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Interplay between magnetic anisotropy and dipolar interaction in one-dimensional
nanomagnets: Optimized magnetocaloric effect
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The magnetocaloric effect (MCE) in one-dimensional (1D) magnetic nanostructures is optimized for a specific
value of the magnetic field H ∗ when applied perpendicularly to the longitudinal direction of the system. Our
results reveal that H ∗ corresponds to the saturation field, slightly above the transition from a magnetically
stable dipolar-coupled configuration to an unstable one. This MCE-optimizing field explicitly depends on the
characteristic magnetic parameters of the system, namely, saturation magnetization (MS) and anisotropy constant
(K): H ∗ is directly proportional to M2

S , and the anisotropy contribution is equal to the anisotropy field of the
particles HA = 2K/MS . Accordingly, the MCE in 1D nanomagnets can be directly tuned by a proper choice of
the characteristic MS and K values of the materials.
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I. INTRODUCTION

One-dimensional (1D) magnetic nanostructures, such as
nanowires and nanoparticle chains, constitute nowadays a very
active research field based on their promising use for several
nanotechnological applications such as magnetic cellular
automata,1 domain-wall racetrack memory,2 biomedicine,3 or
plasmon waveguides.4 In addition, the enhanced anisotropy
characteristic of these nanostructures, originated by the mag-
netic dipolar interaction due to their elongated shape, provides
as well a rich theoretical frame for studying the role played
by the magnetic anisotropy and dipolar interaction energies on
their magnetic response. On this basis, much research effort has
been devoted to unveil the magnetic properties of 1D nanomag-
netic systems, embracing work ranging from the experimental
applied perspective5 to the purely theoretical modeling.6

A central task to address in the characterization of 1D
nanomagnetic systems is the role played by the magnetostatic
dipolar interaction, and particularly its interplay with the
magnetic anisotropy. For implementing nanomagnetic logic
devices, it becomes crucial to weight the relative dipolar-
coupling influence among nanomagnets;1 and in regular arrays
of magnetic nanowires, the dipolar coupling among wires has
been recently shown to be at the origin of a memory effect.7

It is well known that the magnetostatic dipolar interaction
favors the longitudinal alignment of the magnetization for
chains of magnetic nanoparticles with collinear easy axes,
but misaligned easy axes can erase such ordering and break
the dipolar-induced enhanced anisotropy.8,9 Furthermore, al-
though the main contribution of the magnetic anisotropy is usu-
ally along the longitudinal axes of the magnetic nanowires,10

it may shift to the perpendicular direction depending on the
geometry of the samples (packing factor and aspect ratio).11

Finally, it is worth to emphasize here that also the characteristic
parameters of the system (saturation magnetization MS and
magnetic anisotropy K) play a significant role on the magnetic
behavior of these nanosystems.12

The rich magnetic response of 1D nanomagnets is receiving
an increasing attention in the context of the promising
magnetic refrigeration, a clean and efficient refrigeration

technology with high potentiality to substitute the pollutant
and inefficient vapor-gas compressing refrigerators currently
used.13 Magnetic refrigeration is based on the magnetocaloric
effect (MCE), the temperature change �Tad undergone by
a magnetic material when subjected to the adiabatic vari-
ation of a magnetic field.14 One of the main drawbacks
of the magnetic refrigeration is the high economic cost of
the materials with largest coolant effect, what hampers its
commercialization, and consequently much research effort is
being devoted to finding inexpensive MCE materials able to
work around room temperature.15 In the search of the most
adequate MCE parameters, not only the type of material,
but also the finding of the most appropriate geometrical and
implementation conditions are key points to address, i.e.,
applied field strength,16 geometry of the magnetic system
for desired applications,17 engineering implementation of the
refrigeration cycle,18 etc. In this regard, a growing attention
is being paid to highly anisotropic magnetic nanostructures,
which present the benefits of easily tuning the MCE with the
magnetic field, and present also the advantages of having a
large surface ratio with respect to the bulk counterpart that
favors the heat removal, and suitability to be used in complex
nanosized gadgets.19–21 Highly anisotropic systems such as
nanowires or chains are excellent candidates fulfilling these
requirements.

