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Er2Ti2O7 is believed to be a realization of an XY antiferromagnet on a frustrated lattice of corner-sharing
regular tetrahedra. It is presented as an example of the order-by-disorder mechanism in which fluctuations lift
the degeneracy of the ground state, leading to an ordered state. Here we report detailed measurements of the
low-temperature magnetic properties of Er2Ti2O7, which displays a second-order phase transition at TN � 1.2 K
with coexisting short- and long-range orders. Magnetic susceptibility studies show that there is no spin-glass-like
irreversible effect. Heat capacity measurements reveal that the paramagnetic critical exponent is typical of a
3-dimensional XY magnet while the low-temperature specific heat sets an upper limit on the possible spin-gap
value and provides an estimate for the spin-wave velocity. Muon spin relaxation measurements show the presence
of spin dynamics in the nanosecond time scale down to 21 mK. This time range is intermediate between the
shorter time characterizing the spin dynamics in Tb2Sn2O7, which also displays long- and short-range magnetic
order, and the time scale typical of conventional magnets. Hence the ground state is characterized by exotic
spin dynamics. We determine the parameters of a symmetry-dictated Hamiltonian restricted to the spins in a
tetrahedron, by fitting the paramagnetic diffuse neutron scattering intensity for two reciprocal lattice planes.
These data are recorded in a temperature region where the assumption that the correlations are limited to nearest
neighbors is fair.
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I. INTRODUCTION

Because of the geometrical frustration of their magnetic
superexchange interactions, the insulating pyrochlore com-
pounds R2M2O7, where R stands for a magnetic rare-earth
ion and M = Ti or Sn, display a variety of unusual magnetic
behaviors.1 Examples include (i) spin-ice systems Ho2Ti2O7

and Dy2Ti2O7,2,3 (ii) Yb2Ti2O7 with a sharp transition in
the spin dynamics fingerprinted by a pronounced peak in
the specific heat,4 and (iii) Tb2Sn2O7 in which magnetic
Bragg reflections are observed at low temperature by neutron
diffraction,5 while no spontaneous magnetic field is found by
the muon spin rotation (μSR) technique.6 In addition, even
when a spontaneous field and magnetic Bragg reflections are
detected, as is expected for a conventional ordered magnet,
persistent spin dynamics in the ordered state are surprisingly
observed, e.g., in Gd2Ti2O7 and Gd2Sn2O7.7–13 In terms
of crystal-field anisotropy, the spin-ice systems are strongly
Ising-like. Tb2Sn2O7 has also an Ising anisotropy, but not so
strong. Yb2Ti2O7 is XY-like from the crystal-field point of
view and the Gd compounds are approximately isotropic.

Although Yb2Ti2O7 is XY-like, its magnetic moments are
not perpendicular to the local 〈111〉 axes and it does not
display long-range magnetic order,4,14 although this absence
of order has been disputed15,16 and is still under debate.17

These anisotropy and absence of long-range order also pertain
for Yb2GaSbO7.18 Hence, it was of great interest when
Er2Ti2O7 was reported to be XY-like and to display long-range
order at low temperature with the Er3+ magnetic moments
perpendicular to their local [111] axes.19 Later on, however,

coexisting short- and long-range orders were found and soft
collective modes were detected.20 The presence of the soft
modes has been attributed to the incommensurate value of the
canting angle.21 These astonishing inferences call for more
detailed data and analysis. This is the purpose of this work. One
of the experimental advantages of Er2Ti2O7 over Yb2Ti2O7

and Yb2GaSbO7 is the possibility to produce large high-quality
crystals.

Another reason for the interest in the Er2Ti2O7 system
is the following. As a realization of an XY antiferromagnet
on a pyrochlore lattice, it is a natural candidate for observ-
ing the phenomenon of order by disorder which has been
discussed theoretically for more than three decades since
the pioneering study by Villain and coworkers.22 Bramwell
et al. indeed showed that while the zero-temperature ground
state is degenerate, thermal fluctuations select a subset of
the manifold and induce a first-order phase transition to
a conventional Néel ground state.23 The order-by-disorder
mechanism has been confirmed in several subsequent works,
see, e.g., Refs. 19,24–26, and interestingly the more recent
studies consider the effect of quantum fluctuations and tend to
explain the second-order nature of the transition experimen-
tally observed in Er2Ti2O7.

The organization of this paper is as follows. Section II
gives a survey of the physical properties of Er2Ti2O7 and
discusses its magnetic structure. In Sec. III we describe the
growth of the single crystals, their basic characterizations,
and the experimental methods used in the present work.
Section IV presents our investigation of the bulk properties
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of the system, including magnetic-susceptibility and specific-
heat measurements and their analysis. The following section
(Sec. V) deals with the microscopic techniques, i.e., muon spin
relaxation and neutron scattering in the paramagnetic phase. A
summary of our key results is given in Sec. VI. The physics of
effective one-half spins (Kramers doublets) on a tetrahedron is
described in Appendix A. Appendix B outlines the calculation
needed for the analysis of the specific-heat data presented in
Sec. IV.

II. PHYSICAL PROPERTIES OF Er2Ti2O7 AND
MAGNETIC STRUCTURE

Erbium titanate, Er2Ti2O7, is an insulating pyrochlore com-
pound that crystallizes into the cubic space group Fd3̄m, with
the lattice parameter a = 10.0727 (1) Å at room temperature
and x = 0.3278 (8), the free position parameter allowed by
the space group which characterizes the 48f site occupied by
oxygen.27

The Er3+ ions, which occupy the 16d Wyckoff positions in
the space group, are located at the vertices of a corner-sharing
network of tetrahedra; see Fig. 1. A single tetrahedron with
four Er sites comprises the primitive unit cell. The Er3+ crystal
sites are all equivalent and the local symmetry is D3d , where
the 3-fold axes pass through the center of a tetrahedron, in
the directions [111], [1̄1̄1], [1̄11̄], and [11̄1̄] for the four sites
numbered 1, 2, 3, and 4, respectively, on a single tetrahedron.
According to Hund’s rules, the total angular momentum of
the Er3+ ion in its ground multiplet is J = 15/2. The 16-
fold degeneracy is lifted into Kramers doublets by the crystal
electric field (CEF).

The ground-state doublet can be described as an effective
spin S = 1/2 with a quantization axis z parallel to the local
trigonal axis. It is well isolated from the excited doublets,
the lowest being at about 74 K above the ground state in
temperature units.19 We shall write the CEF ground-state

FIG. 1. (Color online) The network of corner-sharing regular
tetrahedra formed by the rare-earth atoms in the pyrochlore structure
in which Er2Ti2O7 crystallizes. The axis of trigonal symmetry at the
position of a rare earth is one of the cube diagonals. There are two
types of tetrahedra in the network, which differ by their orientation:
Type B is rotated by 90◦ about the cubic axes with respect to type A.
We distinguish the two sets by two colors in the drawing. Since each
rare earth is at a corner shared by two tetrahedra, one of each kind,
either the set of the four corners of all the A tetrahedra or the set of
the four corners of all the B tetrahedra is sufficient to describe the
Er3+ lattice.

doublet wave functions as |φ±
0 〉. This doublet is characterized

by its spectroscopic factors along and perpendicular to the
trigonal axis, g‖ and g⊥, respectively. From a global anal-
ysis of the CEF for the pyrochlore R2Ti2O7 series it has
been deduced that g‖ = 2gJ |〈φ±

0 |Jz|φ±
0 〉| = 1.8 (5) and g⊥ =

gJ |〈φ±
0 |J±|φ∓

0 〉| = 7.7 (1).28 Here gJ = 6/5 is the Landé fac-
tor. These spectroscopic factors are related to matrix elements
that we shall need for the analysis of neutron scattering data.
We have

jCEF ≡ 〈φ+
0 |Jz|φ+

0 〉 = −〈φ−
0 |Jz|φ−

0 〉 = 0.75 (20), (1)

tCEF ≡ 〈φ±
0 |J±|φ∓

0 〉 = 6.42 (8), (2)

where J± ≡ Jx ± iJy . The matrix elements obviously refer
to quantities written in local axes; see Appendix A 1 for a
discussion. By definition, the large difference between jCEF

and tCEF (and obviously also between g‖ and g⊥) reflects the
strong CEF anisotropy of the XY type of the Er spins (in
contrast to the Ising limit for which jCEF 
 tCEF).

