassical result
for uniform d wave, neglecting vs , is perfectly flat bands, at
energies scaling approximately as ±E1

√
n for n = 0,1,2, . . . .

For the parameters of Fig. 2(c), E1 ≈ 0.31, confirming that vs

is indeed a strong perturbation for uniform d wave.
One might wonder why LLs should exist in a supercon-

ductor, particularly close to EF where electrons and holes
can mix and quasiparticles need not have a definite charge.
First, we note that these LLs are different from the sharp
LLs of the normal state or Dirac-like LLs in graphene. In our
earlier work,18 we showed that there is a periodic structure
of peaks in the low-energy DOS, with spacing proportional
to B, where the sum of the number of states under the two
peaks related by reflection about E = 0 is equal to two times
the degeneracy of one LL. We called these peaks Landau
levels. Second LLs are not observed for � > 0.35, where there
is noticeable particle-hole mixing on the Fermi surface, i.e.,
where the u’s and v’s differ noticeably from 0 or 1 on either
side of the Fermi surface. LLs are only observed for values of
� where the quasiparticle charge close to the FS is effectively
quantized as either e or −e. This is illustrated in Fig. 3 where
the electron occupation number, n(k), is shown in the reduced
Brillouin zone for the case of � = 0.25 and compared to n(k)
in the normal metal, � = 0, as well as the case of a charge
density wave (CDW). The CDW parameters have been chosen
to give a FS which closely resembles that of the PDW at
� = 0.25. The Fermi surfaces for these three cases are shown
in Fig. 4.

For intermediate � [as in Fig. 1(b)], the parts of the FS
that are affected to first order in the pairing potential term are
gapped out. At the edge of the Fermi arcs, the rounded Fermi
surface sections are controlled by �2 terms which act like a
normal potential. The small gaps within Fermi arcs are due
to �3 terms which cause particle-hole mixing. In Figs. 4(b)
and 4(c), we compare the FS of a π -striped superconductor
(PDW) with � = 0.25 to that of a CDW with V = 0.7. The
small �3 gaps can be seen in the center of Fig. 4(b) and
are absent in Fig. 4(c). Since, even for intermediate � (e.g.,
� = 0.25), �3 is very small, the region with particle-hole
mixing in Fig. 4(b) is also small. Consequently the Fermi
surface topology and n(k) near the Fermi surface are almost
the same for the cases of a PDW and a CDW in Figs. 3 and
4. However, as shown in Fig. 5, the PDW supports broadened

FIG. 3. (Color online) The occupation function in the reduced
BZ for 3 cases from left to right: (a) � = 0, V = 0, and μ = −0.23;
(b) � = 0.25, V = 0, and μ = −0.3; (c) � = 0, V = 0.7, and μ =
−0.05. V is the magnitude of the interactions in CDW with periodicity
of 4 sites. The reduced BZ for the CDW spans from 0 to π/2. Here,
however, we have folded its FS once for easier comparison to the
π -striped superconductor.

LLs whereas the CDW does not. No LLs are expected for the
CDW case as the Fermi surface consists of open orbits. These
results imply that the �3 Andreev scattering is essential to the
formation of broadened LLs in the PDW case. Since the �3

Andreev scattering gives rise to closed orbits, albeit closed
orbits which are partly electron-like and partly hole-like, it
seems natural to consider the possibility that these closed orbits
are responsible for the broadened LLs.28,29 If so, do they also
support quantum oscillations with a frequency related to their
area? This is the question that our semiclassical approximation
addresses.

FIG. 4. (Color online) FS for 3 cases from left to right: (a) � =
0, V = 0, and μ = −0.23; (b) � = 0.25, V = 0, and μ = −0.3;
(c) � = 0, V = 0.7, and μ = −0.05. V is the magnitude of the
interactions in CDW with periodicity of 4 sites. The reduced BZ for
the CDW spans from 0 to π/2. Here, however, we have folded its FS
once for easier comparison to the π -striped superconductor.
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FIG. 5. (Color online) Low-energy DOS in the presence of a
magnetic field of L = 1024 for 3 cases: (a) � = 0, V = 0, and μ =
−0.23; (b) � = 0.25, V = 0, and μ = −0.3; (c) � = 0, V = 0.7,
and μ = −0.05.

V. PIPPARD’S SEMICLASSICAL PICTURE

It will be useful for understanding quantum oscillations
for the π -striped superconductor in a magnetic field to first
consider a more traditional semiclassical picture of the effect
of a magnetic field on the motion of electrons in a 2D layer.
For simplicity we start with a circular FS. The presence of a
weak periodic potential causes gaps in the FS segments which
reconstruct in the reduced BZ, leading to more complicated
orbital motions. This will be the case both for periodic
potentials and for periodic pairing potentials. The analysis
is particularly straightforward for the case of weak periodic
potentials.

To understand these motions, we follow a simple picture
due to Pippard.30 Pippard introduced the concept of linked
orbits where a network of coupled orbits in position space
is used to provide a simple and plausible picture of the
perturbation of circular electron orbits. This is pictured in
Fig. 6(a), where circular orbits are displaced by the spatial
period of the potential. Due to the periodic potential, particles
can Bragg scatter from one orbit to another. This results in
electron pockets, such as the shaded region, where electrons
Bragg scatter twice going around an orbit, with open orbits
on either side. For free electrons, the trajectory in k space has
the same form as the trajectory in real space, rotated by π/2.
The shaded area in Fig. 6(a) is (h̄c/eH )2Ab corresponding to
a small electron pocket where, in Pippard’s notation, Ab is the
corresponding area in k space. For weak periodic potentials and
strong magnetic fields, tunneling through the gaps (magnetic
breakdown) is highly probable, and the electron motion can
also follow the original circular orbit with k-space area AT in
Pippard’s notation.