In this work, we get a deeper insight into the interplay
between magnetic anisotropy and dipolar interactions on
1D nanomagnetic systems. Our starting point is the study
of a peculiar phenomenon reported in a previous work:
the existence of a particular magnetic field value H ∗ that
optimizes the MCE when applied perpendicularly to chains
of magnetic nanoparticles with collinear-aligned anisotropy
axes.19 Such optimizing MCE peculiarity has been also found
in randomly dispersed nanoparticle systems that interact via
dipolar coupling,22 but a fundamental explanation about its
origin still needs to be provided. It is well known that the MCE
usually peaks near the Curie temperature TC at the second-
order magnetic phase transition.23 However, our computational
1D nanomagnetic system does not include atomic exchange
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coupling and hence the optimized MCE must have a different
origin, presumably of dipolar type.8 The open question is,
therefore, as to how the magnetostatic dipolar coupling can
originate such optimizing MCE feature in 1D nanomagnetic
systems.

This intriguing result will be the driving force on our
study of the complex interplay between magnetic anisotropy
and dipolar energies as governing the magnetic response
of 1D nanomagnetic systems. For such purpose, we have
used a Monte Carlo (MC) technique, which constitutes an
insightful tool in order to have a well-defined and perfectly
controlled system for computing the magnetic properties
of parallel chains of magnetic nanoparticles with collinear
aligned easy magnetization axes. Also, we have complemented
and compared our MC simulations with experimental data
obtained from ordered FeNi nanowire arrays. It is important
to note that both systems, magnetic nanowires and chains
of magnetic nanoparticles with easy anisotropy axes aligned
along the chains, behave in a very similar way in their magnetic
response to an external magnetic field perpendicularly applied
to the long axis (easy axis) of the system.20

II. PHYSICAL SYSTEM

We considered chains of magnetic nanoparticles with
uniaxial anisotropy axes collinear along the chain. The chains
are regularly arranged parallel to each other, and we considered
both a square lattice and a hexagonal one. Figure 1 illustrates
the arrangement of 10 × 10 chains in the square net, each chain
made up of 10 particles length. The aspect ratio between center
to center of neighboring particles in the same chain (d), and in
nearest chains (D) is d/D = 1/3.

The particles are assumed to be all equal (shape, size, MS ,
K , etc.) for the sake of simplicity, spherical, and single domain
with coherent rotation of the inner atomic magnetic moments.
The magnetic moment of the particles is proportional to their
volume V , so that the magnetic moment of an i particle is
given by | �μi | = MSVi . The energies governing the magnetic
behavior of the system are uniaxial anisotropy (EA), Zeeman
(EZ), and dipolar (ED) ones. Thus, the energy per particle for

FIG. 1. (Color online) Schematic drawing of the 10 × 10 × 10
square-lattice sample (main panel). Small panels show the projection
view YX plane, and the zoom illustrates the interparticle distances
between neighboring particles in the same chain (d) and nearest
chain (D).

an N -particle system is given by

E(i) = −KVi
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where the energy terms are EA, EZ , and ED , respectively. n̂i

indicates the orientation of the magnetic moment �μi , and �rij

is the vector connecting particles i and j .
To carry out the simulations of the dependence of the

system magnetization ( �M) on the applied magnetic field ( �H )
and on the temperature (T ), we have used a MC technique
based on the METROPOLIS algorithm, in the same way as in
Ref. 19. To drive the orientation of the magnetic moments of
the individual particles, we randomly select one and generate
(also at random) a new orientation of its magnetic moment,
near the original orientation direction.24 This new position is
accepted with probability min[1,exp(−�E/kBT )], where �E

