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Thermally and mechanically driven quantum turbulence in helium II
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In most experiments with superfluid helium, turbulence is generated thermally (by applying a heat flux, as
in thermal counterflow) or mechanically (by stirring the liquid). By modeling the superfluid vortex lines as
reconnecting space curves with fixed circulation, and the driving normal fluid as a uniform flow (for thermal
counterflow) and a synthetic turbulent flow (for mechanically driven turbulence), we determine the difference
between thermally and mechanically driven quantum turbulence. We find that in mechanically driven turbulence,
the energy is concentrated at the large scales, the spectrum obeys Kolmogorov scaling, vortex lines have large
curvature, and the presence of coherent vortex structures induces vortex reconnections at small angles. On the
contrary, in thermally driven turbulence, the energy is concentrated at the mesoscales, the curvature is smaller,
the vorticity field is featureless, and reconnections occur at larger angles. Our results suggest a method to
experimentally detect the presence of superfluid vortex bundles.
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I. INTRODUCTION

Recent work1,2 has highlighted similarities between the
turbulence of superfluid helium II (quantum turbulence) and
the turbulence of ordinary (classical) fluids. In particular,
experimental3,4 and theoretical5–11 studies have established
that the distribution of the superfluid kinetic energy over
the length scales (energy spectrum) obeys the same k−5/3

Kolmogorov scaling of ordinary turbulence12 where k is the
wave number. The similarity is remarkable because helium
II is unlike an ordinary fluid: first, it has a two-fluid nature,
consisting of a viscous normal fluid component and an inviscid
superfluid component coupled by a mutual friction;13 second,
superfluid vorticity is not a continuous field (as in an ordinary
fluid) but is restricted to discrete vortex filaments around which
the circulation is fixed to the ratio of Planck’s constant and the
mass of one helium atom.

In most experiments, turbulence in helium II is excited me-
chanically (by stirring the helium with grids or propellers3,4,14

or forcing it along pipes15) or thermally (by the application of
a heat flux16,17). The simplest, most studied form of thermal
stirring (to which hereafter we restrict our work) is called
thermal counterflow. The name arises because the normal fluid
and the superfluid move in opposite directions, so that their
velocity difference is proportional to the applied heat flux and
the net mass flux is zero. Other forms of heat transfer (e.g., pure
superflow) and other techniques to generate turbulence (e.g.,
ultrasound,18 ion injection, and spin downs19) are either less
studied or refer to the low-temperature limit (below 1 K), or
have a special character (rotating turbulence, turbulent fronts,
the Kibble-Zurek mechanism, etc.). Thus, they are not our
interest here, and neither are the special methods used to model
them; for these aspects, we refer the reader to a recent review.20

The aim of this work is to clarify the difference between
thermally excited counterflow turbulence and mechanically
excited turbulence in helium II. For simplicity, we are
concerned only with statistical steady-state turbulence away
from boundaries (thus ignoring the important problems of

turbulence decay and flow profiles), and at the relatively high
temperatures, where mutual friction plays a role.

After setting up the necessary numerical models (Sec. II),
we compute the energy spectrum of counterflow turbulence,
compare it to the spectrum of mechanically driven turbulence,
and test the idea which has been proposed in the literature that
“counterflow turbulence has only one length scale,” meaning
the average intervortex distance (Sec. III). We also find that
thermally and mechanically induced turbulence differ with
respect to curvature (Sec. IV), the presence of coherent
structures (Sec. V), and vortex reconnection statistics. The last
result suggests a method to detect experimentally the existence
of superfluid vortex bundles (Sec. VI). Section VII summarizes
the conclusions.