Next we consider what happens for a weak periodic
superconducting pairing potential, for which the possible
orbits are shown in Fig. 6(b). Again, for the case of a weak
pairing potential and a strong magnetic field, it is possible for
electrons or holes to tunnel through gaps at points B, C, G,
and I, following the original cyclotron orbit. For the simplest
process involving the periodic pairing potential, a particle
could start at the blue X below point C, tunnel at points G
and I through section H, and Andreev scatter into a hole at
point B, pass point F and Andreev scatter back into a particle

FIG. 6. (Color online) Semiclassical motion of a nearly free
particle system in the presence of a weak periodic potential (a) and
a weak periodic superconducting pairing potential [(b) and (c)]. The
direction of the semiclassical motion for particles is shown by black
arrows. Holes (shown by red arrows) precess in the opposite direction.
The gray area in the center figure is (h̄c/eH )2(AT − Ab) where Ab

is the area of the small electron pocket in panel (a) and AT is the
area of the original circular FS. Starting from the blue cross in panel
(b), the particle can either go over the whole unperturbed circular
orbit by tunneling at points G, I, B, and C, or tunnel only at points
G and I and Andreev scatter twice at points B and C covering the
gray area. Another possible path is to Andreev scatter at points G
and I and tunnel at points B and C. However, this path covers the
same gray area. The change in the phase of the wave function is
h̄cAT /eH when the particle goes over the whole circular circuit and
h̄c(AT − Ab)/eH + β when it travels around the shaded area, where
β is the phase shift due to two consecutive Andreev scatterings and
is assumed to be relatively field independent. This behavior should
be contrasted to that of the linked orbit of Pippard, shown on the
left, where the particles orbit around the areas AT and Ab. Thus, as
discussed in the text, the areas associated with quantum oscillations
in the width of the first LL are different for the periodic potential
and the periodic pairing models. Panel (c) shows the closed orbit
corresponding to four successive Andreev-Bragg scatterings.

at point C. In the first case, the increment in the phase of the
wave function is h̄cAT /eH , corresponding to the original FS
area. In the second case it is h̄c(AT − Ab)/eH + β, where β

is a phase shift due to two consecutive Andreev scatterings
and is assumed to be relatively field independent. Note that
it is equally possible for the particle to Andreev scatter at
points G and I and tunnel at points B and C, and this path
covers the same area as in the second case.30 The probability
of undergoing 4 consecutive Andreev reflections (at points B,
C, G, and I), corresponding to an area AT − 2Ab and shown
in panel (c), is small for small � as is discussed further below.

For fixed chemical potential, AT and Ab are fixed. As a re-
sult, the phase of the wave function due to different trajectories
changes as H is varied. The relative change of the phase due
to the two trajectories described above is δφ = h̄Ab/eH − β.
The broadening of a LL will be minimal when δφ is an integral
multiple of 2π . The frequency of this occurring and hence
the broadening of the LL is then proportional to Ab as the
magnetic field varies. We will demonstrate below that this
is what happens for a striped superconductor. Note that the
argument above is not dependent on the symmetry of the order
parameter. In fact, for an oscillating s-wave order parameter,
the frequency of broadening corresponds to the same area. We
also note that this relationship between the phase along the
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trajectories and the magnetic field could break down when the
effects of superfluid flow are included.31

In his original work, Pippard applied this argument to the
broadening of LLs for a real periodic potential. In this case,
it is the interference between the phase shift around the small
electron pocket in Fig. 6(a) and that of the original FS that
leads to broadening of Landau levels, and the relative phase
is δφ = h̄c(AT − Ab)/eH − β ′, where β ′ is the phase shift
due to two consecutive Bragg scatterings. We have confirmed
through numerical calculations for our model in the normal
state with a period 8 site potential that AT − Ab is the area
associated with the oscillations in the width of the first LL.

VI. RESULTS FOR SMALL �

For small values of �, the effect of the pairing interaction
is to induce small gaps in the closed � = 0 FS as shown in
Fig. 1(a). For these values, numerical results with and without
vortices result in similar low-energy DOS as shown in Fig. 7
for � = 0.02 and L = 256 at 1/8 doping. The energy bands,
shown for positive energy along Y → 	 → X in Fig. 8, look
similar for the cases with and without vortices and both are
similar to the Landau level structure observed for � = 0. Note
that the bands for both cases, with and without vortices, shift
in the same direction from the � = 0 Landau level energies.

At first, it seems that the only effect of the small pairing
potential is to partially reflect each unperturbed LL to the
other side of the Fermi energy. This suggests that the area
associated with quantum oscillations should remain the large
closed FS area for � = 0. However, as we have seen, this is not
the whole story. It also happens that interference between the
original FS area and another orbit induced by the potential
leads to LL broadening which oscillates as a function of
magnetic field. The widths of the Landau levels near the
Fermi energy affect the low-temperature properties of the
system and, consequently, their dependence on magnetic field
is expected to be experimentally observable. In the discussion
which follows, we focus on the LL closest to the Fermi energy
and measure its width and its position relative to the Fermi
energy. We refer to this LL as the first LL. Here, we define the
width to be the difference between the low and high energy
ends of a LL feature in the DOS spectrum (see the inset of

FIG. 7. (Color online) Comparison of the low-energy DOS of
a π -striped superconductor with � = 0.02 and μ = −0.23 in the
presence of a magnetic field of L = 256 with and without vortices,
as described in the text.