is the energy difference between trial and old orientations and
kB is the Boltzmann constant. The basic MC computational
time unit, one MC step, is defined as N attempts to change
the magnetic configuration of the system, being N = 1000 the
amount of magnetic entities (magnetic moments) considered
in our simulations. As usual, we use normalized units for
the magnetization, magnetic field, and temperature, which
are, respectively, given as m = M/MS , h = H/HA, and t =
kBT /2KV , being HA = 2K/MS the anisotropy field of the
particles. The advantage of using normalized units is that the
results obtained are valid for any properties of the system under
the above requirements. Small differences in the computational
procedure (such as periodic/nonperiodic boundary conditions)
will be properly described where being necessary.

III. OPTIMIZED MAGNETOCALORIC EFFECT

The MCE is usually reported in terms of the isothermal
magnetic entropy change �SM , easier to obtain from indirect
measurements than �Tad and estimated as

�SM (T ,�H ) =
∫ Hf

Hi

(
∂M (T ,H )

∂T

)
H

dH, (2)

where M is the projection of the magnetization of the system
along the magnetic field direction and �H is the difference
between initial and final magnetic field values Hi and Hf ,
respectively.

Equation (2) indicates that the larger �H and
∂M(H,T )/∂T , the higher �SM and therefore the higher the
MCE. However, from the practical point of view, it is important
to use relatively small H values able to be generated by perma-
nent magnets (usually below 2 T). Hence, it is very important
for applications to find a suitable combination between a
relatively low �H and the corresponding ∂M(H,T )/∂T ratio
able to optimize �SM . In a previous work, we have found
a particular magnetic field H ∗ that optimizes ∂M/∂T (and
hence the MCE) when it is applied perpendicular to 1D chains
of magnetic nanoparticles with collinear-aligned anisotropy
easy axes.19 It is our objective now to analyze the origin of
such an optimizing feature, paying special attention to the role
played by the magnetostatic dipolar interaction.
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A. Geometry dependence of the optimized MCE

Our first step on unveiling the nature of H ∗ is to study
its dependence on the geometry of the array of nanochains,
i.e., size of the system and spatial symmetry. Our previous
results reported in Ref. 19 are based on a 5 × 5 chain system
distributed on a square lattice. Each chain is composed by 10
particles length, and periodic boundary conditions are used that
result in an infinite system in the YZ plane. Now, we consider a
much larger system of 10 × 10 chains in a square lattice (same
characteristics of each chain), but without periodic boundary
conditions; also, the same system is placed on a hexagonal
lattice displaying the same interparticle/interchain distance
with a (1/3) aspect ratio. For both systems, we have computed
the zero-field cooling (ZFC) and field cooling (FC) curves for
different strengths of the applied field, in order to obtain the
∂M/∂T data (∂m/∂t in normalized units).

The ZFC/FC curves for a normalized value of the magnetic
field h = 1.0 are displayed on the inset of Fig. 2 for the 10 × 10
chains system in the square and hexagonal lattices, as well as
the corresponding data from Ref. 19. Both ZFC and FC curves
exhibit a growing trend at low temperatures until a particular
maximum value tmax is reached, and a superparamagnetic-like
decay above it. Noteworthy, both curves overlap in the whole
temperature range for all field values, even for fields well
below the anisotropy field of the particles, whereas usual
superparamagnetism (SPM) is characterized by a splitting
between ZFC and FC curves below the maximum of the
ZFC one for low applied magnetic fields, with a continuous
increase of the FC curve while decreasing the temperature.
This maximum in the ZFC curve is usually approximated
as the so-called blocking temperature (TB), the temperature
threshold below which the particles are in the blocked state
and show memory (i.e., irreversibility), and above which the
particles orient in a paramagnetic-like fashion and show no
memory effects (i.e., reversibility).25 The distinct features