The compound displays a magnetic phase transition at
TN � 1.2 K.29 The large negative value of the Curie-Weiss
temperature θCW (θCW = −22 K is deduced from susceptibility
data measured between 20 and 50 K; see Refs. 29 and 30)
suggests a strong antiferromagnet coupling.

Neutron diffraction shows the magnetic structure below TN

to be noncollinear with the propagation vector k = (0,0,0).19

From polarized neutron diffraction, the Er3+ magnetic moment
is determined to be m = 3.25 (9)μB at low temperature.31

A note of caution seems justified at this juncture: m is not
directly related to the spectroscopic factors which have been
determined for a paramagnetic ion, since the molecular field
has to be taken into account for an estimation of m. The
diffraction data have been originally described19,31 with the
�+

3 irreducible representation.32 We notice that this description
also considered in Refs. 20,33, and 34 has been recently
disputed by Briffa et al.21

In fact the available microscopic information provides an
insight into the moment orientation. Let us consider a one-half
spin subjected to a molecular field oriented at a polar angle θ

from the [111] axis. The following relation can be derived:35,36

tan θ = g‖
g⊥

√
μ2

Bg2
‖ − 4m2

4m2 − μ2
Bg2

⊥
. (3)

Numerically this gives θ ≈ 20◦. This means that the field is
not far from being parallel to the [111] axis. However, the
polar angle φ of m is given by tan φ = (g⊥/g‖)2 tan θ ; i.e.,
φ ≈ 80◦. Taking into account the uncertainties on g⊥, g‖, and
m, this analysis indicates that the moment is perpendicular to
the local [111] axis, or at least close to being perpendicular.
This is consistent with the magnetic structure first proposed
by Champion et al.,19 and invalidates the proposal of Ref. 21.

Regardless of the magnetic structure, the (2,2,0) Bragg
reflection has been shown to be anomalous with broad tails.20

Quantitatively, we find that the intensity around this position is
proportional to |q − q(2,2,0)|−η with η � 0.6 for |q − q(2,2,0)| >

0.03 Å−1; see Fig. 2. The value of the exponent η is much
reduced compared to η � 1.8 found in Tb2Sn2O7.6,37 For a
conventional ordered compound the neutron intensity would
be Gaussian-like, i.e., with a much steeper slope.
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FIG. 2. (Color online) Neutron intensity for the (2,2,0) Bragg
peak of Er2Ti2O7 plotted as a function of |q − q(2,2,0)|. The data are
from Ruff et al. (Ref. 20). The instrumental resolution is determined
from the reflection measured under a 3 T magnetic field. The line for
|q − q(2,2,0)| � 0.015 Å−1 is described in the main text.

Inelastic neutron scattering data recorded in zero field
suggest the presence of magnetic soft modes,20 in agreement
with the power-law behavior of the specific heat below TN.34

At first sight this is surprising given the expected strong
crystal-field anisotropy of the Er3+ ions.21

III. EXPERIMENTAL

Er2Ti2O7 single crystals were grown by the floating zone
technique using a commercial optical furnace. Feed rods were
prepared from high-purity oxides (TiO2, 99.995% and Er2O3,
99.99%), mixed and heat treated up to 1180 ◦C. After sintering,
a rod was heat treated up to 1350 ◦C in air. Crystal growth con-
ditions were optimized under air (1 �/min) at the growth rate
of 2 mm/h coupled with a rotation rate of 30 rounds per minute.
As with most of the titanate pyrochlores, Er2Ti2O7 crystallized
rods are mostly transparent, with a slight pink color. No phases
other than the cubic one with Fd3̄m space group were detected
by x-ray powder diffraction experiments; see Fig. 3 for an
example. As-grown and postgrowth heat-treated crystals were
characterized by specific-heat measurements. No noticeable
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FIG. 3. (Color online) An example of an x-ray diffraction pattern
recorded at room temperature for an Er2Ti2O7 powder obtained after
crushing part of a crystal. The radiation used is Co Kα . The line at
the bottom of the graph shows the difference between the data and
the refinement model.
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FIG. 4. (Color online) Specific heat versus temperature for three
samples cut from an Er2Ti2O7 crystal prepared as indicated in the
main text. For the first sample, no subsequent treatment has been
performed, while the other two result from postgrowth heat treatments
as follows. Case 1: Heat treatment for 7 days under oxygen at 1150 ◦C,
followed by a slow cooling down to 400 ◦C. Case 2: Heat treatment
for 7 days under argon at 1150 ◦C, followed by a slow cooling down
to 400 ◦C.

differences were detected; see Fig. 4. This is in contrast to
the case of Tb2Ti2O7.38 The position of the peak provides
a measure of the critical temperature. We get TN = 1.23 (1)
K. For comparison the following values have already been
published: 1.25 K (Ref. 29) and 1.173 (2) K (Ref. 19) in
reasonable agreement.

The investigation of the macroscopic properties of the
system consisted of magnetic susceptibility experiments per-
formed with a commercial magnetometer (magnetic property
measurement system, Quantum Design, Inc.) down to 2 K,
and of heat capacity measurements. For this latter physical
property, the temperature range from 0.48 to 20 K was
investigated with a commercial calorimeter [physical prop-
erty measurement system, (PPMS), Quantum Design, Inc.]
equipped with a 3He stage using a standard thermal relaxation
method. Additional measurements between 0.11 and 2.50 K
were performed with a homemade calorimeter inserted in a
dilution refrigerator using a semiadiabatic technique.

The μSR measurements were carried out at the European
Muon Spectrometer of the ISIS facility (Rutherford Appleton
Laboratory, United Kingdom) and the Low Temperature
Facility of the Swiss Muon Source (SμS, Paul Scherrer
Institute, Switzerland). The muon beam is pulsed at the former
facility and pseudocontinuous at the latter.

The neutron scattering experiments were performed at
the Institut Laue Langevin (ILL, Grenoble) with the lifting-
counter diffractometer D23 of the CEA collaborating Research
Group (CRG).

IV. BULK MEASUREMENTS

Here we shall first discuss magnetic susceptibility measure-
ments. Then we shall present zero-field specific-heat results
and finish with the determination of the magnetic phase
diagram using specific-heat data recorded under magnetic
fields.
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A. Magnetic susceptibility

Since the magnetization measurements were performed on
a needle-shaped sample and the field was applied along its
long axis, the demagnetization field is negligible. Classically,
the static magnetic susceptibility χ is expected to follow a
Curie-Weiss law far from the ordering temperature in the
paramagnetic regime. It reads

χ = C

T − θCW
, (4)

where the Curie constant C can be expressed in terms of the
so-called paramagnetic moment mpara:

C = 1

v

μ0 m2
para

3kB
, (5)

where v = a3/Ncell with Ncell being the number of Er3+ ions
in the cubic cell (Ncell = 16). For an isolated Er3+ ion, mpara =
gJ

√
J (J + 1) μB = 9.58μB.