II. NUMERICAL METHOD

Following Schwarz,21 we model quantum vortex filaments
as space curves s(ξ,t) which move according to

ds
dt

= vtot
s + αs′ × (

vext
n − vtot

s

) − α′s′ × [
s′ × (vext

n − vtot
s )

]
,

(1)

where t is time, α and α′ are temperature-dependent friction
coefficients,22 s′ = ds/dξ is the unit tangent vector at the point
s, ξ is arc length, and vext

n and vext
s are externally applied normal

fluid and superfluid velocities. The self-induced velocity of the
vortex filament at the point s is given by the Biot-Savart law23

vi
s = − κ

4π

∮
L

(s − r)

|s − r|3 × dr, (2)

where κ = 9.97 × 10−4 cm2/s is the quantum of circulation
and the line integral extends over the entire vortex configura-
tion L. The total superfluid velocity is thus vtot

s = vi
s + vext

s .
In the case of thermal counterflow (which hereafter we

simply refer to as thermally driven to contrast it to me-
chanically driven turbulence), vext

n and vext
s arise from the
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imposed heat flux Q̇, where vns = |vext
n − vext

s | = Q̇/(ρsST ) is
the counterflow velocity, vext

n = Q̇/(ρST ), vext
s = −ρnv

ext
n /ρs ,

S is the specific entropy, T is the temperature, ρs and ρn are
the superfluid and normal fluid densities, and ρ = ρs + ρn.
We make the usual21,24 simplifying assumption of uniform
velocity profiles vext

n and vext
s away from boundaries, neglecting

the possibility that at sufficiently large Q̇, the normal fluid
becomes turbulent.25,26 It is also convenient to perform the
calculation in the frame of reference of the imposed superflow,
setting vext

s = 0.
In the case of mechanically induced turbulence, since we

ignore boundaries and flow profiles, we set vext
s = 0 in Eq. (1)

and replace vext
n with the following synthetic turbulent flow27:

vext
n (s, t) =

m=M∑
m=1

(Am × km cos φm + Bm × km sin φm), (3)

where φm = km · s + ωmt , km and ωm = √
k3
mE(km) are wave

vectors and angular frequencies. This vext
n is solenoidal, time

dependent, and, with a suitable choice of Am and Bm (adapted
to the periodic box28), its energy spectrum has Kolmogorov
form E(km) ∼ k

−5/3
m in the range from k1 (corresponding to

the integral scale) to kM (corresponding to the dissipation
scale). Synthetic turbulence is widely used to study transport
properties, and compares very well with direct numerical
simulations and experiments (for example, it satisfies observed
two-point turbulence statistics).

Our calculations are performed in a periodic cube of
size D = 0.1 cm. The numerical techniques to discretize
the vortex filaments into a variable number of points sj

(j = 1, . . . ,N ) held at minimum separation 	ξ/2, compute
the time evolution, desingularize the Biot-Savart integrals,
evaluate vi

s using a tree method (with critical opening angle
0.4), and algorithmically perform vortex reconnections when
vortex lines come sufficiently close to each other, are all
described in our previous papers.9,29–31

It must be stressed that our models have a limitation: the nor-
mal fluid is prescribed rather than computed self-consistently.
The inclusion of the back-reaction of the superfluid vortices
onto the normal fluid would require the numerical solution
of the Navier-Stokes equation for the normal fluid (suitably
modified by the inclusion of a mutual friction term), alongside
the time evolution of the superfluid vortices. However, a
dynamically self-consistent model would be very complex
and computationally expensive, and one could not easily
explore parameter space and the effects of changing numerical
resolution and initial conditions. This approach was attempted
for a single vortex ring.32 In the case of turbulence, this
approach has so far been limited to the initial growth of a
cloud of vortex lines.33

III. ENERGY SPECTRUM

We choose temperature T = 1.9 K (at which α = 0.206
and α′ = 0.0083), which is typical of experiments and allows
direct comparison with previous work, and numerical resolu-
tion 	ξ = 0.0016 cm. First, we calculate thermally induced
turbulent vortex tangles at increasing values of vns . We find
that, after an initial transient, the vortex line density L (vortex
length per unit volume) saturates to a statistically steady
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FIG. 1. (Color online) Thermally induced turbulence. The evolu-
tion of the vortex line density L (cm−2) vs time t (s) at counterflow
velocities (from top to bottom) vns = 1.25 cm/s (black), 1.0 cm/s
(red), 0.75 cm/s (blue), and 0.55 cm/s (green).

state (see Fig. 1) of density L = γ 2v2
ns which is independent

of the details of the initial condition (various vortex loops
configurations were tried). Figure 2 (top) shows a snapshot of
such vortex tangle.