FIG. 2. (Color online) (−∂m/∂t)max (circles) and t (−∂m/∂t)max

(squares) data vs h = H/HA, for the 10 × 10 square lattice depicted
in Fig. 1 (full symbols), together with the 5 × 5 square lattice data
of Ref. 19 (empty symbols) shown for the comparison. Inset shows
the ZFC and FC curves of four different systems (5 × 5 chains with
periodic boundary conditions of Ref. 19; 10 × 10 finite-size systems
both in the hexagonal and square lattice; and a very long single chain
of 1000 particles).

of our system indicate that the peak in the ZFC/FC curves
does not correspond to TB . Instead, it can be rather regarded
as an ordering temperature with typical characteristics of a
phase transition as time and magnetic field independence (see
Refs. 8 and 19 for a detailed discussion). These special features
originate on the particular geometrical arrangement of the
present case, with the magnetic field applied perpendicularly
to the magnetic easy anisotropy axes.

The main panel in Fig. 2 shows the maximum of the
−∂m/∂t data, (−∂m/∂t)max, versus the normalized field h for
the 10 × 10 × 10 square-lattice case, as well as the tempera-
ture dependence of such maximum t (∂m/∂t)max. These values
correspond to the temperature range above the maximum of the
curves, where ∂m/∂t < 0 (direct MCE), since the temperature
range where ∂m/∂t > 0 (inverse MCE) rapidly disappears
with increasing field. A pronounced peak appears at h∗ = 2.25,
very close to the data published in Ref. 19 (reproduced in
Fig. 2 for comparison). In fact, it can be noted that the maxi-
mum is reached at the same value h∗ = 2.5 if considering the
same precision in the values of h. This coincidence indicates
that the existence of the optimizing MCE field is roughly inde-
pendent of the system size. Furthermore, the results obtained
for the hexagonal lattice (not shown) are very similar as well
to the square-lattice case, pointing out that the optimizing field
h∗ appears to be also independent of the spatial distribution
of chains and is therefore originated solely by the elongated
chainlike geometry with collinear aligned anisotropy.

B. One very long single chain of nanoparticles

In order to confirm the above argument, we have performed
similar MC simulations for a particular system that emphasizes
the uniaxial and collinear features of the easy anisotropy axes.
We consider an isolated very long chain formed by 1000
particles long, so that interactions among neighboring chains
are avoided and the broken-symmetry effects at the edges
are minimized. The scheme of this very long single chain
is illustrated in Fig. 3. The shape and absolute magnitude of
the ZFC and FC curves obtained for this isolated chain are
very similar to that of the different geometrical arrangements
considered (see inset in Fig. 2), indicating that the origin of
the optimizing-MCE features lies mainly on the single-chain
elongated structure. Interactions among parallel neighboring
chains would be second-order effects.

Once we have confirmed that the optimizing MCE arises
from the elongated single-chain geometry with collinear easy
anisotropy axes, our next step is to perform an exhaustive anal-
ysis of the magnetic field dependence of the MCE in such struc-
tures. With that aim, we have carried out m(h) simulations, as
displayed in Fig. 4(a) for different (normalized) temperatures.
The data shown correspond to the positive branch of a full m(h)
hysteresis loop for the comparison with the results obtained
from the m(t) data plotted in Fig. 2. The computational

FIG. 3. (Color online) Schematic drawing of a very long single
chain with N = 1000.
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FIG. 4. (Color online) (a) Positive branch of the m(h) hysteresis
curves for different normalized temperatures, and (b) the ∂m/∂h data
corresponding to the t = 0.001 case. Negative branch is symmetric.
Inset in (a) displays the ∂m/∂h data for different temperatures; inset
in (b) illustrates the evolution with larger computational time (larger
MC steps) of the ∂m/∂h data corresponding to the t = 0.001 case.