FIG. 8. (Color online) Comparison of the low-energy bands for
the BdG Hamiltonian of a π -striped superconductor with � = 0.02
and μ = −0.23 in the presence of a magnetic field of L = 256. The
solid curves are the bands for the full BdG Hamiltonian, including
vortices. The dashed curves are the semiclassical results for no
vortices, and the flat lines (dash-dotted lines) are the Landau levels
in the limit � = 0.

Fig. 9). By choosing a large system size N in the y direction
and sufficiently small energy intervals for the DOS calculation,
the width of a LL can be calculated with precision.

The width of the first LL as a function of 1/B is shown
in Fig. 9 for � = 0.02 and μ = −0.23, corresponding to 1/8
doping. As expected, the width shows an oscillatory behavior.
We have argued that the frequency of these oscillations should
be related to the differences in areas of FS orbits.

Figure 10 shows the power spectrum associated with
oscillations in the width of the first LL for � = 0.02 and
μ = −0.23. The x axis has been rescaled to correspond to
area in units of the area of the BZ. The peak in the power
spectrum associated with oscillations in the width occurs at
an area of about 0.0845. Note that since a minimum of 8 sites
must be added to a magnetic unit cell in changing B, one
cannot directly measure periods of oscillations in L ∝ 1/B

FIG. 9. (Color online) The width of the LL closest to E = 0 as
a function of 1/B or L for � = 0.02 and μ = −0.23, corresponding
to 1/8 doping. 1/B is written in terms of the lattice constant a and
flux quantum φ0. The solid line is a spline fit to the data that shows
the oscillatory behavior more clearly. The inset shows the first LL for
L = 256.
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FIG. 10. (Color online) Power spectrum associated with the
oscillations of the width and position of the first LL for � = 0.02
at 1/8 doping. The x axis is rescaled so that it corresponds to area in
units of the area of BZ.

that are smaller than 8. This means that the area measured by
the power spectrum analysis is, in fact, an area modulo 1/8.

What do we expect for the FS area corresponding to the
frequency of oscillation in the width of the lowest lying LL
for this period 8 system? Comparing Figs. 1(a) and 6(b), we
look for the FS trajectory in the former that involves two
Andreev-Bragg scatterings and two places where tunneling
occurs across a gap. This orbit has the boomerang-like shape
shown in Fig. 11(a) and corresponds to the FS area that we have
called AT − Ab. Then the area Ab is the difference between
that of the boomerang and that of the original FS as shown in
Fig. 11(b). This latter area is considerably larger than the value
0.0845 found in the power spectrum of the width in Fig. 10.
Its value is equal to 0.0845 + 2/8 = 0.3345. To confirm the
relation between oscillations in the width versus 1/B and the
area Ab, we measure these oscillations for different values of
μ and see that they track the variation of Ab with μ as shown
in Fig. 12. All of the data points in Fig. 12 were obtained by
adding 2/8 to the position of the peak in the power spectrum
of oscillations in the LL width.

Next we consider oscillations in the position of the first LL.
Since the shape of a LL is not symmetric around its position,
we define the position of a LL to be the energy at which
there are equal numbers of states on both sides. Interestingly,
we find that two peaks appear in the power spectrum of the
position as shown in Fig. 10. The peak on the left corresponds
to the � = 0 FS area, AT , as expected. For this case one

FIG. 11. (a) Boomerang-shaped FS orbit involving two Andreev-
Bragg scatterings and two tunnelings, as shown schematically in
Fig. 6(b), but for a period 8 modulation. The area of this orbit is
denoted AT − Ab in the text. (b) The corresponding area Ab. (c) The
area 2Ab − AT , corresponding to the difference of figures (a) and (b).
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FIG. 12. (Color online) Comparison of the geometrical area Ab

and the area associated with quantum oscillations in the width of the
first LL for � = 0.02 vs μ in the region around 1/8 doping.

must add 3/8 to the measured value to obtain the actual value
of the area. The relevant peak in Fig. 10 occurs at around
0.0625 which gives 0.0625 + 3/8 = 0.4375 for the area of the
original FS, corresponding to a density of 0.4375 × 2 = 0.875
electrons per site, as expected for 1/8 doping. The other peak of
the power spectrum of position oscillations is associated with
AT − Ab, the area of the boomerang. From the determinations
of Ab and AT given above, one expects this peak to occur
at 0.4375 − 0.3345 = 0.103 in agreement with the position
of the right-hand peak in Fig. 10. The relationship is also
confirmed in Fig. 13 where the position in the power spectrum
and the geometrical value of AT − Ab are compared as μ is
varied. The picture that emerges is one in which the particles
spend part of the time orbiting the original FS and part going
around the boomerang-shaped surface.