Our vortex line densities agree with previous work; for
example, taking T = 1.9 K, we obtain γ ≈ 137 s/cm2 which
compares well to γ ≈ 140 and 133 obtained in the numerical
simulations of Adachi et al.24 and in the experiments of
Childers and Tough,34 respectively.

To analyze our results, we Fourier transform the superfluid
velocity and compute the energy spectrum Ek . If the turbulence
is isotropic, Ek is defined by

E = 1

V

∫
V

1

2
v2

s dV =
∫ ∞

0
Ekdk, (4)

where V is volume, k = |k|, and k is the three-dimensional
wave number. However, it is well known21,24 that counterflow
turbulence is flattened on the (y, z) plane perpendicular to the
direction (x) of the heat flux. For example, if Lx , Ly , and Lz

are the vortex lengths (per unit volume) projected in the x, y,
and z directions, at vns = 1.25 cm/s we have Lx/L = 0.34 <

Ly/L = 0.55 = Lz/L. It is therefore better to distinguish be-
tween parallel and perpendicular superfluid energy spectra, E‖
and E⊥, calculated replacing v2

s = v2
sx + v2

sy + v2
sz in Eq. (4)

with 3v2
sx and (3/2)(v2

sy + v2
sz), respectively. Figure 3 (top)

shows E⊥ for various vns plotted in the range kD = 2π/D �
k⊥ � k	ξ = 2π/	ξ (where k⊥ is the perpendicular wave
vector); the vertical lines mark the wave numbers k� = 2π/�

corresponding to the average intervortex spacing � ≈ L−1/2.
It is apparent that the perpendicular energy spectrum E⊥ has
a broad peak in the mesoscales at intermediate wave numbers
kD < k < k�. At larger k, the spectrum follows the typical
k−1 scaling of smooth isolated vortex lines as expected. The
parallel spectrum E‖ versus k‖ (where k‖ is the parallel wave
vector) exhibits similar features [see Fig. 3 (bottom)]. Plotting
E⊥ and E‖ versus k rather than k⊥ and k‖ yields similar
results. We note that the counterflow energy spectrum, which
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FIG. 2. Snapshots of vortex tangles (y,z projections). Top: ther-
mally driven by counterflow (vns = 0.75 cm/s, L ≈ 12 000 cm−2);
bottom: mechanically driven (Re = 208, L ≈ 12 000 cm−2).

we measure, is qualitatively similar to the spectrum shown by
Nemirovskii, Tsubota, and Araki35 in their Fig. 2.

Proceeding in analogy to what we did for counterflow
turbulence, we start from an arbitrary seeding initial condition,
drive the vortex tangle with the synthetic turbulent flow of
Eq. (3), and let L grow and saturate to a statistical steady state
of turbulence, which does not depend on the initial condition
(the time behavior of L is similar to Fig. 1). A snapshot of
this mechanically driven tangle is shown in Fig. 2 (bottom).
We then compute the superfluid energy spectrum. In agreement
with previous experimental3,4 and theoretical9,11 work, we find
that the energy is concentrated at the largest scales, k ≈ kD ,
and that Ek ∼ k−5/3 for large k (see Fig. 4).

