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Correlation functions and coherence lengths in a two-gap superconductor
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We derive analytically the spatial correlation functions for gap fluctuations in a two-band scenario with
intraband and interband pair-transfer interactions. These functions demonstrate the changes in functionality due
to the presence of two channels of coherency described by the divergent and finite correlation lengths. Even at
the phase transition point, both channels are essential for two-band superconductivity. Generally, their relative
contributions depend on the temperature and system parameters.
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I. INTRODUCTION

The theory of superconductivity with overlapping bands has
started to develop since 1959;1 however, only after discovery of
multicomponent nature of MgB2 in 2001 (Ref. 2) and pnictides
in 2008 (Ref. 3), the multigap approaches have become an
object of exceeding interest.

The peculiarities of the spatial coherency in multiband
superconductors have attracted much attention recently in con-
nection with type-1.5 behavior.4 In usual one-band systems,
there is only one coherence length, the value of which in
units of penetration depth determines response to magnetic
fields: type-I or type-II. It was suggested that in a two-band
superconductor, one has two correlation lengths resulting
in much richer physics than type-I/type-II dichotomy. In
particular, there is a possibility to observe a mixture of
domains of Meissner state and vortex clusters, called type-
1.5 superconductivity. The latter regime is supported also
by the interband proximity effect5 and by different kinds
of intercomponent interaction involving Josephson, mixed
gradient, or density-density couplings.6

The existence of two qualitatively different length scales
in a two-band system was demonstrated more than 20 years
ago7 and recently.8,9 Two distinct correlation lengths are
also present in the negative-U Hubbard model of two-orbital
superconductivity.10 In this respect, the connection between
peculiarities of spatial coherency and excitation of the Leggett
mode in two-gap material was discussed.11

Different point of view on the correlation behavior in a
two-band model is based on the statement that two order pa-
rameters should have identical characteristic lengths of spatial
variation by approaching critical temperature.12,13 Away from
the critical point, two gaps are generally not proportional to
each other, and these scales become decoupled.14 Numeric
estimations for the healing lengths of the gaps confirm that
conclusion for several superconducting materials.15 Here, we
note that scientific discussion about discrepancy of length
scales in the vicinity of critical temperature still continues.16

Experimentally, the presence of distinct spatial scales
in various two-band compounds was evidenced, e.g., by
scanning tunneling spectroscopy,17 muon spin relaxation
measurements,18 and in heat transport features19 as a function
of magnetic field.

In this paper, we analyze inhomogeneous two-band super-
conductivity in a very natural way by deriving correlation func-
tions for gap fluctuations. The spatial behavior of these char-

acteristics reveals two different correlation lengths describing
the joint superconducting condensate as a whole. These length
scales are analyzed as the functions of the temperature and
interband interaction constant. The competition between the
contributions of the corresponding coherency channels to the
correlation functions is discussed.

II. DERIVATION OF CORRELATION FUNCTIONS

We start with the two-band superconductivity Hamiltonian

H =
∑
αks

ε̃α(k)a+
αksaαks

− 1

V

∑
αα′

∑
kk′q

Wαα′a+
αk↑a+

α−k+q↓aα′−k′+q↓aα′k′↑, (1)

where ε̃α = εα − μ is the electron energy in the band, α =
1,2, relative to the chemical potential μ; V is the volume of
superconductor, and Wαα′ is the matrix element of intraband
(α = α′) or interband (α �= α′) pair-transfer interaction. It is
supposed that the chemical potential is located in the region
of the bands overlapping. We assume that (effective) electron-
electron interactions are nonzero only in the layer μ ± h̄ωD

and Wαα′ is independent on electron wave vector in this layer.
For simplicity, we take W12 = W21.

We calculate the partition function Z = Sp exp( −H
kBT

) for
the macroscopic system by means of Hubbard-Stratonovich
transformation.20 For W 2 = W11W22 − W 2

12 > 0 and for real
order parameters δα , the static path approximation reads as

Z =
∫ ∞

−∞
e
− F̃

kBT dδ10dδ20

�∏
k �=0

dδ′
1kdδ′′

1kdδ′
2kdδ′′

2k, (2)

F̃ = F̃n+
2∑

α=1

∫ (
aαδ2

α+ bα

2
δ4
α+Kα(∇δα)2 − cδαδ3−α

)
dV .