In Fig. 5 we display our result for the inverse of the
static susceptibility versus temperature in a large temperature
range. The Curie-Weiss law provides a good description of
our data above 30 K. The fit gives for the Curie-Weiss
temperature θCW = −17.5 (3) K and C = 3.73 (4) K. This
means that mpara = 9.55 (10)μB, in agreement with the result
for an isolated Er3+ ion. Because θCW is negative, the dominant
exchange interactions are antiferromagnetic. For comparison,
fitting data recorded between 20 and 50 K on a powder
sample in a field of 1 mT, Bramwell et al.30 found values of
θCW = −22.3 (3) K and mpara = 9.34 (9)μB. For data recorded
between 50 and 300 K in a field of 50 mT these authors obtain
θCW = −15.93 (3) K and mpara = 8.936 (4)μB, the latter at
variance with the result for an isolated Er3+ ion. From our
result, we compute for the frustration index39 f ≡ |θCW|/TN =
14. Since f 
 1, Er2Ti2O7 is a strongly frustrated magnet.
In addition, assuming the Er3+ magnetic moments to interact
through a simple nearest-neighbor Heisenberg interaction with
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FIG. 5. (Color online) Inverse of the magnetic susceptibility of
an Er2Ti2O7 crystal versus temperature in a large temperature range.
The solid line results from a fit with the Curie-Weiss law. A field of
1 mT is applied along a diagonal of the cubic crystal structure. The
inset shows the low-temperature range of the data.
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FIG. 6. (Color online) The magnetic susceptibility of an Er2Ti2O7

crystal versus temperature in the low-temperature region. The same
magnetic response is observed using either the field- or zero-field-
cooling procedure, fc and zfc, respectively. A field of 1 mT is applied
along a diagonal of the cubic crystal structure. In the zfc mode the
sample was warmed to 300 K and then cooled to 2 K before applying
the magnetic field. In the fc mode the field was applied at 300 K and
the sample was subsequently cooled down.

exchange integral I (I > 0), i.e.,

H = I
2

∑
i,j,i =j

Ji · Jj = I
∑
〈i,j〉

Ji · Jj , (6)

the molecular-field approximation predicts

I = 3 kB|θCW|
znnJ (J + 1)

. (7)

We denote as znn the number of nearest neighbor Er3+ ions
to a given Er3+ ion. In our case znn = 6. From the measured
θCW value and taking into account that J = 15/2, we compute
I/kB = 0.138 (2) K.

We have also measured the susceptibility for 2.0 < T <

6.0 K under a field of 1 mT applied along a [111] axis using
two protocols; see Fig. 6. Contrary to a previous report,30 we
do not observe any history-dependent effect at T � 3.2 K.
Hence, there is no spin-glass-like irreversible effect for our
Er2Ti2O7 crystals.

B. Specific heat in zero magnetic field

Here we present and discuss zero-field specific-heat data
recorded for Er2Ti2O7 crystals. It is well known that they
may lead to a characterization of the low-energy magnetic
modes, detect indirectly a dynamical magnetic component in
the ordered state, determine the universality class of the system
under study, and gauge a possible residual entropy at low
temperature.

In Fig. 7 we display our data, in the low-temperature regime.
While our results are in reasonable agreement with data

published by Siddharthan et al.,40 they differ drastically at
low temperature with the ones of Blöte et al.29 We do not
understand the origin of the large difference with the data of
Blöte et al. In the following we shall focus on the analysis of
our data and the ones of Siddharthan et al. Note that here we
have not considered the results of Sosin et al.34 since they do
not extend to very low temperature.
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FIG. 7. (Color online) Low-temperature specific heat of
Er2Ti2O7. The open symbols show our experimental data compared
to literature results from Blöte et al. (Ref. 29) and Siddharthan et al.
(Ref. 40). Note the large overlap between our results obtained with
the PPMS and the homemade calorimeter inserted in a dilution
refrigerator. The filled symbols present the electronic specific heat
deduced from the data of Siddharthan et al. and this work. The dashed
lines show the contributions from the nuclear specific heat and the
full line results from a fit of the low-temperature electronic specific
heat to the Celec = BT 3 law, with B = 2.50 (15) J K−4 mol−1. The
inset displays the very low temperature details. The solid lines result
from fits as explained in the main text.

In the low-temperature range shown in Fig. 7 the specific
heat arises from three origins: the contribution from the
nuclei with nonzero spins at low temperature, then the low-
energy magnon modes at higher temperature and the critical
fluctuations around TN. As a start we shall focus on the first
two contributions, i.e., the specific heat of nuclear and magnon
origins, Cn and Csw, respectively.

We begin with providing a theoretical background for these
contributions, focusing first on the nuclear one. Cn arises
from the 167Er nuclear magnetic moments (167Er is the only
non-spinless isotope of Er with 23% natural abundance),
since the contribution of the two Ti isotopes is negligible,
as in the case of Tb2Ti2O7.38 Contrary to Tb2Ti2O7 the
quadrupole interaction is not negligible compared to the
Zeeman interaction. This is due to the fact that the quadrupole
moment Q167 of 167Er is larger than that of 159Tb (3.565 vs
1.432 barns) and the gyromagnetic ratio γ167 of 167Er is much
smaller, in absolute value, than that of 159Tb (−7.7157 vs
64.31 Mrad s−1 T−1); see Ref. 41. The Zeeman and quadrupo-
lar Hamiltonians are written

HZee = −h̄γ167I · Bhyp (8)

and

HQ = h̄ωQ
[
3I 2

z − I (I + 1)
]
, (9)

respectively. In these equations, I is the 167Er spin operator
(I = 7/2) and h̄ωQ = eQ167Vzz

4I (2I−1) , where Vzz is the principal
component of the electric field gradient tensor acting on the
rare-earth nucleus with z being as before the local threefold
axis. The symmetry at the rare-earth site imposes the electric-
field gradient to be axial. Because the Er3+ ordered magnetic
moments are (nearly) perpendicular to z we shall also take

Bhyp perpendicular to this axis. As usual h̄ and e stand for the
Dirac constant and the proton electric charge, respectively.

The nuclear energy levels are determined after diagonaliza-
tion of the Hamiltonian Hn = HZee + HQ and Cn is readily
obtained. Hn depends on two parameters, Bhyp and Vzz. While
an estimate for Vzz is provided in Appendix B, Bhyp will be a
fitting parameter.

The other contribution to the low-temperature specific heat
arises from magnons. Low-energy magnons have indeed been
observed in neutron scattering experiments.20 The dispersion
relation h̄ω(q) for their lowest energy branch is needed to
compute Csw. An approximate expression valid at small wave
vectors is

h̄2ω2(q) = h̄2ω2(q) = �2
sw + h̄2v2

swq2. (10)

Here �sw is the gap energy of the magnon spectrum at the
zone center and vsw is the magnon velocity. We note that a
dispersion relation has recently been proposed for Er2Ti2O7 in
the framework of linear spin-wave theory.26 The applicability
of this theory in frustrated systems might be questionable as
recently discussed in the case of the triangular lattice.42 Still,
the model of Ref. 26 leads to an anisotropic dispersion relation.
The resulting specific heat depends on a single magnon
velocity which is the geometrical mean of the three magnon
velocities along orthogonal axes. In our model it corresponds
to vsw.

When �sw is negligible, the magnon specific heat Csw can
be computed in the temperature range where only small wave
vectors are at play, i.e., when Eq. (10) applies. The expected
T 3 law for Csw is derived:

Csw = AT 3 with A = π2

120
NA

k4
Ba3

h̄3v3
sw

, (11)

where NA is Avogadro’s constant. This result only holds at
sufficiently low temperature.

Having established the theoretical background, we now
perform the specific-heat data analysis. We shall do it in two
steps. We first attempt to determine whether a T 3 behavior can
be observed. A fit to the measured specific heat at the lowest
temperatures for which the magnon contribution should be
negligible enables us to estimate Cn(T ) and then to subtract it
from the measured heat capacity. The resulting electronic heat
capacity, Celec, is presented in the main panel of Fig. 7 for our
data and the ones of Siddharthan et al. It follows nicely a T 3 law
in a restricted temperature range, but deviates above ≈ TN/2.5,
in contrast to published results.19,34 This observation justifies
identifying Celec with Csw. The T 3 behavior is not expected to
be seen at low temperature if the energy gap is appreciable.
The effect of the gap might be seen around T = 0.2 K; see
Fig. 7. However, Celec becomes very small at that temperature
and difficult to measure as reflected by the distribution of
the Celec data. Hence, we cannot determine whether a gap is
present from this plot. Numerically, since we can identify B
given in the caption of Fig. 7 with A of Eq. (11), we get vsw =
86 (2) m s−1.