procedure was the following: initially, the orientation of the
magnetic moments was randomly generated at very high tem-
perature, and then cooled in zero field down to the isothermal
temperature of reference. Next, the magnetic field was perpen-
dicularly applied and increased up to h = 5.0; then, the field
was decreased down to h = −5.0, and finally increased again
up to h = 5.0. The field-variation ratio was �h = 0.03299
every 450 MC steps during the entire MC simulation process.26

The m(h) data displayed in Fig. 4(a) follow an essentially
linear dependence of m(h) until saturation at low temperatures,
which progressively smooths with increasing temperature. All
curves exhibit a nonhysteretic SPM-like behavior that indicates
reversibility, in agreement with the overlapping between the
ZFC and FC curves.

More detailed information can be extracted from the
corresponding ∂m/∂h data, as shown in the inset of Fig. 4(a)
for the different cases of the main panel. The overall trend
of the field derivative of magnetization is a slight decrease
with increasing field up to saturation, becoming practically
zero for higher-field values. In order to have a more detailed
analysis of the ∂m/∂h data in relation with the optimizing-
MCE feature, we focus on the low-temperature-limit case
t = 0.001 since the optimizing-MCE phenomena occur at low
temperatures, as displayed in the main panel of Fig. 4(b).
Two remarkable features can be observed in the ∂m/∂h

data: first, an abrupt decay to zero, where the inflection
point of the curve indicates the critical field, approximately
h∗ = 2.5. This critical value is straightforward related to the
field that optimizes the above-mentioned MCE. Second, and
more curious, an oscillating behavior appears for fields roughly

above the anisotropy field of the particles (h = 1) and below
the critical field h∗ = 2.5. The amplitude of these oscillations
attenuates rapidly with increasing h. When the temperature
increases, the sharp shapes of both features vanish due to the
thermal excitations, as observed in the inset of Fig. 4(a). We
have also tested the temporal evolution of these two features,
performing the m(h) simulations of the main panel in Fig. 4(b)
at different field-variation ratio, �h = 0.03299 every 225,
450 (main panel), and 900 MC steps, accounting for diverse
computational time. The results show that with increasing the
computational time, the abrupt change in ∂m/∂h becomes
more accentuated, whereas the oscillations shift to smaller
field values [see inset of Fig. 4(b)].

The critical field h∗ coincides with the applied field
value at which the magnetization of the chain, initially
lying along the chain axis and that gradually turns into the
perpendicular direction with increasing the external field,
reaches the saturation state. At this field h∗, the system
undergoes a sudden change in its magnetization state similar
to what happens in magnetic phase transitions where also
the MCE is enhanced. This analogy could explain why our
system shares common optimizing features at the critical field
with systems that undergo a second-order (reversible) phase
transition. In our case, such change is driven by the strength
of the perpendicularly applied magnetic field, whereas in the
other case, this phenomenon is usually due to a magnetization
dependence on temperature.

FIG. 5. (Color online) (a) Schematic picture of a highly hexag-
onally ordered nanowire array in the patterned alumina template;
(b) SEM cross-section view of the parallel aligned Ni80Fe20 nanowires
embedded in the alumina template; and (c) ∂m/∂h vs h data measured
at room temperature (RT), where the dotted square indicates the oscil-
lations observed in ∂m/∂h at the same field range than in the MC sim-
ulations. The solid line indicates how to estimate h∗. Inset in (c) shows
∂m/∂h vs h data obtained at different field rates of measurement.
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C. Comparison with the experimental system

With the purpose of experimentally confirming the
(thermo)magnetic behavior predicted by our simulations, we
have measured the M(H ) loops in spatially ordered Ni80Fe20

(Permalloy) nanowires arrays when applying a magnetic field
perpendicular to the wires’ axis. This comparison is feasible
based on the similar magnetic behavior exhibited by ferromag-
netic nanowires and chains of magnetic nanoparticles,20 as it
was pointed out in the Introduction.