However, once again, this is not the whole story. We should
look for oscillations in the position spectrum due to the orbit
shown in Fig. 6(c), involving four Andreev-Bragg scatterings,
which is shown for the period 8 system in Fig. 11(c). This
feature is expected to be weak for � = 0.02 and to occur at
2Ab − AT = 0.2315. Subtracting 1/8, we expect a small peak
in the position spectrum at 0.1065, which is barely visible in
Fig. 10. In order to check whether this feature is real or just
an artifact, we vary the value of �. The results are shown
in Fig. 14 for � = 0.01, 0.02, and 0.03. As expected, the
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FIG. 13. (Color online) Comparison of the geometrical area,
AT − Ab, the boomerang-shaped area in Fig. 11(a), and the area asso-
ciated with oscillations in the position of the first LL, corresponding
to the highest frequency peak in Fig. 10, shown as a function of μ.
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FIG. 14. (Color online) Power spectrum for oscillations of the
position of the lowest LL for small values of the pairing potential
amplitude, �. As discussed in the text, the peak at 0.0625 corresponds
to the area AT , the original FS. The peak at 0.103 corresponds to
AT − Ab, the boomerang-shaped area shown in Fig. 11(a), while the
feature at 0.1065 corresponds to the orbit with area 2Ab − AT , shown
in Fig. 11(c).

magnetic breakdown peak at 0.0625 drops precipitously with
increasing � while the “boomerang” peak at 0.103 grows and
the peak at 0.1065 due to the closed orbit grows more rapidly.

VII. INTERMEDIATE AND LARGE �

In this section, we consider larger values of �, specifically
the range 0.15 � � � 0.6. For this range, the FS is rather
different from the case when � is very small. The difference
is illustrated in the right-hand panels of Fig. 1. When � is
small, the FS of Fig. 1(a), constructed by repeated translations
of the FS of the first BZ, consists of overlapping shapes of the
type shown in Fig. 11(c). On the other hand, for � = 0.25,
the FS in the right-hand panel of Fig. 1(b) consists, to a
first approximation, of interwoven open orbits, four each for
positive and negative values of ky . In fact, although it is difficult
to see in Fig. 1(b), there are small gaps in these FS sections
wherever two of them cross. These gaps are vanishingly small
for � ≈ 0.15 and increase with increasing �. For larger
values of �, 0.4 � � � 0.6, the FS sections resemble rows of
hour-glass-shaped figures as will be shown below. We note
that for these larger value of �, closed orbits result from
Andreev-Bragg scattering at, and tunneling across, the small
FS gaps and, as we shall see, lead to quantum oscillations.
These oscillations all correspond to areas less than 1/8 of the
BZ, and hence the fact that the FS areas that we calculate by
the semiclassical method are only defined modulo 1/8 of the
BZ is not important when � is large.

Before proceeding further, we verify that the method works,
at least for intermediate �, by comparing results for the
density of states of the semiclassical case to that of the exact
BdG method with vortices. It is found that the two cases
are in qualitative agreement, as shown in Fig. 15 for the
low-energy DOS for � = 0.25 and μ = −0.3 corresponding
to 1/8 doping. This reinforces the earlier comparison of the
energy bands along Y → 	 → X, for these parameters, which
was shown in Fig. 2. Note that the nonzero DOS at E = 0 for
the case with vortices is a commensurability effect which is
absent for the case without vortices. Also note that agreement

FIG. 15. (Color online) Comparison of the low-energy DOS of
a π -striped superconductor in the presence of a magnetic field of
L = 1024 with � = 0.25 and μ = −0.3 corresponding to 1/8 doping
with and without vortices.

between calculations with and without vortices is not found
for large values of � > 0.35, since it was shown in Fig. 9 of
our earlier work18 that LLs are not found for the exact BdG
calculation in that regime.

Next we study how quantum oscillations behave for the
cases of intermediate and large � within the semiclassical
approximation. As in the small � case, one can measure the
width and position of the peak closest to the Fermi energy.
Here, the results are discussed in two subsections, at half filling
and around 1

8 doping. We consider a large range of �, including
where the semiclassical approximation is not valid, because
this analysis is helpful for identifying which Fermi surface
trajectories are responsible for the observed frequencies, and it
can be extrapolated to intermediate � where the approximation
is reliable.

A. Half filling

For μ = 0, the points at the centers of the Fermi arcs, which
occur at ky = ±π/2, are gapless. In addition, for this special
case of μ = 0, the FS arcs for ky > 0 (ky < 0) are symmetric
under reflection across the line ky = π/2 (ky = −π/2).

Figure 16 shows the low-energy DOS for � = 0.4 at half
filling in the presence of a magnetic field of L = 800. Each
peak has twice the degeneracy of a LL and is, in fact, composed
of two Landau levels that touch. To see this, it is only necessary

FIG. 16. (Color online) The low-energy DOS for � = 0.4 and
L = 800 at half filling. Each (double) peak has twice the degeneracy
of a LL.
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FIG. 17. (Color online) Half width of the peak closest to E = 0
for different values of � at half filling. The Fermi surfaces for two of
the � values in this figure are shown in Fig. 18.

to turn on a small negative chemical potential which creates a
small gap at the center of the peak. This merging of pairs of
Landau levels does not occur in the case with vortices, where
the Landau levels are resolved even at half filling.

Figure 17 shows the width of the first peak as a function
of 1/B for several values of � at half filling. The two most
conspicuous features of this figure are a smooth background
which decreases for decreasing B and increasing � and
oscillations which become more prominent for larger � and
whose amplitude tends to decrease for decreasing B.