We conclude that there is a remarkable spectral difference
between thermally driven turbulence and mechanically driven
turbulence. Whereas in the former the turbulent kinetic energy
is concentrated at intermediate length scales, in the latter most
of the energy is at the largest scales, as in classical ordinary
turbulence. An argument is often made in the literature that
counterflow turbulence has only one characteristic length

10
2

10
3

10
−4

10
−3

k⊥

E
⊥
(k

⊥
)

10
2

10
3

10
−5

10
−4

10
−3

k

E
(k

)

FIG. 3. (Color online) Counterflow turbulence. Top: the perpen-
dicular energy spectrum E⊥(k⊥) (arbitrary units) vs wave number k⊥
(cm−1). Bottom: the parallel energy spectrum E‖(k‖) (arbitrary units)
vs wave number k‖ (cm−1). The vertical lines mark k� at increasing
vns from right to left.

scale, the intervortex distance �: it is apparent from Fig. 3 that
Ek does not have a sharp peak at k ≈ k� = 2π/� (indicated by
the vertical lines), but rather a broad maximum at smaller wave
numbers in the mesoscale region kD < k � k�. The traditional
argument, although quantitatively wrong, is thus qualitatively
correct.

IV. CURVATURE

If we look carefully at the vortex tangles shown in Fig. 2,
we notice that the thermally driven tangle (top) contains
relatively more closed loops, and the mechanically driven
tangle (bottom) contains relatively more long vortices which
extend throughout the periodic computational domain. We
sample the curvature C = |s′′| along each vortex loop and
construct the probability density function (PDF) of the mean
curvature C̄ of each distinct loop. Figure 5 shows the result. We
notice that mechanically driven turbulence contains smaller
curvatures (that is, larger radii of curvature R = 1/C) than
thermally driven turbulence; indeed, for the latter PDF(C̄) has
a maximum at C̄ ≈ 250 in correspondence of the maximum
of the energy spectrum shown in Fig. 3.
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FIG. 4. (Color online) Mechanically induced turbulence. Energy
spectrum Ek (arbitrary units) vs wave number k (cm−1) of vortex
tangle driven by the synthetic turbulent flow of Eq. (3) with M =
188 modes. The vertical dashed blue line marks k�. The dashed red
line shows the k−5/3 Kolmogorov scaling. The effective Reynolds
number of the normal fluid is Re = (kM/k1)4/3 = 208, defined by
the condition that the dissipation time equals the eddy turnover time
at kM .

As an additional numerical experiment, we compute the
energy spectra of configurations of circular vortex rings placed
randomly in the periodic box of size D as a function of the
rings’ radius R. We find that if R � D (in which case rings
are “folded” into broken arches by the periodic boundary
conditions), most of the energy is concentrated at the largest
length scales, whereas if R < D the energy spectrum peaks at
intermediate scales, in analogy with the counterflow spectrum.

V. COHERENT STRUCTURES

We also notice another difference between the two forms of
turbulence. If we convolve the vortex filaments with a Gaussian
kernel and define a smoothed vorticity field ωs (the details of
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FIG. 5. (Color online) Probability density function (PDF) of the
mean curvature per vortex loop C̄. Solid black line: mechanically
driven turbulence; dashed red line: thermally driven turbulence.
Notice the larger curvatures present in thermally driven turbulence.

FIG. 6. (Color online) Smoothed vorticity ω sustained by a
constant vext

n (thermally driven turbulence).

the procedure are described in Ref. 10), it becomes apparent
(see Fig. 6) that the thermally induced tangle (sustained
by the uniform vext

n ) is essentially featureless, whereas the
mechanically induced tangle (sustained by the turbulent vext

n )
contains “vortical worms” or regions of concentrated vorticity
(see Fig. 7). This result is consistent with the observation of
“worms” in two other related turbulent flows: ordinary viscous
turbulence12 and pure superfluid turbulence at T = 0 without
the normal fluid;10 both flows satisfy the Kolmogorov k−5/3

scaling.
It is known from previous work that if intense regions

of normal fluid vorticity are imposed, such as Gaussian
vortex tubes,36 ABC flows,37 or worms,38,39 these structures
will induce (via the friction force) similar structures in the
superfluid vortex lines. Our synthetic turbulent flow vext

n ,
although not completely featureless on its own, contains only
weak vortex structures, much smaller40 than the vortical worms
arising from direct numerical simulations of the Navier-Stokes
equation. Therefore, the observation of superfluid vortex
bundles driven by the synthetic turbulent flow vext

n of Eq. (3)
must be an underestimate of the strength of these bundles.

