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Effect of fermionic impurities on the quantum coherence of a few-boson system
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The impurity effects on the quantum coherence of a few-boson system are studied within the two-site
Hubbard model. Periodical collapses and revivals of coherence occur in the presence of either polarized or
unpolarized fermionic impurities. The relative strength UBF /UBB of the boson-fermion interaction versus the
boson-boson interaction plays a key role in the coherence revivals. As the average filling of the impurity
increases, the coherence revivals remain nearly unaffected for UBF /UBB = z (z ∈ Z is an integer) while the
odd revival peaks are damped for UBF /UBB = z + 1/2, in agreement with the experimental observations. For
unpolarized fermionic impurities, the coherence revivals are irrelevant to the strength of the fermion-fermion
interactions.

DOI: 10.1103/PhysRevB.86.104504 PACS number(s): 67.85.Pq, 03.75.Lm, 21.45.−v

I. INTRODUCTION

The ultracold atoms, trapped either by a magnetic potential
or an optical lattice, present an advantageous phase of matter
for the investigation of fundamental quantum physics.1–7

Since the external potentials, the dimensions, the effective
interactions, as well as the atomic components can be well-
controlled and precisely measured, the ultracold atoms have
been providing versatilely and experimentally feasible means
to explore a variety of problems such as quantum simulation,
information processing, strongly correlated systems, dynami-
cal evolution, and so on. In particular, atomic interferometers
have been realized experimentally by loading Bose-Einstein
condensates (BECs) into double-well potentials. Atomic
Josephson oscillations8–10 and macroscopic quantum self-
trapping11,12 were predicted and observed experimentally.
The phenomena of quantum tunneling,13–15 the collapse
and revival of quantum coherence,16–18 disorder effects,19–22

and paired or counterflow superfluidity23,24 are extensively
explored.

The problem of impurity embedded in a quantum en-
vironment poses another interesting topic.25,26 In a recent
experiment, the authors studied the quantum dynamics of
bosons in an optical lattice with a fraction of polarized
fermionic impurities.27 The absolute strength of the in-
traspecies and interspecies interactions are measured as a
function of the interspecies scattering length, tuned by means
of a Feshbach resonance. The collapses and revivals of the
quantum coherence exhibit distinct features in comparison
to the pure bosonic system.17,27 One of the most prominent
facts are the odd revival peaks are damped as the impurity
fillings increase. When such impurity systems are scaled
down to the few-body regime, the mean-field theory becomes
invalid.27,28 The double-well model provides the direct ways
to go beyond the Gross-Pitaevskii paradigm of gaseous
BECs. It is also one of the simplest prototypes for finite
lattices and the most instructive means to study quantum
dynamics.

In this work, we explore the impurity effects on the
quantum coherence of a few-boson system. For bosonic atoms
comprising fermionic impurities in the optical lattices, the
system can be properly treated as a mixed ensemble of the pure
bosonic system and the bosonic system with a single fermionic

impurity in the double-well model. We deal with N interacting
bosons with a small fraction of fermionic impurities. Under the
approximation of tight binding, the double-well is simplified
as a two-site single-band Hubbard model.29,30 The boson
(fermion) creation b̂

†
i (f̂ †

i ) and annihilation b̂i (f̂i) operators
are constructed for atoms localized in either side of the well. In
the limit of strong interactions UBB/tB � 1, the system which
starts from a initial coherence state experiences periodical
collapses and revivals of coherence. The relative strength of the
boson-boson interaction versus the boson-fermion interaction
UBF /UBB plays an important role on the dynamical revival and
collapse of macroscopic matter waves. The results agree with
the experimental observations in Ref. 27. It is discovered that
symmetrical and antisymmetrical coherent states alternatively
occur at the revival peaks. We further investigate the effects of
unpolarized fermionic impurities on the quantum coherence.
The coherence revivals are irrelevant to the interaction strength
between the impurities.

The paper is organized as follows. In Sec. II, we illustrate
the model and the formulism. In Secs. III and IV we explore
the effects of polarized and unpolarized fermionic impurities
on the coherence, respectively. A brief summary is included in
Sec. V.

II. MODEL

We consider a mixture of a pure bosonic system and a
bosonic system with a single fermionic impurity in the double
well. The usual two-site Bose-Hubbard model for the pure
bosons is written as29–32

Ĥ0 = −tB(b̂†1b̂2 + b̂
†
2b̂1) + 1

2
UBB

∑
i=1,2

n̂i(n̂i − 1), (1)

and the Hamiltonian including fermionic atoms should be the
Bose-Fermi-Hubbard model which is written as29,30

Ĥ1 = −tB(b̂†1b̂2 + b̂
†
2b̂1) + 1

2
UBB

∑
i=1,2

n̂i(n̂i − 1)

− tF (f̂ †
1 f̂2 + f̂

†
2 f̂1) + UBF

∑
i=1,2

n̂im̂i . (2)

Here UBB and UBF are the boson-boson and boson-fermion in-
teractions, respectively. tB and tF are the bosonic and fermionic
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hopping coefficients, respectively. n̂i and m̂i (i = 1,2) are the
bosonic and fermionic number operators, respectively. Since
in the single-band Hubbard model the double occupation of
polarized fermions is prohibited, the average site-filling of the
fermionic impurities is restricted to m̄ � 0.5.