(3)

Here, integration variables are treated as real and imaginary
parts of Fourier components for nonequilibrium order param-
eters δα(r) = ∑

k δαke
ikr, F̃ is nonequilibrium free energy

of inhomogeneous system, and F̃ = F̃n in the absence of
superconductivity. The star sign near multiplication in Z

denotes the half of k space. We do not expand the coefficients

aα = W3−α,3−α

W 2
− ρα ln

1.13h̄ωD

kBT
, (4)
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bα = 0.11ρα

(kBT )2 , c = W12
W 2 , and Kα = 0.02ραh̄

2v2
Fα

(kBT )2 in powers of T −
Tc, which allows us to apply free energy in the form (3)
substantially further from critical temperature Tc. Here ρα is
the density of states at the Fermi level, and vFα is the Fermi
velocity in the corresponding band. Note that the coefficient
Kα used alludes to isotropic situation.

The homogeneous equilibrium state is defined by the min-
imization δF̃

δδα
|δα=�α

= 0, which gives us the set of equations
for coupled homogeneous order parameters �1,2, namely,

aα�α + bα�3
α = c�3−α. (5)

One should also take into account the relation between
phases in equilibrium sqn(c�1�2) = +1. The critical point
is determined by condition a1(Tc)a2(Tc) = c2, which has two
solutions Tc± and Tc− > Tc+. If Tcα are intrinsic transition
temperatures in the bands and Tc1 > Tc2, then for W12 → 0
we have Tc− → Tc1 and Tc+ → Tc2. Note that in the system
with coupled bands, there is only one phase transition point
Tc = Tc−.

Now, we linearize functional F̃ near homogeneous state
with free energy Fh by assuming δα(r) = �α + ηα(r). By
means of complex Fourier components ηαk we have

F̃ = Fh + V

2∑
α=1

(
Aα0η

2
α0 − cηα0η3−α0

+ 2
�∑

k �=0

[
Aαk

(
η′2

αk + η′′2
αk

)− c(η′
αkη

′
3−αk + η′′

αkη
′′
3−αk)

])
,

(6)

where Aαk = Aα + Kαk2 and Aα = aα + 3bα�2
α � 0. Note

that due to interband pairing, there appear nondiagonal terms
in the quadratic form (6). Statistics for the equilibrium
state fluctuations is determined by the distribution function

e
− F̃

kBT normalized to Z. By using Gaussian approximation
(6), we calculate mean values 〈ηαkη

∗
α′k〉 and then correlation

functions 
αα′(r − r′) = ∑
k〈ηαkη

∗
α′k〉eik(r−r′) for the order-

parameter fluctuations considered at different points separated
by distance |r − r′| �= 0. We obtain 
αα′ = 
+

αα′ + 
−
αα′ , where


±
αα = ∓ kBT

8πKα

ξ 2
∓
(
ξ 2
± − ξ 2

3−α

)
ξ 2

3−α(ξ 2− − ξ 2+)

exp
(−|r−r′|

ξ±

)
|r − r′| (7)

and


±
12 = ∓ kBT

8πK1K2

ξ 2
+ξ 2

−c

ξ 2− − ξ 2+

exp
(−|r−r′|

ξ±

)
|r − r′| . (8)

Note also that 
12 = 
21. In Eqs. (7) and (8), we have
introduced ξ 2

α = Kα

Aα
and the correlation lengths ξ± are given

by

ξ 2
± = 2ξ 2

1 ξ 2
2

ξ 2
1 + ξ 2

2 ±
√(

ξ 2
1 − ξ 2

2

)2 + 4ξ 2
1 ξ 2

2
c2

A1A2

. (9)

These quantities have the following properties. For finite
interband pairing, ξ− > ξ+ > 0. In the temperature region
where ξ1 > ξ2, one has ξ− > ξ1 and ξ+ < ξ2. For the opposite
case ξ1 < ξ2, we get ξ− > ξ2 and ξ+ < ξ1. As a result, 
±

αα > 0.
However, depending on the sign of interband interaction
constant, one contribution in 
12 becomes negative.