The second step for the interpretation of the specific-heat
data consists in fitting the measured specific heat to the sum
Cn + Csw. This sum depends on three parameters �sw, vsw,
and Bhyp. The fit is shown in the inset of Fig. 7. Its temperature
range is restricted on the high-temperature side because of the
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requirement that only the low-energy magnons determine the
value of the integral. Two solid lines are drawn in the figure
since the two data sets are slightly different at low temperature.
Both sets can be fitted to a range of gaps extending from nearly
zero to an upper bound. We find �sw/kB � 0.5 (1) K for both
data sets. This is consistent with the value of Sosin et al.34 We
also derive vsw = 84 (2) and 82 (2) m s−1 and Bhyp = 345 (10)
and 305 (5) T for the Siddharthan et al. data and our data,
respectively. Note that Bhyp depends very little on the actual
value chosen for Vzz.

We now discuss these results, starting with the bound on
the spin gap energy. This bound is really small and might be
surprising at a first sight given the strong magnetic anisotropy
of Er2Ti2O7. However, the Er3+ magnetic moment lies at a
polar angle of nearly 90◦ with respect to the local threefold
axis. This angle is imposed by the relatively strong crystal-field
interaction. There is still a continuous degree of freedom for
the azimuthal angle. The magnetic order breaks this rotational
symmetry and �sw is a measure of the residual anisotropy
energy. We note that the upper bound value for �sw is in the
expected range if it arises from the dipole interaction between
the Er3+ magnetic moments.

We examine now the magnon velocity value and tentatively
relate it with the exchange integral introduced in Eq. (6). For
this purpose we resort to the phenomenological dispersion
relation

h̄2ω2(q) = h̄2ω2(q) = �2
sw + [IznnJ sin(qd)]2, (12)

where d is the distance between two magnetic atoms. In fact,
had we written sin(qZd) instead of sin(qd), Eq. (12) would give
the dispersion relation of an antiferromagnetic chain running
along the Z direction and of lattice parameter d for which
the number of nearest neighbors is znn = 2; see for example
Ref. 43. Here we shall take d as the distance between two Er
atoms; i.e., d = a/(2

√
2). Identifying the small q expansion

of Eq. (12) with Eq. (10) we have

vsw = 15

2
√

2
a
I
h̄

, (13)

using J = 15/2. This relation leads to I/kB = 0.118(4) K,
a value in reasonable agreement with the one derived from
the Curie-Weiss constant; see Sec. IV A. We shall return
to the interpretation of the magnon velocity at the end of
Sec. V B once a nearest-neighbor Hamiltonian consistent with
the symmetry of the lattice has been introduced.

It is possible to get interesting information from the Bhyp

values. Using the hyperfine constant which is 87 (1)T/μB,44

the magnetic moment at the origin at the field can be obtained.
We derive for the moment 4.0 (2) and 3.5 (1)μB from the
Siddharthan et al. measurement and ours, respectively. The
latter value is consistent with the neutron result.31 Hence,
contrary to Tb2Sn2O7 (Ref. 45) there is no reduction of
the hyperfine field at the 167Er nuclei due to electronic
spin dynamics. This means that the characteristic time for
the electronic spin-flip is substantially larger than the 167Er
spin-lattice relaxation time.11

We now turn our attention to the critical behavior of the
specific heat in the paramagnetic phase. In Fig. 8 we display our
data using a reduced temperature scale. We expect to observe
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FIG. 8. (Color online) Zero-field specific heat of Er2Ti2O7 versus
the reduced temperature parameter τ in the paramagnetic regime for
three data sets. The full (dotted) line is the prediction of Eq. (14) for
α = −0.015 (−0.134). For α = −0.015 we find Csh = 1.7 (1) J K−1

mol−1. The critical regime is observed up to τ � 0.2.

the usual power-law critical behavior:46,47

Celec(T ) = Csh

α

[(
T − TN

TN

)−α

− 1

]
, (14)

where Csh is a constant and α the specific-heat critical
exponent. By definition, Celec(T ) has a maximum at TN.
This enables us to determine TN, as already mentioned in
Sec. III. The exponent α is expected to be α = −0.015 and
−0.134 for the three-dimensional XY and Heisenberg magnets,
respectively. As seen in Fig. 8, Eq. (14) provides a better
account of the data for the XY case, as expected.

Before leaving this section, we discuss the entropy variation
of our system using our specific-heat results. We have
extended the specific-heat measurement Cp of Er2Ti2O7 up
to approximately 20 K and measured the specific heat of the
isostructural nonmagnetic compound Y2Ti2O7 in the same
temperature range. The sum of the contributions from the
nuclear moments and the lattice, the latter being estimated
from scaling the Y2Ti2O7 result,48 is presented in the inset
of Fig. 9, as well as Cp(T ). The resulting Celec(T ) obtained
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FIG. 9. (Color online) The electronic specific heat of Er2Ti2O7

in an extended temperature range. In the inset are displayed the total
specific heat (Cp) of Er2Ti2O7 and the sum of the estimated nuclear
and lattice contributions.
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FIG. 10. (Color online) The variation of the electronic entropy
�Selec(T ) of Er2Ti2O7 versus temperature T . The solid line is
computed assuming two singlet states at energies corresponding to 0
and 2.85 K and two doublets at 74 and 85.8 K. A signature of the two
doublets has been seen by inelastic neutron scattering (Ref. 19). The
ground-state doublet has been split to account for the magnetic order
of Er2Ti2O7 below TN, with the splitting taken as a fitting parameter.
Admittedly, this is a very rough description of the physics. The dashed
line is the result of the computation of �Selec(T ) when only the first
two levels are taken into account.

from subtracting the contributions of the nuclear moments
and the lattice to Cp(T ) is displayed in the main panel of
Fig. 9. In Fig. 10 we present �Selec(T ), which is the
temperature variation of the electronic entropy obtained by
integrating Celec(T ′)/T ′ from 0.115 K, the lowest measured
temperature, to the temperature of interest T . Remarkably,
�Selec(T ) reaches the R ln(2) value at approximately 8 K. This
is the entropy variation expected for an isolated doublet state.
Therefore the residual entropy left as T → 0 is extremely
small if any. For temperatures above 8 K, �Selec(T ) keeps
increasing owing to the contribution of the excited CEF levels.
This is clearly shown in Fig. 10, where a comparison is made
between the results of computations of �Selec(T ) either taking
into account the first excited CEF levels or neglecting them.

C. Specific heat under an external magnetic field

We have constructed the phase diagram of Er2Ti2O7 in
the field-temperature plane using specific-heat data. Examples
of measurements are shown in Fig. 11. For a given external
field we have determined the temperature at which the specific
heat displays a maximum. The position of the maximum as
a function of the field intensity for a given field orientation
relative to the crystal axes is displayed in Fig. 12. Our results
are consistent with the ones already published,20,34 but only
qualitatively. Note that here we establish the phase diagram
for the three main directions of a cubic compound. These data
suggest a quantum critical point to be present slightly above
2 T and to be dependent on the field orientation.

V. MICROSCOPIC TECHNIQUE MEASUREMENTS

Single crystals of Er2Ti2O7 have been studied by two
microscopic experimental techniques: positive muon spin
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FIG. 11. (Color online) Temperature dependence of the specific
heat of a Er2Ti2O7 single crystal for different magnetic field intensities
applied along [110]. The maximum of the specific-heat peak moves
to lower temperatures as the field increases up to 1.7 T. No peak is
observed when the field strength is above 1.7 T.

relaxation (μSR) and neutron scattering. We shall first discuss
the μSR results.