Magnetic nanowires were fabricated by electrochemical de-
position in nanoporous alumina (Al2O3) templates, as reported
elsewhere.27 The nanowires are spatially distributed following
a hexagonal centered arrangement, with main average diameter
around d = 35 nm and interwire (center-to-center) distance
of D = 105 nm, i.e., keeping the same aspect ratio (1/3) as
considered in the MC simulations. A schematic drawing of the
nanowires’ array embedded into the alumina template is shown
in Fig. 5(a), and Fig. 5(b) shows a SEM cross-section view of
the sample. Since we have already proven that the magnetic
response of the system is roughly independent of the spatial
arrangement of the 1D chains (Sec. III A), we can directly
compare these experimental results with our simulated ones.

In Fig. 5(c), we show the ∂m/∂h versus h curves. Those
curves correspond to the case of the magnetic field applied
perpendicular to the nanowires, as depicted in Figs. 5(a) and
5(b), where the normalizing anisotropy field HA (≈2 kOe) was
obtained from the longitudinal M(H ) curves measured when
applying the magnetic field parallel to the nanowires’ axis. It
can be appreciated from the main panel of Fig. 5(c) that the
field value h∗ that optimizes the maximum of the MCE of the
system is reached at the extrapolated field value to the h axis
going through the inflection point in the ∂m/∂h curve, which

occurs at around h = 2.5 (i.e., calculated in a similar way as
that of the Curie temperature TC of a magnetic material). This
result fits well to those obtained from MC simulations for
chains of collinear nanoparticles. The black square indicates
the appearance of some oscillating features in the ∂m/∂h curve
that occur near the anisotropy field value, as obtained also in
the MC simulations.

The inset of Fig. 5(c) shows the effect of the time
of measurement in the ∂m/∂h versus h curves, taken at
four different rates of field measurement, namely, 50 Oe/s,
25 Oe/s, 12.5 Oe/s, and 6 Oe/s, respectively. The main idea is
to study the influence of reducing the time interval or average
of measurements in order to investigate the magnetic behavior
of our system by minimizing its response time interval to
the applied field and to search the oscillating features in the
derivative of magnetization versus changes in the applied
field from saturation down to the remanent state. It can be
clearly seen that while the noise in the magnetization derivative
increases when reducing the field rate, the optimizing field
value h∗ does not change in a significant way. Therefore,
this experimental system constituted by an ordered array of
ferromagnetic nanowires reproduces nearly all the features
required for the optimization of its MCE, when a particular
field value of h∗ is applied perpendicularly to the wires’ axis.

IV. DISCUSSION

In Sec. III, we have found that the optimizing-MCE field h∗
is originated by the chainlike characteristic of the system, and
occurs roughly at saturation of the magnetization. Our purpose
now is to discuss the origin of such optimizing feature, which is
very close to what happens in phase transitions, from the point

(a)

(b) (c) (d)

FIG. 6. (Color online) Schematic drawing of the change in the magnetic ordering of some parallel chains under different magnitudes of the
perpendicularly applied magnetic field h: (a) h = 0, ground-state arrangement of the magnetic moments; (b) small field h = 0.2; (c) large field
h = 5.0; (d) ideal AFM-like dipolarly energetically stable ordering.
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FIG. 7. (Color online) (a) Field dependence of the different energy contributions in normalized units of E/2 KV, for the case with anisotropy;
(b) same energies as in (a), for the system without anisotropy; evolution of the dipolar energy vs h for different vales of MS , both for the
anisotropy (c) and non-anisotropy cases (d), where the solid (red) curves reproduce the dipolar energy curves of cases (a) and (b), respectively.
Vertical dotted lines stand for the corresponding h∗ values.

of view of the microscopic magnetic ordering configuration of
the system.