The Hamiltonian (1) is represented in the Fock basis
set {|N,0〉,|N − 1,1〉, . . . ,|0,N〉}. The eigenstates can be
expressed as linear combinations of the Fock bases, |ψj 〉 =∑N

k=0 cjk|N − k,k〉 (j = 0,1,2, . . . ,N), which correspond to
the eigenvalues ωj . The coefficients cjk satisfy the recursive
relation18

−tB
√

(N − k)(k + 1)cj (k+1) − tB
√

(N − k + 1)kcj (k−1)

+
[
U

2
(N2 − 2Nk − N + 2k2) − ωj

]
cjk = 0. (3)

The temporal evolution of the state is governed by the
Heisenberg’s equation for a given initial state |ψ(0)〉

|ψ(τ )〉 =
N∑

j=0

fj (τ )|ψj 〉 ≡
N∑

k=0

gk(τ )|N − k,k〉, (4)

where fj (0) = 〈ψj |ψ(0)〉 and gk(τ ) = ∑N
j=0 fj (0)cjke

−iωj τ .

To depict the coherence degree of the system, we introduce
a characteristic parameter18

α1 = |λ1 − λ2|
λ1 + λ2

, (5)

where λ1 and λ2 are the two eigenvalues of the single-particle
density ρμν(τ ) = 〈ψ(τ )|â†

μâν |ψ(τ )〉 (μ,ν = 1,2) (Refs. 33
and 34). When α → 1, the system is in the coherent (quasico-
herent) state since in this case there is only one large eigenvalue
of matrix ρμν . Accordingly, α → 0 indicates the system is
in the decoherent or fragmented state because there are two
densely populated natural orbits. In the weak-interaction,
strong-tunneling limit (UBB/tB � 1), each atom is in a
coherent superposition of the left-well and right-well states. In
the strong interactions or weak tunneling (UBB/tB � 1), the
tunneling term is negligible. The Hamiltonian is the product
of the number operators for the left and right wells. The
eigenstates are products of Fock states and are referred to
as decoherent states. This regime is analogous to the Mott
insulator (MI) phase in optical lattices.

On the other hand, for the boson-fermion mixed sys-
tem, the Hamiltonian (2) is represented in the Fock
set {|N,0〉|0,1〉,|N − 1,1〉|0,1〉, . . . ,|0,N〉|0,1〉, |N,0〉|1,0〉,
|N − 1,1〉|1,0〉, . . . ,|0,N〉|1,0〉} as

Ĥ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h00 · · · 0 −tF · · · 0
−tB

√
(N − 1) · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 1
2UBB(N − 1)(N − 2) 0 · · · −tF

−tF · · · 0 1
2UBB(N − 1)(N − 2) · · · 0

0 · · · 0 −tB
√

(N − 1) · · · 0
...

. . .
...

...
. . .

...
0 · · · −tF 0 · · · h00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

where h00 = UBB(N − 1)(N − 2)/2 + UBF (N − 1). By solv-
ing the Heisenberg’s equation of motion, we can also obtain
the temporal evolution of the state. The coherence α2 of the
bosons is defined in the same way as for the definition of α1

in a pure bosonic system.
For the ensemble of mixed systems of pure bosons and

bosons with polarized fermionic impurities in the double well,
or bosons with fermionic impurities in the optical lattice, the
average coherence in accordance to the fermion-filling m̄ is

α = (1 − 2m̄)α1 + 2m̄α2. (7)

In the following calculations, we choose N = 10 bosons as
example and set the units of tB = tF = 1.

III. POLARIZED FERMIONIC IMPURITIES

For the quantum dynamics, we are concerned with a
delocalized Bose-Fermi mixture in a shallow optical lattice.
When the system parameters are swiftly changed, the atoms

collectively experience a dynamical evolution. In our double-
well model, we focus on the typical case in which the initial
state is a symmetric coherent state. For the pure bosonic
system, the initial state is written as

|ψB(0)〉 =
(

b̂
†
1 + b̂

†
2√

2

)N

|0〉. (8)

For the bosonic system with a polarized fermionic impurity,
the initial state is written as

|ψB(0)〉|ψF (0)〉 =
(

b̂
†
1 + b̂

†
2√

2

)N (
f̂

†
1 + f̂

†
2√

2

)
|0〉. (9)

When the lattice depth is swiftly changed to UBB/tB = 0.2,
which is still in the SF regime, the coherence parameter α

fluctuates around 1, as shown in Figs. 1(a) through (d). It
indicates that the bosons preserve coherence or quasicoherence
and is nearly unaffected by the impurities.
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FIG. 1. Temporal evolution of α(τ ) for the N = 10 system
starting from a coherent state. UBB = 0.2 and UBF /UBB = 0.5. From
(a) to (d), m̄ = 0,0.2,0.35,0.5. For all cases α → 1.