The behavior of Fig. 17 can be understood by comparing
the left and right panels of Fig. 18. The right-hand panel, for
� = 0.4, shows a line of figure-eight-shaped Fermi surfaces
which are separated by gaps in k space, in contrast to the
left-hand panel, for � = 0.2, which appears to show a set of
four interwoven open orbits. Closer scrutiny shows that the
apparently continuous lines in the left-hand panel have small
gaps at avoided crossings. At high fields, magnetic breakdown
causes tunneling across these gaps along the open orbits.
Alternatively, four successive Andreev-Bragg reflections give
rise to the figure-eight orbits which enclose zero net flux
for μ = 0 because the two identical lobes are traversed in
opposite directions. Motion along open orbits and figure-eights
contributes to the smooth background for the widths shown
in Fig. 17. Quantum oscillations occur when Andreev-Bragg
scattering at the gaps leads to closed orbits. Closed orbits

FIG. 18. (Color online) Areas consistent with the quantum
oscillations seen in the width of the first peak in the low-energy DOS
are shown in red (dark-shaded) for two values of � at half filling.
Note that for μ = 0 the gray (light-shaded) areas have the same area
as the red areas.

FIG. 19. (Color online) Power spectrum associated with the
oscillations in the width for � = 0.25 and � = 0.4 at half filling.
The x axis is rescaled so that it corresponds to area in units of the
area of BZ.

involving two Andreev-Bragg scatterings and two tunnelings
are shown by the red (dark-shaded) areas in Fig. 18.

Figure 19 shows the power spectrum associated with the os-
cillations in the width of the lowest energy peak for � = 0.25
at half filling. A sharp peak appears in this spectrum around
0.025, along with a second one that seems to correspond
to a second harmonic. The area associated with quantum
oscillations for other � values in Fig. 17 are also calculated and
are found to be consistent with the red colored (dark-shaded)
areas shown in Fig. 18. Note that the gray (light-shaded)
areas have the same area as the red (dark-shaded) areas. This
is because, at half filling, the two loops in the figure-eight
segments have the exact same area. The consistency is shown
in Fig. 20 where, for different �, we compare the geometrical
area corresponding to the red (or gray) regions in Fig. 18 to
the area associated with quantum oscillations.

It is worth noting that the average position of the lowest
energy peak (which consists of two LLs) does not exhibit
quantum oscillations, but rather scales linearly with B as
expected for Landau levels. This is because the two Landau
levels in this peak oscillate in opposite directions. As a result,
the oscillations in the width of this feature also reflect position
oscillations of its two components.

FIG. 20. (Color online) Comparison of the geometrical area (red
or gray area in Fig. 18) and the area associated with quantum
oscillations in the width of the lowest energy peak for different values
of � at half filling.
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FIG. 21. (Color online) Semilog plot of the width of the first LL
for � = 0.4 at half filling as a function of 1/B showing a fairly linear
average behavior for not very large fields. This is expected if the
broadening is caused by magnetic breakdown. The dashed line is a
linear fit to the data.

When � is very large, as in the lowest curve of Fig. 17,
magnetic breakdown is suppressed, and the low-energy LL
features are very sharp.

To summarize so far, we have seen that at half filling, sharp
peaks with the degeneracy of two Landau levels are formed for
very large � where the figure-eight-shaped FS segments are
well separated. As � decreases, the gaps between figure-eight
segments decrease and magnetic breakdown occurs which
leads to broadening of the peaks. This is reflected in the
smooth nonoscillatory part of the curves in Fig. 17. According
to the theory of magnetic breakdown,32 its probability is
proportional to exp(−B0/B) where B0 is a constant. Taking the
broadening of the first peak as an estimate of the probability
of magnetic breakdown, we show the width as a function of
1/B in a semilogarithmic plot for � = 0.4 in Fig. 21. The
nonoscillatory part exhibits a linear behavior in this semilog
plot which further supports our argument that magnetic
breakdown is responsible for broadening of the Landau levels.

B. Nonzero μ

Away from half filling, for example at 1
8 doping, the Landau

levels are well resolved. Each peak has a number of states close
to that of a LL, and the total number of states in peaks that

FIG. 22. (Color online) Power spectrum associated with the
position of the first LL for � = 0.6 and μ = −0.5. The inset shows
the position of the first LL for the same parameters.

FIG. 23. (Color online) FS for � = 0.6 and μ = −0.5. The
difference in the area of the gray (light-shaded) and red (dark-shaded)
areas gives rise to the strongest peak in the power spectrum of the
position of the first LL.

are related by E → −E is exactly twice the degeneracy of a
LL. This behavior is consistent with BdG calculations with
vortices, as shown in Fig. 15.

To better understand the quantum oscillations that exist in a
π -striped superconductor, we start from the very large � limit
where the Landau levels are sharp and magnetic breakdown is
strongly suppressed.