The characteristics ξ± define the size of the region, where
the order-parameter fluctuations are significantly correlated.
In fact, these length scales appear in the exponents despite the
band index taken for the correlation functions, i.e., ξ± describe
joint superconducting state rather than individual bands. We
note also that ξ± coincide with the correlation lengths9 found
by means of inhomogeneous gap equations.

III. RESULTS AND DISCUSSIONS

A. Correlation lengths

The presence of interacting order parameters makes the
coherence properties of the two-band system quite different
from the corresponding characteristics in single-band super-
conductors. To analyze the physics of the one-band case,
one should take c → 0. In this limit, ξ± → ξα|c=0, i.e., one
obtains two separate correlation lengths attributed to the band
α = 1,2. Each length diverges at its own point given by
intrinsic transition temperature Tcα . Note that ξ− → ξ1|c=0 and
ξ+ → ξ2|c=0 in the temperature region where ξ1|c=0 > ξ2|c=0,
however, ξ− → ξ2|c=0 and ξ+ → ξ1|c=0 for the temperatures
where ξ1|c=0 < ξ2|c=0. Further, we assume for specificity
Tc2 < Tc1, i.e., the condition ξ1|c=0 < ξ2|c=0 corresponds to the
lower-temperature region, while ξ1|c=0 > ξ2|c=0 to the higher
temperatures in the superconducting state.

Nonzero coupling between bands modifies drastically
the trivial physics of two noninteracting condensates. The
coherency is described by lengths ξ± which become tricky
combinations of band characteristics ξα [see Eq. (9)]. To illus-
trate the evolution of ξ± with model parameters we fix intra-
band ones: W11,22 = 0.3 eV cell, ρ1,2 = (1,0.94) (eV cell)−1,
vF1,2 = (5,5.104) × 105 m/s, cell = 0.1 nm3. For these val-
ues Tc2 = 0.81Tc1. We also assume parabolic electron spec-
trum where ρ2

ρ1
= ( vF1

vF2
)3.

Figure 1 shows temperature dependencies for correlation
lengths together with the evolution of homogeneous gaps
calculated numerically as interband coupling increases. We see
that ξ− and ξ+ as functions of the temperature are remarkably
different. First, the length ξ− behaves critically diverging at
phase transition point Tc. At the same time, ξ+ remains finite.
Second, ξ− can change below Tc very nonmonotonically, while
the temperature dependence of ξ+ is substantially weaker.8,9

The appearance of additional maximum in superconducting
phase for ξ− is strongly supported by the smaller values
of W12, representing the memory effect about criticality in
the band α = 2. The position of this maximum is correlated
with the inflection point of the smaller gap, which takes
place in the vicinity of Tc2. As was pointed out earlier,21 the
nonmonotonicity of the critical coherence length elucidates the
temperature behavior of the gaps’ healing length22 and vortex
size23 in a superconductor with weakly interacting bands.

One can argue that the scheme based on the expansion (3)
is applicable only close to the critical point. We note that the
coefficients (4) taken allow us to go essentially further below
Tc. For the comparison, we have plotted in Fig. 1 homogeneous
gaps calculated numerically by means of microscopic theory.
The latter are approximated by the solutions of system (5) very
well in the temperature region considered.