A. μSR

In the longitudinal geometry that we have used, a μSR
spectrum recorded in the magnetically ordered state of a
crystal is expected to display either (i) at least one damped
oscillation if the initial muon beam polarization is not parallel
to the spontaneous field at the muon site, or (ii) a missing
fraction if the oscillation cannot be resolved.49 None of these
two possibilities was observed at ISIS or SμS. The zero-field
spectrum recorded at 21 mK is displayed in Fig. 13; the
spectral shape shows little change up to ≈0.5 K. The same
type of spectra was also observed for different orientations
of the initial muon beam polarization relative to the crystal
axes. Hence, the absence of oscillation cannot be attributed to
the initial muon beam polarization which would be parallel to
the internal field. This situation would moreover be unexpected
because of the four equivalent symmetry 〈111〉 axes at the Er3+
site. In addition to the absence of oscillation, the shape of the
zero-field spectra is extremely unusual. Indeed, the spectral
slope is quasiconstant up to ≈0.4 μs, then it increases and
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FIG. 12. (Color online) The phase diagram derived from specific-
heat measurements for the three main crystal directions of cubic
Er2Ti2O7. The dashed-dotted lines are guides to the eye.
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P. DALMAS DE RÉOTIER et al. PHYSICAL REVIEW B 86, 104424 (2012)

[111]
Sμ

Bext

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.05

0.10

0.15

0.20

0.25

Time t (μs)

A
sy

m
m

et
ry

:a
0 P

 e
xp

(t)
Er2Ti2O7

21 mK

1.3 T
1 T
0.75 T
0.5 T
0.35 T
0.2 T
0 T

Z

FIG. 13. (Color online) μSR spectra of a Er2Ti2O7 crystal taken
at SμS with the initial muon beam polarization parallel to the [111]
crystal direction. The spectra were recorded in zero and various
longitudinal fields as indicated in the figure.

eventually monotonically decreases above ≈0.7 μs. This kind
of behavior drastically differs from the usual relaxation spec-
tra, which are characterized by a monotonically decreasing
slope, as, e.g., in the common exponential relaxation. Neither
does it remind us of the shape of spectra associated with a static
or quasistatic field distribution at the muon. At this stage we
cannot actually conclude whether the spectral shape is mainly
influenced by a static field distribution or dynamical effects.
We shall come back to this point when commenting on the
data recorded in applied fields.

Since no spontaneous muon precession is observed, it is
tempting to make an analogy with Tb2Sn2O7 for which there is
also no detected oscillation in the magnetically ordered state.6

This analogy would be completely justified if the zero-field
spectrum were exponential. However, we have just remarked
that it is obviously not the case. It is not Gaussian either, as
first suggested.50 A close look at the data in Ref. 50 shows that
the zero-field relaxation is in fact consistent with the one we
observe.

Before discussing further the significance of our result, it
is worthwhile to consider the longitudinal field spectra shown
in Fig. 13. First note that with the considered field intensities
the compound has a priori not crossed the phase diagram
boundary displayed in Fig. 12. While the application of fields
below 0.5 T has little influence on the spectral shape, it is
not the case for higher fields. Interestingly, for the highest
fields shown in the figure, the spectra tend to be described
by an exponential function.51 This implies that the muon
repolarization is not at the origin of the field dependence of
the spectra and that dynamics is mainly influencing the muon
response in Er2Ti2O7. The time scale of this dynamics can
be roughly estimated. For this purpose we have recourse to
the Lorentzian field dependence of the exponential relaxation
rate λZ in the motional narrowing, i.e., fast fluctuation
limit.49,52 In this model the relaxation rate in a field Bext

is such that λZ(Bext)/λZ(Bext = 0) = 1/2 for Bext = B1/2 =
1/(γμτf ). Here τf is the fluctuation time of the spins and γμ =
851.615 Mrad s−1 T−1 is the muon gyromagnetic ratio. Taking
1 T as an order of magnitude for B1/2 we find τf ≈ 10−9 s.

We have therefore established that the muons are probing
dynamical fields. No oscillation is detected in zero field

because the mean field at the muon site does not keep a constant
value for a time sufficiently long for a muon spin precession
to be observed.6 We denote this field as Bfluc. It arises from
the dipole interaction of the muon magnetic moment with the
Er3+ magnetic moments. Given the size of the Er3+ magnetic
moment, we estimate Bfluc in the range 0.1–0.2 T.

With our knowledge for τf and Bfluc, we find τfγμBfluc =
Bfluc/Bext � 1. For the simple model of Bfluc flipping from par-
allel to antiparallel to an axis perpendicular to the initial muon
spin polarization Sμ, we would expect the zero-field relaxation
to be exponential,49 as found for Tb2Sn2O7. However, exper-
imentally this is not the case. This is not surprising given the
fact that the magnetic diffraction profiles are complex. Their
shape is ascribed to the coexistence of long- and short-range
dynamical correlations; see our discussion of Fig. 2. To the dis-
tribution of correlation lengths must correspond distributions
of spin-spin and spin-lattice relaxation rates. This may explain
the exotic shape of the zero-field μSR relaxation function.

Relative to Tb2Sn2O7, the fluctuations probed by μSR
in Er2Ti2O7 are slower by roughly an order of magnitude.
From neutron spin-echo measurements it is known that in
the ordered state of Tb2Sn2O7 spin correlations near the zone
center are static37 within the technique time scale, while they
are dynamical in nature far outside the center of the zone.53 It
would be worthwhile to examine the dynamics of the magnetic
correlations in Er2Ti2O7 with the neutron spin-echo technique.

From the analysis of the nuclear specific heat in Sec. IV B,
it was inferred that the ratio of τf to the nuclear spin-lattice
relaxation time was larger in Er2Ti2O7 than in Tb2Sn2O7. As-
suming the spin-lattice relaxation times in the two compounds
to be similar, the nuclear specific-heat data are consistent with
the results of the analysis of the μSR spectra.

B. Neutron scattering

Paramagnetic correlations were studied by diffuse neutron
scattering in Er2Ti2O7 crystals. Two scattering planes were
investigated: (h,k,0) and (h,k,k) at 2.00 (3) and 1.47 (3) K,
respectively. For the first (second) one a graphite (copper)
monochromator was used delivering neutrons of wavelength
2.377 (1.275) Å. No energy analysis of the scattered beam was
performed. In order to deal with magnetic correlations only,
additional maps were recorded at 50 K for both geometries and
they were subtracted from the corresponding low-temperature
counterparts. The resulting two maps were divided out by the
square modulus of the Er3+ magnetic form factor. 54 The effect
of the form factor is modest: no more than 20% on the vast ma-
jority of the data. The resulting experimental data are displayed
in Fig. 14. It is to be noted that the intensities are negative for
large regions in the two planes. This reflects the fact that the
wave vector independent scattering associated with the CEF
states of the Tb3+ ions is larger at 50 K than at low temperature.

Before attempting a quantitative analysis of the maps, a
qualitative discussion is worthwhile. We first note the almost
vanishing (2,2,2) spot. This means that the ferromagnetic
correlations are negligible. We observe a hexagonal scattering
loop in the plane (h,k,k) around the (2,2,2) position. Such
a type of scattering is reminiscent of the intensity measured
in the cubic spinel ZnCr2O4 (Ref. 55), in which the Cr ions
also form a lattice of corner-sharing tetrahedra. However, in
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FIG. 14. (Color online) Top two panels: Magnetic diffuse neutron scattering intensity recorded for a crystal of Er2Ti2O7 in the reciprocal
(h,k,0) and (h,k,k) planes at 2.00 (3) and 1.47 (3) K, respectively. The positions in the reciprocal lattice are in 2π/a units, where a is the lattice
parameter of the cubic unit cell. These maps are obtained as explained in the main text. To preserve the maps appearance, pixels with off-scale
intensities, e.g., pixels influenced by Bragg reflections and critical scattering, as well as pixels located near the origin of the reciprocal lattice
have been graphically eliminated: They are represented in white color. Bottom two panels: (h,k,0) and (h,k,k) magnetic correlation maps
computed with the tetrahedron model explained in the main text. The comparison between the theoretical and experimental maps displayed
above enables us to derive information on the Er2Ti2O7 interaction constants. The lines drawn in the (h,k,0) maps indicate the position of the
cuts shown in Fig. 16.

the latter case the loop is in the plane (h,k,0) and centered
around (2,2,0). The scattering properties are therefore quite
different for the two compounds. This reflects the difference
in magnetic symmetry. The origin of the loops observed
in ZnCr2O4, which were originally interpreted in terms of
weakly interacting hexagonal spin clusters, is now taken as
the signature of extended exchange interactions for spin-ice
and isotropic systems.56,57 In the following we show that
the scattering loop in Er2Ti2O7 can basically be taken as a
fingerprint of the properties of the exchange interactions within
a single tetrahedron.

The discussion of the experimental results will be carried
out in two steps. We shall first evaluate the magnetic correlation
length at the temperature of the measurements and then analyze
the maps using a four-spin Hamiltonian.