Our interpretation of the phenomenon is schematically
depicted in Fig. 6 as follows: (a) in the low-field-limit case
h = 0, the configuration of the magnetic moments inside
each chain is of ferromagnetic (FM) type in the longitudinal
direction; (b) under a low applied field (low in comparison
with HA, i.e., h � 1), the magnetic moments gradually deviate
from the equilibrium position in the field direction, but still
the in-chain FM configuration is energetically stable from
the dipolar-coupling energy viewpoint; (c) for a very large
field (again, large in comparison with HA, i.e., h � 1), the
magnetic configuration is FM-like type in the perpendicular
direction; (d) whereas the dipolar coupling would rather prefer
an out-of-chain antiferromagnetic- (AFM-) like arrangement.
We surmise that the optimizing-MCE critical field h∗ is the
threshold that marks the transition from the low-field dipolarly
stable magnetic configuration of case (b), to the unstable
arrangement of case (c). Especially relevant is the difference
between the field-driven FM-like ordering in the perpendicular
direction (c), energetically unstable, and the ideally stable
AFM-like arrangement one, as shown in (d). We have used
a large system, instead of a single chain, to emphasize that
the argument is valid independent of the spatial arrangement
of the particles as long as the chainlike configuration is
maintained. Interchain interactions may modify the value of
the critical field h∗, but do not make disappear the optimizing
feature.

To check our interpretation, we have performed a detailed
analysis of the different energies governing the magnetic re-
sponse of the system (namely, Zeeman, anisotropy, and dipolar
one), an insightful tool provided through the MC method for
studying the underlaying physics. Our interpretation is that if
the optimizing-MCE feature originates at the change from a
dipolarly stable configuration to an unstable one, this would
be directly reflected in the dipolar energy with a change from a
negative value to a positive one. The analysis of the energies in-
volved in the m(h) processes is presented in normalized units of
energy respect to 2 KV, i.e., eA = EA/2 KV, eD = ED/2 KV,
and eZ = EZ/2 KV. Also, the total energy ET is presented
in normalized units eT = ET /2 KV, with eT = eA + eD + eZ .
These normalized units are used with the purpose of making
easier the comparison of their relevance with the thermal
energy (with the normalized temperature t = kBT /2 KV). In
Fig. 7(a), it is shown the evolution of the different energy
contributions versus applied field, together with the total one,
for the t = 0.001 case.

The evolution of the energy contributions displayed in
Fig. 7(a) shows that with increasing field, the absolute value
of the uniaxial anisotropy energy decreases and eventually
reaches zero value, while the dipolar one increases from
negative (stable) values until reaching the zero value and
then becomes positive, reaching its maximum value at h∗.
The dipolar energy changes its sign at a field value slightly
smaller than h∗, while h∗ coincides with the value at which
the anisotropy energy reaches zero (the latter becomes evident
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FIG. 8. (Color online) m(h) hysteresis cycles for the case with
uniaxial anisotropy, for different MS values. Inset shows the depen-
dence of the critical field h∗ on M2

S , both for the anisotropy and
non-anisotropy cases.

since at saturation the magnetization and uniaxial anisotropy
are perpendicular). Therefore, the explanation for the existence
of the optimizing field h∗ seems to be more related to the
vanishing of the anisotropy energy than to the change in the
dipolar-coupling configuration. Increasing the value of the
applied field makes the magnetic moments to progressively
separate from the easy anisotropy axis, resulting in a decrease
of the anisotropy energy. Hence, the amount of freedom
degrees increases and counterbalances the constraint due to
the increasing of the Zeeman energy, thus resulting in an
increase of the magnetic entropy. This result is in agreement
with previous results reported in the literature, which predict
an increase of �SM in systems with decreasing the magnetic
anisotropy.28 Once the uniaxial magnetic anisotropy energy
reaches zero, larger field values make to decrease the amount
of freedom degrees available and therefore �SM drops. The
threshold between both behaviors occurs at h∗.