104506-2



CORRELATION FUNCTIONS AND COHERENCE LENGTHS . . . PHYSICAL REVIEW B 86, 104506 (2012)

1
2
3

Δ
1,

2
m

eV
ce

ll W12 = 0.0001 eV cell

1

2

3

4

0.7 0.8 0.9 1.0

T/Tc

lo
g 1

0
ξ ± nm

,
α

nm
,

w
α

nm

T�

1
2
3

W12 = 0.001 eV cell

1

2

3

4

0.7 0.8 0.9 1.0

T/Tc

T�

1
2
3

W12 = 0.01 eV cell

1

2

3

4

0.7 0.8 0.9 1.0

T/Tc

T�

FIG. 1. (Color online) Above: The plots of the gaps �α as a solution of Eqs. (5) (solid lines) and derived microscopically (dotted lines)
vs temperature for various interband couplings W12. Below: The log plots of ξ− (solid red lines), ξ+ (solid blue lines), 
1 (dashed red lines),

2 (dashed blue lines), w1(70%) (dotted red lines), and w2(70%) (dotted blue lines) vs temperature for same W12. The parameters 
α and wα

characterize the efficiency of critical and noncritical channels in the structure of correlation functions (see main text), and T
 is the temperature
where 
α goes to zero.

Due to the definition of the critical point a1(Tc)a2(Tc) = c2

and the relation Aα(Tc) = aα(Tc), one obtains

ξ 2
+(Tc) = ξ 2

1 (Tc)ξ 2
2 (Tc)

ξ 2
1 (Tc) + ξ 2

2 (Tc)
, (10)

and zero for the denominator of ξ−(Tc), i.e., the latter length
diverges precisely at Tc. This implies that only length scale
ξ− can be attributed directly to the superconducting phase
transition in a two-band model. In the vicinity of Tc, we get

ξ 2
− =

{
c2 ξ 2

1 (Tc)+ξ 2
2 (Tc)

ρ1a2(Tc)+ρ2a1(Tc)
Tc

T −Tc
, T > Tc

c2

2
ξ 2

1 (Tc)+ξ 2
2 (Tc)

ρ1a2(Tc)+ρ2a1(Tc)
Tc

Tc−T
, T < Tc.

(11)

Both expressions (10) and (11) one meets in the literature.7

Note also that in the approach12 claiming the existence of two
divergent correlation lengths, the latter coincide with ξ− in the
vicinity of the critical point.

Next, we denote the factor in Eq. (11) by ξ 2
−(0), the value

of the formula (11) at T = 0, and analyze ξ−(0) and ξ+(Tc)
as the functions of interband interaction. Figure 2 shows
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FIG. 2. (Color online) Left: The plots of ξ−(0) (solid lines) and
ξ+(Tc) (dashed lines) normalized to their values at W12 = 0 vs
interband coupling W12. Right: The plots of Tc = Tc− (solid lines) and
Tc+ (dotted lines) vs W12. Red curves correspond to the parameters
given in text, blue ones to the modified parameters in band α = 2,
namely, W22 = 2.26 eV cell, ρ2 = 0.13 (eV cell)−1, vF2 = 106 m/s.
For these values, we have the same ratio Tc2 = 0.81Tc1.

these dependencies for different sets of intraband parameters.
Analytic consideration indicates that ξ+(Tc) always decreases
with |W12|, while ξ−(0) can pass through a maximum at some
finite value of W12. We interpret this feature as follows. The
one-band limit c = 0 gives Tc = Tc1 and a1(Tc1) = 0. As a
result, ξ 2

−|c=0 = K1(Tc1)
2ρ1

Tc1
Tc1−T

for T < Tc1. This is a standard
one-band expression for the squared correlation length ex-
panded near the critical point. The factor ξ 2

−(0)|c=0 = K1(Tc1)
2ρ1

is proportional to 1
T 2

c1
, i.e., ξ−(0)|c=0 decreases with the critical

temperature increase and vice versa. In the two-band system,
Tc always grows with W12 (see Fig. 2) and one can expect
the reduction of ξ−(0) with an increase of |W12| by analogy
with the single-band case. However, in the two-component
situation, especially for weak interband couplings, the memory
effect related to the lower intrinsic phase transition is strong.
The latter is characterized by the temperature Tc+, which
always decreases with |W12| (see Fig. 2). By analogy with the
one-band case, it can lead to the rise of ξ−(0). Thus, there are
two opposite tendencies associated with the temperatures Tc±
which govern the behavior of ξ−(0) as a function of interband
coupling. By analyzing this competition analytically, we find
that if

vF2

vF1
<

√
1 + 2

ρ1W11 − ρ2W22

(ρ1W11)2
, (12)

ξ−(0) has a maximum, whereas for the opposite sign in Eq. (12)
the function ξ−(0) has a minimum at W12 = 0. We believe that
nonmonotonicity of ξ−(0) is a clear footprint of the two-band
nature near the critical point.