1. Magnetic correlation length

Here we determine the correlation length of the critical
magnetic correlations. For this purpose we consider the
scattered intensity measured in the vicinity of the reciprocal
positions q(h,k,l) = q(2,2,0) and q(1,1,1) at T = 2.00 and 1.47 K,
respectively; see Fig. 15. This critical scattering intensity is
described by the sum of a Lorentzian function and a constant:

L(|q − q(h,k,l)|) = IL

1 + |q − q(h,k,l)|2/κ2
m

+ I0, (15)

where κm is the inverse of the magnetic correlation length. The
parameter IL accounts for the magnitude of the Lorentzian,
while I0 refers to a neutron intensity which is not related to
critical scattering. Since at the temperature of experiments, the
width of the critical magnetic scattering curve is much larger
than the instrumental resolution, the convolution of Eq. (15)
by the resolution function is unnecessary. The fits shown in
Fig. 15 yield the magnetic correlation lengths ξm = κ−1

m =
3.6 (2) and 6.6 (5) Å for the (2,2,0) and (1,1,1) reflections
measured at 2.00 and 1.47 K, respectively. As expected, ξm

shoots up as the sample is cooled toward the transition. These
two values are comparable with the Er3+-Er3+ ion distance d =
3.56 Å. Hence the analysis of the experimental maps shown
in Fig. 14 can be performed considering the spin correlations
within a single tetrahedron. This is the basis for our quantitative
interpretation which is exposed below.

2. Analysis of the diffuse scattering maps

While our analysis of the magnetic scattering intensity in
the vicinity of reciprocal lattice positions at low temperature
shows that the measured wave vector dependence probes short-
range correlations, a wave vector independent scattering is also
observed; see Fig. 15. This scattering reflects local physics, for
example of crystal-field nature. Denoting M(q) a measured
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FIG. 15. (Color online) Magnetic scattering intensity versus wave
vector in the vicinity of the two reciprocal lattice positions q(h,k,l)

where (h,k,l) = (1,1,1) and (2,2,0), respectively. The wave vector
unit is 2π/a where a is the cube edge. The data are obtained from
the intensity differences shown in Fig. 14 by averaging the data at
reciprocal space points located at equal distance from the two lattice
positions. Two requirements were considered when choosing these
two positions: They do not lie close to the boundary of the maps and
the magnetic intensity is relatively important. The lines are results
from fits of Eq. (15) to the data.

magnetic scattering map, we write

M(q) = Sshift + Sscale N (q), (16)

where Sshift accounts for the wave vector independent scat-
tering, Sscale gives the scale of the wave vector dependent
magnetic intensity, and N (q) is the prediction of our model
that we describe now.

In Sec. II we have mentioned that the Er3+ crystal-field
ground-state doublet is well isolated since the first excited
doublet is at about 74 K above the ground state in temperature
units. Therefore for low-temperature measurements, such as
discussed here, it is a reasonable approximation to describe
an Er3+ ion as an effective S = 1/2 spin. In Appendix A we
discuss the physics of a tetrahedron of effective one-half spins
embedded in a pyrochlore lattice. Assuming that only bilinear
spin interactions are relevant, the Hamiltonian Ht describing
the interaction between the four effective spins can be written
as a linear combination of four invariants; see Eq. (A38). Their
weight is gauged by the four parameters Pi , i ∈ {1,2,3,4}.

The wave vector dependent scattering intensity resulting
from a single tetrahedron is proportional to43

N (q) =
∑
m

e−Em/(kBT )fm(q), (17)

where

fm(q)

=
∑
α,β

∑
i,j

∑
n

(
δαβ − qαqβ

q2

)
〈m|Sα

i |n〉〈n|Sβ

j |m〉eiq·(rj −ri ).

The Debye-Waller factor is negligible for the region of the
reciprocal space investigated and the temperatures at which
the measurements were made. The symbols α,β refer to global
Cartesian coordinates in the cubic unit cell. The relations
between the local and global axes are explicitly given in
Appendix A 1. The indices i and j stand for the Er ions
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FIG. 16. (Color online) Cuts of the (h,k,0) maps shown in Fig. 14
along the [1, 1,0] and [0, 1,0] directions. The circles represent the
experimental data and the lines the results of the model. The origin
of the horizontal axis is taken at the origin of the reciprocal lattice.

at the corners of the tetrahedron, the positions of which are
specified by ri and rj , and |n〉 and |m〉 refer to two of the
sixteen single tetrahedron states, whose energy differences lie
within the energy range across which the neutron scattering is
integrated. The formula in Eq. (18) does not contain the Er3+
form factor since it has already been divided out for the two
presented maps.

We have performed a global fit of the two recorded maps.
It depends on two Sshift parameters, one per map, a unique
scale parameter Sscale, and the four Hamiltonian parameters
Pi . The best fit shown in Fig. 14 is achieved with the following
interaction constants in kelvin units:

P1/kB = 10.4 (6), P2/kB = −1.2 (5),
(19)

P3/kB = 3.0 (3), P4/kB = 8.4 (1.3).

The quality of the fit can be assessed from cuts of the
experimental and model maps as seen in Fig. 16.

The fitting parameters described above were determined
from least-squares minimization, i.e., minimizing χ2 =
[1/(Nd − 7)]

∑
j (Mj − Ij )2/σ 2

j with respect to the fitting
parameters. Here σj is the statistical uncertainty on the neutron
intensity Ij at the j th data point in the set of Nd data points
and Mj is the model prediction (a function of the fitting
parameters). An uncertainty δPi on Pi is obtained by varying
the neutron intensity by ∂Ij at each of a large sample of the
data points (one in eight) and minimizing χ2 in order to find the
variation of each fitted parameter ∂Pi . Then δPi is estimated

using the relation δPi = (1/Nd )
√∑

j (σj∂Pi/∂Ij )2.

We have so far described the estimate of the statistical
uncertainties. Three other origins for systematical uncertain-
ties must be considered. First our model describes diffuse
scattering and therefore pixels which are sizably influenced by
critical scattering should be eliminated in the fitting procedure.
For this purpose we have tested the influence of different radius
cutoffs around the Bragg points on the Pi values. This cutoff
effect introduces the largest parameter uncertainties. Then the
temperature at which a map is recorded is known with a finite
uncertainty. Finally the uncertainty arising from the error bars
on the matrix elements jCEF and tCEF [see Eq. (2)] has also
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been assessed. The error bars given in Eq. (19) account for
these statistical and systematical uncertainties.

It is tempting to extract information from the Curie-Weiss
constant using the high-temperature susceptibility formula
derived by Ross et al.58 However, this should not be done
since that formula depends on spectroscopic factors which
provide a description of the physics only at low temperature.
A high-temperature expansion for the susceptibility is required
to further analyze the data of Fig. 5.

At this juncture it is of interest to mention a recent work
by Savary et al. on Er2Ti2O7.26 These authors analyze the
spin wave dispersions measured for different orientations
of the wave vector. The experiments were performed for
temperature (30 mK) and field (3 T) values where Er2Ti2O7 is
a polarized paramagnet.20 The analysis of the data involves a
nearest-neighbor Hamiltonian related to ours, with a different
definition of the Hamiltonian parameters. Using the relations
between the two sets of parameters given in Eq. (A41) and
assuming Pi = 2P̃i , we find for their parameters in kelvin
units

P1/kB = 1.74 (1.26), P2/kB = −0.44 (74),
(20)

P3/kB = 2.92 (34), P4/kB = 9.0 (1.0).

These P2, P3, and P4 values are in very good agreement
with ours. However an important difference is observed in
P1, i.e., the parameter which controls the interaction along
the local hard magnetic axis. We have simulated the diffuse
scattering intensity obtained from this latter set of parameters
and compared it with our experimental data. We obtain an
acceptable fit of our data since the confidence parameter is
χ2 = 1.44 to be compared with 1.20 with the parameter set
in Eq. (19). At this point it must be noted that our data were
recorded in zero external field, contrary to those of Ref. 26, and
that the anisotropy ratio g⊥/g‖ = 4.3 that we have adopted is
quite larger than the one chosen by Savary et al.: g⊥/g‖ = 2.4.