On the other hand, when the lattice depth is swiftly changed
to the deep MI regimes (UBB/tB � 1), the value of α oscillates
between 1 and 0 with a period of T ≈ 0.031, as shown in
Figs. 2(a) through 2(c). It implies that the system experiences
collapses and revivals of the coherence.18 Notably, the odd
revival peaks are gradually damped as the impurity filling
increases for UBF /UBB = z + 0.5 [Figs. 2(a) and 2(c)]. At
m̄ = 0.5, these revival peaks are ultimately destroyed. In
comparison, as UBF /UBB = 1, no revival peaks are damped.
The coherence revivals are not affected by the impurities
regardless of the variations of the impurity fillings [Fig. 2(b)].
This phenomenon was recently observed in the experiment.27

This phenomenon can be understood by the following
single-site evolution model. As the system is swiftly changed
to the deep MI regimes, both the bosonic and fermionic
tunnelings are suppressed and the delocalized distributions
of bosons and fermions are freezed. The eigenstates at a
lattice site are given by product atom number states, containing
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FIG. 2. (Color online) Temporal evolution of α(τ ) for the N = 10
system starting from a coherent state. UBB = 100. From (a) to (c),
and UBF /UBB = 0.5,1.0,1.5. The solid (red) line, dotted (black) line,
dash-dotted (blue) line, and dashed (green) line represent m̄ = 0,m̄ =
0.2,m̄ = 0.35, and m̄ = 0.5, respectively. (d) The dependence of the
hight of the first revival peak on the impurity filling m̄ is illustrated.

k bosons (k = 0,1,2, . . . ,N) and m fermions (m = 0,1).
The eigenenergies corresponding to the eigenstates |ψkm〉 =
(b̂†j )k(f̂ †

j )m|0〉 are Ekm = UBBk(k − 1)/2 + UBF km. The ini-
tial state can be expanded as

|	(τ )〉 = 1

2(N+1)/2

N∑
k=0

Ck
N (b̂†1)N−k(b̂†2)k(f̂ †

1 + f̂
†
2 )|0〉, (10)

which is a linear superposition of products of the eigenstates.
It evolves independently according to

|	(τ )〉 = 1

2(N+1)/2

N∑
k=0

{
Ck

Ne−i[UBB (N−k)(N−k−1)/2+UBF (N−k)]τ (b̂†1)N−k×e−i[UBBk(k−1)/2]τ (b̂†2)kf̂ †
1 |0〉

+Ck
Ne−i[UBB (N−k)(N−k−1)/2]τ (b̂†1)N−k×e−i[UBBk(k−1)/2+UBF k]τ (b̂†2)kf̂ †

2 |0〉}
= e−iUBBN(N−1)τ/2

2(N+1)/2

N∑
k=0

Ck
NeiUBB (N−k)kτ (b̂†1)N−k(b̂†2)k[e−iUBF (N−k)τ f̂

†
1 + e−iUBF kτ f̂

†
2 ]|0〉. (11)

It follows that, except for a global phase factor, there
is a time-dependent phase factor attached to each term
in Eq. (11). At time interval T = π/UBB , the phases
eiUBB (N−k)kτ = (−1)k . In the meantime, if UBF /UBB = z (z ∈
Z) the fermionic terms also give rise to a factor of (−1)k as
UBF T = zπ . Hence the state evolves to the initial coherent
states. At other times the superposition from various terms in
Eq. (11) cancels and the coherence is destroyed. These are
the coherence collapses and revivals, with the revival period
T = π/UBB . On the other hand, if UBF /UBB = (z + 0.5),
the fermionic terms recover its initial state only after a time
interval TF = π/UBF . Hence the revival period should be
T = 2π/UBB , implying that the odd revival peaks are damped.