One comment should be made about noncritical coherence
length. The quantity ξ 2

+ is always finite and decreases as the
strength of interband interaction increases, crossing zero at
W 2 = 0. At the same time, there is a natural lower bound
for coherence lengths in the Ginzburg-Landau theory defined
by the microscopic length scales h̄vFα

kBTcπ
(Cooper-pair size in the

bands). The latter guarantees the smallness of the gradient term
in the Ginzburg-Landau expansion. To estimate the maximal
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ARTJOM VARGUNIN AND TEET ÖRD PHYSICAL REVIEW B 86, 104506 (2012)

value of ξ+, we use Eq. (10) for c = 0. We find

ξ+(Tc)|c=0 = ξ2(Tc1)|c=0 ∼ 1√
ρ1W11 − ρ2W22

. (13)

Consequently, the value of ξ+(Tc) can be magnified when
Tc2 approaches Tc1. In this process, noncritical coherence
length can surpass microscopic lengths,9 i.e., two length scales
of coherency found are meaningful even in the standard
two-band Ginzburg-Landau model for relevant parameters. To
overcome the restriction related to the microscopic lengths,
one should take into account the higher terms of the gradient
expansion in the Ginzburg-Landau approach. In this way, one
gets better agreement with microscopic theory.21 However, the
theory based on two-band Eilenberger equations also predicts
the disappearance of noncritical length for strong interband
pairings at W 2 ≈ 0.8 The absence of the real noncritical
correlation length may signal spatial periodicity of fluctuations
of two-gap superconductivity.11

B. Correlation functions

Interaction between bands results in more complicated
structure of correlation functions as compared to the case of
decoupled bands for which


αα = kBT

8πKα|r − r′|e
− |r−r′ |

ξα |c=0 , 
12 = 0. (14)

Next, we discuss the correlation functions for nonvanishing
interband pairings.

First, we consider different spatial regions. For shorter
distances |r − r′| � ξ+ < ξ− (denote as “sd”), we obtain from
Eqs. (7) and (8)


sd
αα ≈ kBT

8πKα|r − r′| , 
sd
12 ≈ kBT c

8πK1K2

ξ+ξ−
ξ+ + ξ−

. (15)

In this fully correlated case, the functions 
αα′ are maximal.
If ξ1(Tc) � ξ2(Tc), then near Tc the main contribution to 
sd

11
stems from the critical, and to 
sd

22 from the noncritical, channel
of coherency and vice versa. Note that condition ξ1(Tc) �
ξ2(Tc) is supported by the smaller interband interaction.

For larger distances ξ+ < ξ− � |r − r′| (denote as “ld”),
the functions 
ld

αα′ are defined mostly by critical contributions
and they vanish. By approaching Tc, we have in this regime
ξ+ � |r − r′| � ξ− and


ld
αα ≈ kBTc

8πKα(Tc)|r − r′| , Kα = Kα

ξ 2
1 + ξ 2

2

ξ 2
α

, (16)


ld
12 ≈ kBTcc

8πK1(Tc)K2(Tc)

ξ 2
+(Tc)

|r − r′| . (17)

Thus, at the critical point, 
12 changes in space from constant
value 
sd

12 to the function 
ld
12 which decreases linearly with

logarithm of |r−r′|
ξ+

. The disagreement between Kα and Kα

characterizes the behavior of 
αα . If ξ1(Tc) � ξ2(Tc), then

sd

11 and 
ld
11 are the very same function at Tc, but there is

remarkable difference in the dependencies 
sd
22 and 
ld

22 related
to the change of the dominant coherency channel from the
noncritical to the critical one. This transformation is also
noticeable in Fig. 3, and it is supported by the weaker interband
couplings. For the opposite situation ξ1(Tc) � ξ2(Tc), we have
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FIG. 3. (Color online) The log plots of 
αα′ (dots) together with
corresponding contributions 
−