As already mentioned the dispersion relation of the magnon
modes has been computed in the framework of linear spin-
wave theory.26 Neglecting the gap, an assumption which is
justified (see Sec. IV B), we can compute the geometric mean
v̄sw of the magnon velocities along the three directions of the
Cartesian frame. The expression is

v̄sw = (P4 − P1)1/2(P4 − P3)1/6(2P4 + P3)1/3

210/3 31/2

a

h̄
. (21)

With the parameters given in Eq. (20) we find v̄sw =
76 (16) m s−1, in good agreement with the values vsw = 84 (2)
and 82 (2) m s−1 deduced in Sec. IV B from the analysis of the
specific-heat data.

Concerning the parameters derived from our diffuse scatter-
ing maps [Eq. (19)], the magnon velocity cannot be computed
since (P4 − P1) < 0. At first sight, it might suggest that the
parameters we infer from the two neutron maps are not reliable.
However, the expression written in Eq. (21) is deduced from
a linear spin-wave approximation. This approximation might
not be reliable for a noncollinear magnet such as Er2Ti2O7.
This argument is based on theoretical results for triangular
magnets.42,59,60

VI. SUMMARY OF OUR RESULTS AND DISCUSSION

In this paper we have argued that the combined analysis
of the values of the low-temperature Er3+ magnetic moment
and the two spectroscopic factors indicates that the moment
can only be perpendicular (or close to perpendicular) to the
local [111] axis. This analysis supports the magnetic structure
proposed by Champion et al.19

The Er2Ti2O7 magnetic susceptibility and specific heat have
been carefully measured. No magnetic hysteresis has been
detected. The excitation gap is extremely small. The critical
exponent of the specific heat in the paramagnetic phase is
typical for a three-dimensional XY system. The specific-heat
data provide an estimate for the magnon velocity which is
in accord with a recently proposed model based on linear
spin-wave theory. Finally, concerning the bulk measurements,
the magnetic phase diagram in the field-temperature plane
has been determined up to 1.7 T for the three main crystal
directions of a cube.

The μSR data are consistent with the presence of a spin
dynamics in the nanosecond time range in the ordered state.
This might be associated with the short-range correlations
detected by neutron diffraction in addition to the long-range
order.20

Diffuse neutron scattering data recorded in the para-
magnetic state were analyzed in terms of a Hamiltonian
accounting for all bilinear interactions between the spins in a
tetrahedron. The four symmetry-allowed interaction constants
were determined and three of them were found to be positive,
with P1 and P4 being the largest. Note that the data analysis has
assumed the interactions to be limited to the nearest-neighbor
Er3+ ions. However, it must be recalled that interactions
between further neighbors might be important. For instance
they are determinant for the type of magnetic order adopted
by Gd2Ti2O7 relative to Gd2Sn2O7 for which only nearest
neighbors seem to matter.9 The analysis of neutron scattering
data for Dy2Ti2O7 also confirms the importance of exchange
interactions beyond nearest neighbors.56

With the interaction constants and the spectroscopic factors
known, it will be interesting to gauge any proposed theoretical
phase diagram to the fact that Er2Ti2O7 does order magnet-
ically at TN = 1.23 (1) K. In addition, any reliable theory
must be able to explain the short-range correlations observed
below TN and their nanosecond time scale dynamics. As has
been learned from the study of Tb2Sn2O7, neutron spin-echo
measurements might be useful to further characterize these
exotic spin dynamics.37,53 The spin dynamics is the key feature
which seems to distinguish a frustrated compound such as
Er2Ti2O7 from a conventional magnet.
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APPENDIX A: PHYSICS OF A TETRAHEDRON OF
EFFECTIVE ONE-HALF SPINS EMBEDDED IN A

PYROCHLORE LATTICE

Here we present a comprehensive quantum mechanical
study of effective one-half spins embedded in a pyrochlore lat-
tice. After specifying the geometry, we describe the invariants
which will enable us to build the Hamiltonian of the system.
Then we explain the approximation that we use to compute the
neutron diffuse scattering patterns. Finally, we compare our to
others’ equivalent Hamiltonian operators.

1. Geometry

For completeness, we first provide a description of a
tetrahedron in a pyrochlore lattice and of the spins at its
corners. We choose a type A tetrahedron as the primitive unit
cell; see Fig. 1. Each corner of the tetrahedron is occupied by
a magnetic ion whose relative positions are given by r1 =
a
4 (0,0,0), r2 = a

4 (1,1,0), r3 = a
4 (1,0,1), and r4 = a

4 (0,1,1),
where a is the edge length of the cubic unit cell. The distance
between two magnetic ions is d = a/(2

√
2). At each corner

of the tetrahedron there is a local D3d symmetry, where the C3

axis is one of the cube diagonals.
We denote the local C3 axis at position i as zi and define xi

and yi axes to form a local orthogonal basis. There is obviously
some freedom in the choice of the xi and yi axes. Below we
list the unit vectors we have chosen for the bases at the four
positions. For the first two positions we have

x̂1 = (1,1, − 2)/
√

6, x̂2 = (−1, − 1, − 2)/
√

6,

ŷ1 = (−1,1,0)/
√

2, ŷ2 = (1, − 1,0)/
√

2, (A1)

ẑ1 = (1,1,1)/
√

3, ẑ2 = (−1, − 1,1)/
√

3,

and at the remaining two positions we have

x̂3 = (−1,1,2)/
√

6, x̂4 = (1, − 1,2)/
√

6,

ŷ3 = (1,1,0)/
√

2, ŷ4 = (−1, − 1,0)/
√

2, (A2)

ẑ3 = (−1,1, − 1)/
√

3, ẑ4 = (1, − 1, − 1)/
√

3.

A given spin Si can be written using the cubic global axes
as a basis or the local axes at position i. We use uppercase
superscripts to indicate components of the global basis,

Si = SX
i X̂ + SY

i Ŷ + SZ
i Ẑ, (A3)

and lowercase subscripts for components of a local frame,

Si = Six x̂i + Siy ŷi + Sizẑi . (A4)

Using the definitions above, we find

S1x = (
SX

1 + SY
1 − 2SZ

1

)/√
6, (A5)

S1y = ( − SX
1 + SY

1

)/√
2, (A6)

S1z = (
SX

1 + SY
1 + SZ

1

)/√
3, (A7)

S2x = −(
SX

2 + SY
2 + 2SZ

2

)/√
6, (A8)

S2y = (
SX

2 − SY
2

)/√
2, (A9)

S2z = ( − SX
2 − SY

2 + SZ
2

)/√
3, (A10)

S3x = ( − SX
3 + SY

3 + 2SZ
3

)/√
6, (A11)

S3y = (
SX

3 + SY
3

)/√
2, (A12)

S3z = ( − SX
3 + SY

3 − SZ
3

)/√
3, (A13)

S4x = (
SX

4 − SY
4 + 2SZ

2

)/√
6, (A14)

S4y = ( − SX
4 − SY

4

)/√
2, (A15)

S4z = (
SX

4 − SY
4 − SZ

4

)/√
3, (A16)

and the inverse relations

SX
1 = S1x/

√
6 − S1y/

√
2 + S1z/

√
3, (A17)

SY
1 = S1x/

√
6 + S1y/

√
2 + S1z/

√
3, (A18)

SZ
1 = −2S1x/

√
6 + S1z/

√
3, (A19)

SX
2 = −S2x/

√
6 + S2y/

√
2 − S2z/

√
3, (A20)

SY
2 = −S2x/

√
6 − S2y/

√
2 − S2z/

√
3, (A21)

SZ
2 = −2S2x/

√
6 + S2z/

√
3, (A22)

SX
3 = −S3x/

√
6 + S3y/

√
2 − S3z/

√
3, (A23)

SY
3 = S3x/

√
6 + S3y/

√
2 + S3z/

√
3, (A24)

SZ
3 = 2S3x/

√
6 − S3z/

√
3, (A25)

SX
4 = S4x/

√
6 − S4y/

√
2 + S4z/

√
3, (A26)

SY
4 = −S4x/

√
6 − S4y/

√
2 − S4z/

√
3, (A27)