Since the revival period is doubled when UBF /UBB = (z +
0.5), all phase factors in Eq. (11) equal 1. We conclude that the
state revives alternatively to the antisymmetric and symmetric

coherent states at odd and even peaks, respectively. Here the

antisymmetric coherent state means |	B〉 = ( b̂
†
1−b̂

†
2√

2
)N |0〉. To

further identify the difference of the odd-even revival peaks,
we examine the average-value of the pseudospin 〈Sx〉, which
is defined by

〈Sx〉 = 1
2 〈b̂†1b̂2 + b̂

†
2b̂1〉. (12)

Figure 3 displays the temporal evolution of 〈Sx (τ )〉. Figure 3(a)
explicitly shows that 〈Sx〉 alternatively equals −1 and +1 at
the odd and even revival peaks, respectively. It demonstrates
the difference of coherent states at each revival period. In
Fig. 3(b), which corresponds to UBF /UBB = 1, 〈Sx〉 varies
almost synchronously with α. No revival peaks are damped
in this case. We suggest an experimental measurement of the
physical quantity 〈Sx〉 to verify our conclusion.
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FIG. 3. (Color online) Temporal evolution of 〈Sx〉 for (a)
UBF /UBB = 0.5 and (b) UBF /UBB = 1. The dashed line is α(τ ).

From Eq. (7), we approximately obtain a linear relation
between the damp of the odd revival peaks and the impurity fill-
ings m̄ as αodd peaks ≈ 1 − 2m̄, providing that α2 tends to zero
at the odd revival peaks. The data points indicate the average of
the first three odd revival peaks for m̄ = 0.,0.2,0.35,0.5. The
result qualitatively agrees with the numerical results plotted in
Fig. 2(d).

IV. UNPOLARIZED FERMIONIC IMPURITIES

We next examine the case of unpolarized fermionic impu-
rities. The Hamiltonian is

Ĥ2 = −tB(b̂†1b̂2 + b̂
†
2b̂1) + 1

2
UBB

∑
i=1,2

n̂i(n̂i − 1)

− tF
∑

σ=↑,↓
(f̂ †

1σ f̂2σ + f̂
†
2σ f̂1σ ) + UBF

∑
i,σ

n̂im̂iσ

+ UFF

∑
i

m̂i↑m̂i↓, (13)

where UFF is the fermion-fermion interaction and m̂i↑ (m̂i↓)
are the spin-up (spin-down) fermionic number operators at
the ith site. We have chosen tF↑ = tF↓ ≡ tF and UBF↑ =
UBF↓ ≡ UBF . The average coherence degree is a mixture of
the pure bosons, bosons with spin-up or spin-down fermions,
and bosons with both spin-up and spin-down fermions, which
is expressed as

α = (1 − 2m̄↑)(1 − 2m̄↓)α1 + 2m̄↑(1 − 2m̄↓)α2

+ 2m̄↓(1 − 2m̄↑)α3 + 2m̄↑ × 2m̄↓α4, (14)

where α1,α2,α3, and α4 refer to the coherence degree of the
pure bosons, bosons with a spin-up fermion, bosons with a
spin-down fermion, and bosons with a spin-up and a spin-down
fermions system, respectively. m̄↑ (m̄↓) represent the average
fillings of spin-up (spin-down) fermionic impurities.

Figure 4 shows the temporal evolution of coherence degree
α for UBF /UBB = 0.5 (left column) and UBF /UBB = 1
(right column), respectively. The coherence collapses and
revives as in the case of the polarized fermionic impurities.
Intriguingly, the revivals are irrelevant to the strength of the
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FIG. 4. (Color online) Temporal evolution of α for UBF /UBB =
0.5 (left column) and UBF /UBB = 1 (right column) for fermion-
fermion interactions UFF /UBB = 0.0,0.5,1.0, respectively. In all
cases UBB = 100 and m̄↑ = m̄↓ = 0.5.

fermion-fermion interaction UFF . This effect can also be
interpreted by the independent evolution model as described
above.

As to the damp of the odd revival peaks, we can deduce a
relation with the relative fillings of the unpolarized fermionic
impurities γ = m̄↓/m̄↑ from Eq. (14). Since α2 = α3 ≈ α4,
we have

α ≈ (1 − 2m̄eff)α1 + 2m̄effα2, (15)

where m̄eff = m̄↑ + m̄↓ − 2m̄↑m̄↓ = (1 + γ )m̄↑ − 2γ m̄2
↑. We

conclude αodd peaks ≈ 1 − 2m̄eff . Our results may be demon-
strated by the experimental device used by the authors of
Ref. 27.

V. SUMMARY

In summary, we have studied the quantum coherence of a
few-boson system with fermionic impurities in a double-well
potential. The damp of the odd revival peaks is closely
related to the relative strength of the boson-fermion and
boson-boson interactions. We identify that the symmetric
and the antisymmetric coherent states appear alternatively at
the revival peaks. When the system comprises unpolarized
fermionic impurities, we found that the coherence revivals are
irrelevant to the fermion-fermion interaction.
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14S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers,
A. Widera, T. Müller, and I. Bloch, Nature (London) 448, 1029
(2007).
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