The position of the first LL for � = 0.6 and μ = −0.5 is
plotted in the inset of Fig. 22 as a function of magnetic field.
The position shows an oscillatory behavior with a long period,
which implies that the QO area is small. The power spectrum
associated with the position of the first LL for � = 0.6 and
μ = −0.5 is shown in Fig. 22. Within error bars, the largest
peak corresponds to the difference in the areas of the gray
(light-shaded) and red (dark-shaded) areas shown in Fig. 23,
which are traversed in opposite directions. The other two peaks
on either side of the main peak correspond to the separate
gray (light-shaded) and red (dark-shaded) areas. These arise
due to a small gap where the two lobes meet, leading to
small-amplitude reflections into closed orbits around each
lobe. Except for these small peaks, the oscillatory behavior that

200 400 600 800 1000 1200 1400 1600
0

0.02

0.04

0.06

0.08

0.1

1/B (a2/φ
0
)

P
os

iti
on

 o
f t

he
 fi

rs
t L

L

FIG. 24. (Color online) Position of the first LL for � = 0.5 and
μ = −0.4.
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FIG. 25. (Color online) FS for � = 0.5 and μ = −0.4. The red
area is associated with short-period oscillations in Fig. 24 for larger
magnetic fields and the gray (light-shaded) area is associated with the
oscillations in the width of the first LL when magnetic breakdown
occurs. The difference in the areas of the two lobes of the figure-eight
shape corresponds to long-period oscillations in Fig. 24 at smaller
fields. Black (thin) and red (thin) arrows show the two possible
semiclassical paths.

we measure corresponds predominantly to orbits around the
figure-eight-shaped areas. For this value of �, there is no sign
of magnetic breakdown across gaps separating neighboring
figure-eights.

Now we decrease � by a small amount in order to see
what happens when magnetic breakdown is possible. Figure 24
shows the position of the first LL for � = 0.5 and μ = −0.4.
For larger magnetic fields, the short-period oscillations are
due to magnetic breakdown and correspond to the red (dark-
shaded) area shown in Fig. 25. Magnetic breakdown does not
occur for smaller magnetic fields, and so only long-period
oscillations occur at small B, corresponding to the difference
in the areas of the two lobes in the figure-eight-shaped areas
of Fig. 25.

This provides the key to understanding the semiclassical
motion. One possible semiclassical motion is shown by the
black arrows in Fig. 25. The phase that a quasiparticle gains
by going around this path is proportional to the difference in
the areas of the two lobes of the figure-eight. The semiclassical
motion associated with magnetic breakdown is shown by the
red (thin) arrows. In this case, the phase gained by precessing
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FIG. 26. (Color online) Position and width of the first peak for
� = 0.25 and μ = −0.3, corresponding to 1

8 doping, plotted versus
1/B.
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FIG. 27. (Color online) Power spectrum for � = 0.25 and
μ = −0.3.

around the path is proportional to the red (dark-shaded) area.
Like the small-� case, we expect the difference of the two
paths to determine oscillations in the width of the position
peak. Indeed this is what happens. The area associated with
the oscillations in the width is equal to the gray (light-shaded)
area in Fig. 25.

Having gained some physical insight from the case of very
large �, we move on to the case of smaller �. In Fig. 26, we
show the width and position of the first LL for � = 0.25 and
μ = −0.3 corresponding to 1

8 doping. Both quantities show
an oscillatory behavior as a function of 1/B. The amplitude of
oscillations is larger for the width and the frequency is slightly
higher.

The power spectra associated with the position and width
of the first LL for � = 0.25 and μ = −0.3, corresponding
to 1

8 doping, are shown in Fig. 27. For simplicity, we limit
our discussion to the largest position and width peaks which
lie between 0.02 and 0.03 of the BZ. The position spectrum
exhibits a peak at around 0.025 which is due to magnetic
breakdown and is associated with the red (dark-shaded) area
in Fig. 28. In the width spectrum, there are two peaks. The first
one, which is larger, is associated with the gray (light-shaded)
area shown in Fig. 28. Note that the gray area can be thought
of as the red area minus the difference in the areas of the
two loops of the figure-eight. In Fig. 29, we have shown the
consistency between the position and width spectra of the first

FIG. 28. (Color online) FS for � = 0.25 and μ = −0.3 in the
quadrant of the first BZ.
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FIG. 29. (Color online) Comparison of the geometrical area and
the area associated with quantum oscillations in the width and position
of the first LL as a function of μ for � = 0.2. The geometrical area
is the area corresponding to the red (dark-shaded) region in Fig. 28
in the case of � = 0.2.

peak and the geometrical area for � = 0.2 as a function of
the chemical potential. As μ becomes more negative, the area
associated with the width oscillations becomes larger than the
area associated with the position oscillations. This is consistent
with the fact that the area of the lower loop of the figure-eight
segments is larger than the upper loop for this smaller value
of �. We will see in the next section that, near 1

8 doping, the
period of the oscillations in the specific heat, as calculated for
this model, corresponds to that seen for the position of the
first LL.

So far all the calculations were for the case where the
second-nearest-neighbor hopping term was set to zero. To
allow for the possibility of a more realistically shaped FS,
calculations were also performed for � = 0.25 and t2 =
−0.15 at 1

8 doping. The results are as expected from the
t2 = 0 calculations. The power spectrum for oscillations in the
width and position of the lowest LL are shown in Fig. 30.
The first peak associated with oscillations in the position
of the first LL corresponds to the red (dark-shaded) area in
Fig. 31. The first peak associated with the width of the first LL
corresponds to the gray (light-shaded) area which is smaller
than the red (dark-shaded) area. The calculation for nonzero
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FIG. 30. (Color online) The spectra associated with oscillations
in the width and position for � = 0.25 and t2 = −0.15 at 1

8 doping.
The peaks correspond to the gray (light-shaded) and red areas shown
in Fig. 31. The results are consistent with those for t2 = 0.