SZ
4 = 2S4x/

√
6 − S4z/

√
3. (A28)

2. Determination of the invariants

The interaction Hamiltonian H between the spins in the
lattice is described by bilinear operators of the form SiαSjβ

where i and j are nearest neighbors. The space group Fd3̄m

allows four different terms for a Kramers ion:61–63

H = P̃1X1 + P̃2X2 + P̃3X3 + P̃4X4, (A29)

where P̃i are constants and

X1 = −1

3

∑
〈i,j〉

SizSjz, (A30)

X2 = −
√

2

3

∑
〈i,j〉

[�ij (SizSj+ + SjzSi+)

+�∗
ij (SizSj− + SjzSi−)], (A31)
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X3 = 1

3

∑
〈i,j〉

(�∗
ij Si+Sj+ + �ijSi−Sj−), (A32)

X4 = −1

6

∑
〈i,j〉

(Si+Sj− + Sj+Si−). (A33)

The sum is over all the pairs of nearest neighbors [see Eq. (6)
for an example of the use of the notation in the case of the
Heisenberg interaction]. Below we give the expressions of the
phase factors �ij introduced for X2 and X3:

�12 = �34 = 1, (A34)

�13 = �24 = ε = exp

(
2πi

3

)
, (A35)

�14 = �23 = ε∗ = exp

(
4πi

3

)
. (A36)

Note that the sum of all four invariants is the isotropic
exchange interaction

∑4
i=1 Xi = ∑

〈i,j〉 Si · Sj (obtained when
P̃1 = P̃2 = P̃3 = P̃4).

To get some insight in the H expression, as an example,
we consider the product S1 · S2. Let us first focus on the
contribution of the first invariant to this product:

X1 :

(−1

3

)
1

2
(S1zS2z + S2zS1z) = −1

3
S1zS2z.

The contribution of the second invariant is easily found:

X2 : −2

√
2

3
(S1zS2x + S2zS1x).

In the same way the contributions of X3 and X4 can be
derived. They are written in terms of the local Cartesian axes.
Transforming to the global axes we derive the expected relation

S1 · S2 = SX
1 SX

2 + SY
1 SY

2 + SZ
1 SZ

2 .

In its most general form [Eq. (A29)] H includes symmetric
(Heisenberg) and the antisymmetric (Dzyaloshinskii-Moriya)
interactions. For completeness, we give the expression of
the Dzyaloshinskii-Moriya Hamiltonian. In terms of the
invariants, we derive

HDM = −Et,DM
(
4X1 − 1

2X2 + X3 − 2X4
)
, (A37)

where Et,DM scales the Dzyaloshinskii-Moriya interaction.

3. Single-tetrahedron approximation

In order to compute diffuse neutron scattering patterns exact
eigenstates ofHmust be used; however, the Hamiltonian given
by Eq. (A29) is unsolvable in general. Therefore instead of
using the full Hamiltonian (Eq. (A29)), we find exact solutions
to a Hamiltonian Ht restricted to tetrahedra of a single type.
This approach, which has been used to analyze diffuse neutron
scattering patterns,61,64 is a considerable simplification of the
original model. It amounts to replacing the sums in Eq. (A29)
over all tetrahedra, as is implicit from the definition of the χi’s,
to a sum over all A-type (or all B-type) tetrahedra (Fig. 1),
as explained in Ref. 62. Thus only three of the six nearest
neighbors of each Er atom are included in the calculation.
Instead of the original interaction constants P̃i we introduce a

similar set of constants Pi , such that

Ht =
∑

A tetrahedra

P1X1 + P2X2 + P3X3 + P4X4. (A38)

Here the sums appearing in the χi operators are limited to
nearest-neighbor spins belonging to single A tetrahedra, unlike
in Eqs. (A30)–(A33). While the full ramifications of this
approximation are not understood, at the very least we can
estimate that the interaction constants Pi are approximately
a factor of two larger than P̃i to compensate for the missing
exchange paths in Eq. (A38).

4. Relations between Hamiltonian parameters

Other groups have proposed a Hamiltonian for the descrip-
tion of an effective one-half spin system such as Er2Ti2O7 for
which the rare-earth crystal-field ground state is a Kramer’s
doublet.

Ross et al.58 and Savary et al.26,65 write the Hamiltonian as

H =
∑
〈i,j〉

{JzzSizSjz − J±(Si+Sj− + Si−Sj+)

+ J±±(γijSi+Sj+ + γ ∗
ij Si−Sj−)

+ Jz±[Siz(ζijSj+ + ζ ∗
ij Sj−) + i ↔ j ]}, (A39)

where γ and ζ are 4 × 4 matrices:

ζ =

⎛
⎜⎜⎜⎝

0 −1 eiπ/3 e−iπ/3

−1 0 e−iπ/3 eiπ/3

eiπ/3 e−iπ/3 0 −1

e−iπ/3 eiπ/3 −1 0

⎞
⎟⎟⎟⎠, γ = −ζ ∗.

(A40)

Taking into account (i) the different labeling in the four
sites of the tetrahedron as well as (ii) the different choice for
the definition of the axes perpendicular to the local threefold
axis which are adopted in these references compared to ours,
the relations between the Hamiltonian parameters are

Jzz = −1

3
P̃1, Jz± =

√
2

3
P̃2,

(A41)

J±± = 1

3
P̃3, J± = 1

6
P̃4.

As explained in Sec. A 3, we expect Pi ≈ 2P̃i .
Considering Yb2Ti2O7 and others crystal-field ground-state

doublet pyrochlore compounds, Onoda and Tanaka66–68 have
also used a Hamiltonian equivalent to Eq. (A39), but with
slight differences in the Hamiltonian parameters labeling.

Two other research groups have studied the interaction of
spins on the pyrochlore lattice with the purpose of extracting
values of the interaction constants. However, since their
interest was on the analysis of relatively high temperature
data, the full angular-momentum Ji was used.69,70 Here we
have recorded the diffuse scattering intensity at a sufficiently
small temperature that it is justified to work within the effective
one-half spin framework. It is possible to project the full
angular momentum into the ground-state Kramer’s doublet.
However, it seems that only semiformal relations between
the parameters of the effective one-half spin and the full
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angular-momentum models can be derived.58 Therefore we
do not consider these relations in our analysis in Sec. V B2.

APPENDIX B: ESTIMATE OF THE ELECTRIC FIELD
GRADIENT ACTING ON THE 167Er NUCLEUS

Here we provide an estimate for the principal value
of electric field gradient tensor Vzz. It is required for the
computation of the nuclear contribution to the specific heat.

In an insulator Vzz is written as the sum of two terms
V latt

zz and V
4f
zz , respectively, modeling the lattice and 4f -shell

contributions. The former contribution is expressed as V latt
zz =

− 4A0
2

e

1−γ∞
1−σ2

where A0
2 is a crystal electric field parameter and γ∞

and σ2 are a Sternheimer coefficient and the screening coeffi-

cient of the crystal field, respectively. From the literature values
A0

2 = 41.5(1.1) meV a−2
0 (Ref. 28) where a0 = 52.92 pm is the

Bohr radius and (1 − γ∞)/(1 − σ2) = 210 (30) (Ref. 71), we
obtain V latt

zz = −1.24 (21)×1022 V m−2. The 4f -shell contri-

bution is written V
4f
zz = − e

4πε0
θ2(1 − RQ)〈r−3〉4f E4f . RQ is a

Sternheimer coefficient, θ2 is a Stevens coefficient, and 〈r−3〉4f

and E4f are the expectation values respectively of the cube of
the inverse distance between the nucleus and the Er3+ 4f shell,
and the quadrupole operator 3J 2

z − J (J + 1) acting on the 4f

shell. As usual, ε0 is the permittivity of free space. From the
literature values RQ = 0.29 (1) (Ref. 71), θ2 = 2.54 × 10−3,
〈r−3〉4f = 11.36 a−3

0 (Ref. 72), and E4f = −7.86 (Ref. 28),
we get V

4f
zz = 1.6 × 1021 V m−2. Summing up the two

contributions we obtain Vzz = −1.1 (3) × 1022 V m−2.
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