FIG. 7. (Color online) Smoothed vorticity ω sustained by a
turbulent vext

n (mechanically driven turbulence). Notice the intense
vortical regions compared to Fig. 6 which is plotted on the same
scale.
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If we solved the Navier-Stokes equation for the normal fluid
(rather than imposing vext

n ), the normal fluid’s worms would
probably “imprint” vortex bundles in the superfluid, aside
from the bundles which arise naturally in the superfluid as
a consequence of Euler dynamics.10

A tentative explanation of the observation that the vortex
configuration is rather homogeneous for thermally driven
turbulence and inhomogeneous for mechanically driven tur-
bulence is that in the former (assuming, as we do, a uniform
normal flow) the growth rate of the Donnelly-Glaberson
(DG) instability (which transforms normal fluid’s energy into
superfluid vortex length) is the same everywhere, whereas in
the latter it changes with time and space.

The DG mechanism is the following.41 If it is large enough,
the component V of the normal fluid velocity along a vortex
line can destabilize a (helical) Kelvin wave of given wave
number k. In this case, the Kelvin wave grows with amplitude
A(t) = A(0)eσ t , where A(0) is the initial amplitude of the
helix and

σ (k) = α(kV − ν ′k2) (5)

is the growth rate, ν ′ = κL1/(4π ) ≈ κ , andL1 = ln [1/(ka0)].
The growth of the Kelvin wave, however, may be interrupted
by a vortex reconnection which “breaks” the vortex line. It is
known that vortex reconnections play an essential role in the
turbulence.21,42,43 Therefore, it is prudent to assess the effect
of reconnections on the DG instability.

Consider mechanically driven turbulence in a statistically
steady state at T = 1.9 K (α = 0.206) driven by the rms nor-
mal fluid velocity V ≈ 0.93 cm/s, with average vortex length
� ≈ 11.5 cm, vortex line density L ≈ 1.15 × 104 cm−2, and
intervortex spacing � ≈ 9.3 × 10−3 cm, and thermally driven
turbulence at the same temperature with V = 0.75 cm/s,
� ≈ 11.88 cm, L ≈ 1.19 × 104 cm−2, and � ≈ 9.2 × 10−3.
The average number ζ of vortex reconnections per unit
time is monitored during the numerical calculations; we
obtain ζ ≈ 4370 and 7386 s−1 for mechanically and thermally
driven turbulence, respectively [in reasonable agreement with
the estimate ζ ≈ (2/3)κL5/2 ≈ 9500 s−1, for a homogeneous
isotropic tangle, of Barenghi and Samuels44].

The mode which undergoes the most rapid DG instability
has wave number kmax = V/(2ν ′) and growth rate σmax =
αV 2/(4ν ′), corresponding to the length scale dmax = 2π/kmax.
In both mechanically and thermally driven cases, this length
scale (dmax = 0.015 and 0.017 cm, respectively) is larger than
than the average distance between vortices �, and so not
suitable for our analysis. We therefore perform an analysis
for Kelvin waves with a wavelength and a wave number equal
to � and k� = 2π/�, respectively; we assume that such waves
are the lowest frequency waves in our system. The growth rate
of such a wave is σDG = σ (k�), where σ (k) is defined in Eq. (5).