FIG. 31. (Color online) The areas associated with the first peaks
of the position and width spectra in Fig. 30 for � = 0.25 and t2 =
−0.15 at 1

8 doping.

t2 demonstrates that the position and width frequencies are
sensitive to the details of the band structure. Hence, the
band structure could, in principle, be used to fit theory to
experiment.

VIII. SPECIFIC HEAT

The question remains whether oscillations, related to those
seen in the width and the position of the first LL, can be
observed in a physically measurable quantity. In this section,
we calculate the specific heat in order to make a connection
to experiment. Here, the same method, which involves a sum
over all excited quasiparticle states, and assumptions are made
as in our earlier work, Ref. 18. In that paper, it was shown
that the specific heat of the model could be made consistent
with the observed specific heat of a cuprate superconductor at
1
8 doping in zero field or in the presence of a magnetic field
by adjusting the value of the only parameter in the model,
t . (Note that in our earlier work and in this section we take
t2 = 0.) In our earlier work, the field dependence of the specific
heat could not be studied in detail for the same reasons that
quantum oscillations could not be measured, and, in addition,

FIG. 32. (Color online) Specific heat versus 1/B for � = 0.25
and μ = −0.3 and t2 = 0 for different temperatures. Temperatures in
units of the hopping term t are shown on the right. Note the π phase
shift in the oscillatory behavior of specific heat as T increases through
T ∗ ≈ 0.003t .
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FIG. 33. (Color online) The oscillatory part of the calculated
specific heat for � = 0.25 and μ = −0.34 with a zero second-
nearest-neighbor hopping shown as a function of the magnetic field
and temperature. To plot the data, t = 0.16 eV is chosen.

commensurability effects were exaggerated because of the
restriction to commensurate vortex arrangements. Using the
semiclassical approximation of this study, the magnetic field
can be changed in relatively small steps, and, in addition,
commensurability effects are not present. As a result, we are
able to observe quantum oscillations in the specific heat.

Figure 32 shows the specific heat versus 1/B for � =
0.25 and μ = −0.3 at different temperatures. The oscillatory
behavior corresponds to the same area as seen in the position
oscillations of the first peak in Fig. 27 and corresponds to the
red area shown in Fig. 28. Interestingly, there is a π shift in the
oscillatory behavior of the specific heat at a temperature T ∗.
This is consistent with the Lifshitz-Kosevich (LK) formula for
the specific heat.

To make a direct connection to the experimental data by
Riggs et al., we have shown the oscillatory part of our specific-
heat calculations for t = 0.16 eV in Fig. 33. The figure can be
compared to Fig. 2(a) of Ref. 5. The qualitative agreement is
good bearing in mind that we have used only one parameter t
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FIG. 34. (Color online) The oscillatory parts of the specific-heat
data by Riggs et al. and calculations for a π -striped superconductor
at T = 1 K. The left y-axis scale is for the experimental data and the
right one is for the model.

to fit the data. In addition, we have compared the oscillatory
behavior part of the data in our model to the experimental data
at T = 1 K in Fig. 34. The period of oscillations is shorter for
our data because the quantum oscillations’ area is larger by
about 20%. The fact that the approximate magnitudes of the
oscillations in the specific heat for the two data sets are similar
supports the conjecture that the π -striped superconductor is a
possible candidate model for explaining quantum oscillations
in high-Tc cuprates.

IX. DISCUSSION AND CONCLUSIONS

In this paper, we have considered a model of sinusoidally
modulated d-wave superconductivity, the π -stripe phase, in
the presence of magnetic fields, and we have developed
an approximate semiclassical method to calculate physical
properties of this model as a nearly continuous function of
field. The model is distinctly different from conventional
models of quantum oscillations in metals because of the paired
nature of the quasiparticle states near the Fermi energy. In this
model, the reconstructed FS arises from Andreev scattering by
the periodic pairing potential. In the presence of a magnetic
field, the semiclassical approximation suggests that electrons
and holes precess along reconstructed FS orbits and also tunnel
between these orbits via magnetic breakdown.

It is indeed surprising that LLs and quantum oscillations
would exist in such a model, since the pairing mixes particles
and holes and the charge of the quasiparticle excitations
is not quantized. However the numerical evidence for the
existence of broadened LLs is compelling. Furthermore,
Andreev scattering appears to play a key role in the formation
of the broadened LLs, since they do not exist for a charge
density wave with an almost identical Fermi surface except for
the absence of small gaps (of order �3) induced by Andreev
scattering. We attribute the fact that LLs exist to the fact
that large regions of the Fermi surface remain sharp, even
in the presence of the periodic pairing potential, with the
quasiparticle charge essentially quantized as e or −e.

Evidence for the existence of quantum oscillations is some-
what less convincing because of the necessity of neglecting
superfluid flow effects (i.e., vortices) in order to do the
calculations. It is reasonable to question how accurate it is
to neglect effects due to the superfluid velocity on the energies
and wave functions of the quasiparticles. We have argued that
a direct comparison of the low-energy bands and the densities
of states with and without vortices, for small and intermediate
values of the gap amplitude, shows that, for both cases, these
states resemble broadened Landau levels. The effect of vortices
is to modestly further broaden and distort the bands, but the
result looks nothing like the case of uniform d wave in a
magnetic field, where vortex lattice and magnetic field effects
are comparable.