With the purpose of further investigating this behavior, we
have considered the same system but neglected the uniaxial
anisotropy, i.e., we considered that the only energies governing
the system are the dipolar and Zeeman. This case is shown in
Fig. 7(b); note that we conserved the H/HA units in the field
axis with the only purpose of facilitating the comparison with
the case with uniaxial anisotropy, but in fact what matters is that
they have the same values in real units. In this non-anisotropy
case, it is observed that h∗ becomes much smaller but is still
bigger than the field at which the sign of the dipolar energy
changes, i.e., optimizing occurs at saturation. Interestingly,
the difference between the critical fields for the anisotropy
and non-anisotropy cases seems to be of the order of the
anisotropy field of the particles. Therefore, in order to have
more information about the interplay between the dipolar and
anisotropy energies, we have for both scenarios (anisotropy
and non-anisotropy cases) systematically varied the strength
of the dipolar interaction by changing the value of MS .

In Figs. 7(c) and 7(d), we show, respectively, the evolution
of the dipolar energy with the applied magnetic field for
the system with and without uniaxial anisotropy. The main
differences between both cases are that saturation is always
reached at smaller field values for the non-anisotropy case,

and that oscillations are only observed for the anisotropy case.
The absolute values of the dipolar energy at low fields are larger
for the non-anisotropy case, reflecting the fact that when the
uniaxial anisotropy is present, the chains can be broken8 and
hence the dipolar energy is smaller. As expected, the dipolar
energy values at saturation are the same for both cases because
they are equivalent when the anisotropy energy reaches zero
value for the uniaxial anisotropy case.

The difference between the critical field of the anisotropy
and non-anisotropy cases is nearly one in units of the
anisotropy field, suggesting that the uniaxial anisotropy adds
a contribution to the critical field equivalent to the anisotropy
field. In order to check this possibility, we have systematically
analyzed the value of h∗ for both cases. The results are plotted
in Fig. 8. Here, we observe that larger values of MS require
larger fields to magnetically saturate the system, illustrating
the stronger dipolar-coupling strength. The inset shows that
h∗ follows a linear dependence on M2

S , both for the anisotropy
and non-anisotropy cases. Remarkably, the difference between
both cases is equivalent to the anisotropy field of the particles.

V. CONCLUSIONS

We have obtained by means of a computational Monte
Carlo technique that for chains of magnetic nanoparticles with
collinear aligned easy anisotropy axes under a perpendicularly
applied magnetic field, it is possible to identify a particular field
value h∗ that optimizes the MCE. This property is mainly orig-
inated by the particular elongated geometry of the system, and
is also experimentally observed in ordered arrays of ferromag-
netic FeNi nanowires. Its origin lays on a complex interplay
between the uniaxial magnetic anisotropy and the dipolar in-
teraction energies, and can be identified as the saturating field.
Interestingly, h∗ depends linearly on M2

S , and the anisotropy
energy adds a contribution equivalent to the anisotropy field
of the particles HA. Our MC simulation model demonstrates
that the dipolar interaction energy remains in the origin of the
existence of a critical field H ∗ for optimizing the MCE.

These results may be very useful for the design of specific
MCE applications since the properties of the system can be
tuned by the combination of K and MS . It is important to note
that while the MC simulations predict h∗ to occur in the low-
temperature limit, the experimental measurements indicate,
however, that it is possible to observe such an MCE-optimizing
feature also at room temperature, more desirable for MCE
applications.

In addition, we also reported on the existence of an
oscillating feature in the ∂M/∂H data, slightly above the
anisotropy field of the particles and that disappears if no
uniaxial anisotropy is considered. Further work is necessary
in order to gain deeper understanding on the nature of these
oscillations.
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Buján-Núñez, and C. Vázquez-Vázquez, J. Non-Cryst. Solids 353,
793 (2007).

17B. Hernando, J. L. Sánchez-Llamazares, V. M. Prida, D. Baldomir,
D. Serantes, M. Ilyn, and J. González, Appl. Phys. Lett. 94, 222502
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