The reconnection rate ζ computed during the simulations is
a statistical property of the vortex tangle as a whole. However,
we can compute a reconnection frequency for a wave number
and wave amplitude by scaling the total reconnection rate by
the fraction of the total vortex length that a given wavelength
takes. In such a manner, we define

σr (A) = ζ

�

∫ �

0
[1 + (Ak�)2 cos2(k�x)]−1/2dx. (6)
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FIG. 8. (Color online) Plot of σDG/σr (ratio of Donnelly-
Glaberson and vortex reconnection frequencies) vs wave amplitude
A (cm), for thermally (dashed, red line) and mechanically (solid line)
driven turbulence; the (blue) dotted-dashed line represents σDG = σr .

Figure 8 shows the ratio σDG/σr vs wave amplitude A
for the two simulations described above. We note a large
contrast in the behavior of the ratio of these two time scales
when comparing the mechanically and thermally driven cases.
For the latter, one would estimate that the amplitude of
perturbations along the vortices can grow to approximately
the intervortex spacing before reconnections dominate the
behavior of the tangle. However, in the mechanically driven
case, σDG ≈ σr for A ≈ D/3 so that the large amplitude
perturbations are able to grow, before reconnections randomize
the tangle and introduce topological changes. Therefore,
the difference in the balance between these two competing time
scales is likely to be partially responsible for the differences
in the nature of the two turbulent systems.

VI. VORTEX RECONNECTIONS

The existence of superfluid vortex bundles,36–39 their
dynamics,45 and their particular significance at very low
temperatures46,47 have been discussed in the literature, but so
far there is no clear experimental evidence for them. It has been
argued that the presence of bundles of locally almost parallel
vortices (which we have demonstrated in the previous section
for mechanically induced turbulence) leads to a suppression
of vortex reconnections.46,47

In the vortex filament model, vortex reconnections are
performed algorithmically; the details are described in Ref. 31.
Within the approximation, intrinsic to the model, it is in-
structive to study the distribution of the angles θ between
reconnecting vortex lines at the level of discretization which
we use (which is necessarily much larger than a0). The
normalized distribution of values of θ , PDF(θ ), is shown
in Fig. 9: the solid black line with black circles refers to
mechanically driven turbulence, and the solid red line with
red squares to thermally driven turbulence. It is apparent
that in thermally induced turbulence, the majority of vortex
reconnections take place between vortex filaments which are
nearly antiparallel (θ ≈ π ), whereas in mechanically driven
turbulence, most reconnections are between vortices which are

104501-5



BAGGALEY, SHERWIN, BARENGHI, AND SERGEEV PHYSICAL REVIEW B 86, 104501 (2012)

0
0

0.2

0.4

0.6

0.8

1

θ
π/2 π

P
D

F
(θ

)

FIG. 9. (Color online) The probability density function (PDF)
of the angle between reconnecting vortices θ . Thermally driven
turbulence: at T = 2.1 K (dashed red line) and at T = 1.9 K (solid red
squares); mechanically driven turbulence: at T = 2.1 K (solid black
line) and at T = 1.9 K (solid black line with solid black circles). Note
that for thermally driven turbulence, the distribution peaks at large θ ,
whereas for mechanically driven turbulence, it peaks at small θ .
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FIG. 10. (Color online) Probability density functions (PDF) of
the fitting parameters A (top) and c (s−1) (bottom) of Eq. (7). Solid
black line: mechanically driven turbulence; dashed red line: thermally
driven turbulence.

0

1

2

3

4

5

6

A

θ
π/4 π/2 3π/4 π

−15

−10

−5

0

5

10

15

20

c

θ
π/4 π/2 3π/4 π

0

500

1000

1500

2000

2500

C̄ r

θ
π/4 π/2 3π/4 π

FIG. 11. (Color online) Scatter plots of the fitting parameters A

(top) and c (middle) of Eq. (7) vs the angle θ between the reconnecting
vortices. The bottom figure shows the mean curvature C̄r of the
reconnecting vortex segments vs the angle θ . Solid black points:
mechanically driven turbulence; open red circles: thermally driven
turbulence.

nearly parallel (θ < π/2). Our results confirm that indeed the
presence of organized bundles of vortices changes the typical
geometry of reconnections.