αα′ (red line), 
+
αα and |
+

12| (blue line)
vs distance |r − r′| for T = 0.86Tc (left column) and T = Tc (right
column). Here, W12 = 0.01 eV cell and intraband parameters as in
text. At Tc, we have ξ1

ξ2
≈ 2.2. The regimes “sd” and “ld” are discussed

in the text.

different dependencies for 
sd
11 and 
ld

11, but the same for 
sd
22

and 
ld
22. Therefore, the changes in spatial functionality of the

correlation functions are intrinsic for two-gap superconduc-
tors.

To estimate the efficiency of different correlation channels,
we find the distance 
α where 
+

αα = 
−
αα ,


1 = ξ+ξ−
ξ− − ξ+

ln
1 − ξ 2

2

ξ 2+
ξ 2

2

ξ 2−
− 1

= −
2. (18)

One obtains 
1 > 0 in the region where ξ1(T ) < ξ2(T ) and vice
versa. Whereas the driving role in the behavior of 
αα passes
from the noncritical channel to the critical one at the distance

α , that interchange takes place at fixed temperature only for
certain correlation function, 
11 or 
22. Figure 1 shows that 
α

can substantially exceed ξ−, especially for nearly decoupled
bands. In this case, the value 
αα(
α) is vanishing, i.e., the
noncritical channel dominates for all reasonable distances. At
Tc, one finds 
2 = ξ+ ln ξ 2

1

ξ 2
2
.

Intraband correlation functions are characterized by dif-
ferent types of coexistence of the contributions from two
coherency channels involved: total domination of one (critical)
channel or interchange of driving role between them. The
border between these regimes is defined by the temperature T
,
the point where ξ1 = ξ2 or, alternatively, 
α = 0. The position
of T
 is sensitive to the model parameters. If vF1 > vF2, one
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has T
 < Tc. However, for vF1 < vF2, there is a value

|W12| = vF1vF2

v2
F2 − v2

F1

ρ1W11 − ρ2W22√
ρ1ρ2

, (19)

for which T
 = Tc, and for stronger interband interaction T
 >

Tc.
Finally, the relative contribution 
+

αα


αα
decreases and 
−

αα


αα

increases with distance. If 
α � 0, these functions cross at

α , i.e., 
+

αα


αα
� 
−

αα


αα
for tiny |r − r′|. We define the width wα

of interchange region as the size of the spatial area around

α where 
+

αα


αα
and 
−

αα


αα
simultaneously do not exceed fixed

percentage p > 50%. We find

wα(p) = ξ+ξ−
ξ− − ξ+

ln
p2

(1 − p)2
. (20)

At Tc, one obtains wα ∼ ξ+, i.e., different channels interchange
on the distance defined by the noncritical length scale. The
width wα shrinks at Tc with an increase of interband coupling.
For nearly decoupled bands, w1 ∼ ξ+ holds also in the vicinity
of Tc2, however, w1 grows with W12 at those temperatures (see
Fig. 1). Note that the noncritical channel can significantly
dominate only away from the region around T
 where 
+

αα


αα
< p

even for tiny |r − r′|. The latter region widens with interband

interaction increase, and it is seen as the temperature gap
between the curves w1,2 in Fig. 1.

IV. CONCLUSIONS

The spatial evolution of correlation functions for two-
band superconductivity indicates the presence of two distinct
channels of coherency described by the critical (divergent
at critical point) and noncritical (finite at critical point)
correlation lengths. Although these characteristics are not
related directly to the bands, two-component nature manifests
itself in the nonmonotonicities of critical length scale as a
function of the temperature and the strength of interband
interaction. The features of the competition between coherency
channels involved depend on the temperature as well as model
parameters. This picture should be taken into account in the
interpretation of the experiments and in the creation of relevant
theories, e.g., type-1.5 superconductivity.
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