If superfluid flow and vortex lattice effects are indeed neg-
ligible, then one might expect that one could do calculations
with vortices, changing the vortex lattice spacing in a way that,
although unphysical, allows one to vary the magnetic field
nearly continuously. As examples of this, we have performed
calculations where the vortex lattice spacing along x is held
fixed at 8 or 16, while the vortex spacing along y is varied,
one lattice spacing at a time, over a wide range. For a lattice
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spacing of 8 along x, one can reproduce all the field values
used in our calculations without vortices, while for a lattice
spacing of 16 along x one can generate half those values. In all
cases, broadened LLs are observed, with the commensuration
effects mentioned previously which complicate analysis of the
lowest LL position and width. However, we have calculated
the low-temperature specific heat and we do not observe the
quantum oscillations that were found in the semiclassical
calculations without vortices.

We would note that these vortex lattice configurations and
the circular superflow patterns are very artificial. In reality the
vortex lattice and the resulting superflow will adjust to conform
to the modulated pairing potential for a given density of
vortices. We expect this relaxation to alter the commensuration
effect and to reduce the perturbing effect of the superfluid
velocity field. Hence, we do not view the absence of quantum
oscillations for these configurations as evidence that quantum
oscillations do not occur in the presence of an equilibrium
vortex state. Furthermore, quantum oscillations are observed
in the cuprates under conditions where the state is resistive,
i.e., a vortex liquid state rather than an ordered vortex lattice.
Studying the properties of a π -modulated vortex liquid state is
a challenging problem, but, again, one would expect the effects
of the superfluid velocity to be small in such a state.

Another question which immediately comes to mind is
whether such a state is likely to occur in nature or, more
specifically, in the high-Tc cuprates. Arguments for the oc-
currence of such a π -striped superconducting state have been
given earlier by Berg, Fradkin, and Kivelson.19,20 Such states
have also been studied by Baruch and Orgad.21 In addition,
there have been several numerical studies33–36 of striped states
that arise from the t-J model which find that the two states, one
in which the gap oscillates in magnitude but does not change
sign and the other in which the sign of the gap oscillates, are
extremely close in energy. One might expect that in zero field,
the nodeless state should win out, but the situation is likely
to be different in nonzero field, where the π -stripe phase may
have a lower Gibbs free energy. If, in fact, the π -stripe phase
is stabilized by a magnetic field, then the calculations in this
paper would be directly relevant to observations of quantum
oscillations in the cuprates. One could address the question of
the relative stability of the π -stripe and nodeless stripe phases
through self-consistent BdG calculations. This requires having
a microscopic Hamiltonian that stabilizes stripes at the mean
field level. Such calculations are left for future work.

At a more general level the π -stripe phase may be viewed as
a type of FFLO state, where the mechanism is the underlying
microscopic Hamiltonian, e.g., the t-J model, rather than
Zeeman-splitting of the bands, and the gap modulation is
microscopic and commensurate, rather than mesoscopic. The
phenomena which arise from the theory, a nonzero density
of particle-hole states at the Fermi energy, the existence of
Landau levels in a magnetic field, and the occurrence of
quantum oscillations and magnetic breakdown, are generic.

In particular, they do not depend on the superconductivity
being d wave. What is distinctive about such phases is that
the frequencies of quantum oscillations will be different from
those that arise from periodic modulation of the electron or
spin density. Of course one expects that, in general, these
phenomena will coexist. In particular, one expects that a
sinusoidal modulation of the superconducting gap with wave
vector Q will induce modulations of the charge density with
wave vector 2Q.

Our method allows the calculation of quantum oscillations
in physical properties, such as the specific heat presented in
this paper, as well as oscillations in the magnetic suscepti-
bility, resistivity, and Hall resistivity which we have not yet
attempted. For a reasonable model of the band structure, with
nearest-neighbor hopping and a modulated gap amplitude,
� = 0.25t , we find, near 1

8 hole doping, a small frequency
for the quantum oscillations which is similar to but slightly
larger than what is observed experimentally. The calculated
temperature and field dependence of the specific heat are
both similar to experiment. For example, the phase of the
specific-heat oscillations reverses at a temperature T ∗(B)
which can be well fitted by setting the hopping parameter
t = 0.16 eV. Beyond this, it is difficult to make detailed
comparison because our model is strictly two-dimensional and
does not include disorder, and so the Dingle factor and the
factor due to band warping are both unity. One feature which
is absent in this model is the background

√
B dependence

of the specific heat. However, it is not clear from the data
whether this

√
B dependence persists to high magnetic field,

or whether it is simply a low-field phenomenon. The data
of Riggs et al. could, in principle, correspond to a system
which switches from a low-field d-wave superconductor to a
high-field π -stripe phase. Whether such a transition would be
sharp or broad depends on how sensitive it is to disorder and
vortex liquid effects.

In conclusion, we have studied a system in which spatially
modulated pairing induces a nonzero density of particle-hole
states near EF which, in the presence of a magnetic field, form
broadened Landau levels and exhibit quantum oscillations.
The nature of the reconstructed FS and the resulting orbits in a
magnetic field are qualitatively different from that of a normal
nearly free electron metal. This type of behavior may occur
in the high-Tc cuprates or possibly in other materials where
superconductivity and stripe behavior coexist.
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