To check the temperature dependence of the results, we
repeat our calculations at higher temperature, T = 2.1 K. At
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this temperature, the friction coefficients are larger (α = 1.21
and α′ = −0.3883), therefore a more intense vortex tangle is
generated at the same value of the drive; moreover, short Kelvin
waves are damped out more quickly. We check that at the
higher temperature T = 2.1 K, the same differences between
thermally and mechanically driven turbulence are present,
which we have described in the previous sections for T =
1.9 K in terms of energy spectrum, curvature, and coherence
structures. Figure 9 shows that, qualitatively, the distribution of
reconnecting angles is also temperature independent (the black
solid line, which refers to mechanically driven turbulence
peaks at small θ , the solid red line which refers to thermally
driven turbulence peaks at large θ ).

This result could be exploited to look for experimental
evidence of superfluid vortex bundles in the following way.
Using solid hydrogen tracer particles to visualize the vortex
lines, Paoletti, Fisher, and Lathrop et al.48 determined that the
the minimum distance δ(t) between vortex lines before and
after a reconnection scales as

δ(t) = A(κ|t − t0|)1/2(1 + c|t − t0|), (7)

where t0 is the time at which the reconnection takes place, with
fitting coefficients A ≈ 1.2 and c ≈ 0. We proceed in this way,
monitoring vortex reconnections in our numerical calculations.
Figure 10 shows the probability density functions of our
fitting parameters A and c obtained for 1107 reconnections
in thermally driven turbulence (average values 〈A〉 = 2.6
and 〈c〉 = 1.6) and 879 reconnections in mechanically driven
turbulence (average values 〈A〉 = 1.8 and 〈c〉 = 0.7 s−1). Our
fitting coefficients thus agree fairly well with the experimental
findings of Ref. 48 and with the numerical results of Tsubota
and Adachi49 (A ≈ 3 and c ≈ 0 s−1).

Figure 10 shows that the distribution of values of A is
different for thermally and mechanically driven turbulence.
The effect must arise from the different distributions of
curvature and reconnecting angles θ for vortex bundles, which
are present only in mechanically driven turbulence. This is
confirmed by Fig. 11, which displays scatter plots of the fitting
parameters A (top) and c (middle). Figure 11 also shows the

angular dependence of the mean curvature C̄r (bottom) of the
reconnecting vortex segments.

It is clear that the curvature of the filaments after a
reconnection is dependent on the angle of the reconnection.
From inspection of the local induction approximation23 we
would expect larger velocities (and thus A) with increased
curvature, as we observe in the numerical simulations. These
results suggest a possible experimental strategy to establish
the existence of vortex bundles based on the careful analysis
of the reconnection fitting parameter A.

VII. CONCLUSIONS

In conclusion, we have addressed the question of the energy
spectrum of thermally induced counterflow turbulence, and
found that it is unlike the spectrum of turbulence generated
mechanically. More in general, we have found that the two
forms of quantum turbulence which can be generated in
superfluid helium are quite different. Counterflow turbulence,
driven thermally by a constant normal fluid velocity, is uniform
in physical space and the energy spectrum is concentrated
at intermediate wave numbers k. On the contrary, quantum
turbulence driven mechanically by a turbulent normal fluid
contains regions of concentrated coherent vorticity and vortex
lines with larger radii of curvature; the energy is concentrated
at the largest scales, exhibiting the same k−5/3 scaling of
ordinary turbulence, which suggests the presence of an energy
cascade. Our results prove that counterflow turbulence, a form
of disordered heat transfer unique to liquid helium, lacks the
multitude of interacting length scales which is perhaps the
main property of ordinary turbulence. Vortex reconnections are
affected by the presence of bundles of almost parallel vortices,
suggesting an experimental technique to detect these bundles
based on monitoring the vortex separation after reconnections.
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