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Linewidth of higher harmonics in a nonisochronous auto-oscillator:
Application to spin-torque nano-oscillators
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In an isochronous auto-oscillator, where the auto-oscillation frequency f does not depend on the oscillation
amplitude, the linewidth of the nth harmonic is n2 times larger than the linewidth of the main auto-oscillation
mode. Here we present a theoretical description that predicts that the increase in the linewidth of higher harmonics
with harmonic number n is substantially slower in the case of a nonisoschronous oscillator, where f depends
strongly on amplitude. Using spin-torque nano-oscillators as an example of a nonisochronous oscillator, this
description is confirmed numerically and experimentally. The presented model allows one to extract important
nonlinear parameters of an auto-oscillator of any physical nature from the measurement of higher harmonic
linewidths.
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Auto-oscillating systems are ubiquitous in nature and can
be found in many branches of science, such as physics
(electronics, optics, or mechanics), chemistry, and biology.1

Since auto-oscillators are nonlinear, they generate not only the
main auto-oscillation frequency, but also higher harmonics
of this frequency. In an auto-oscillating regime, the external
phase noise (or timing jitter) broadens the spectrum of all
the generated frequencies and determines the finite generation
linewidths.1–3

Many auto-oscillators (e.g., lasers) are isochronous, in the
sense that their auto-oscillation frequency is independent of the
amplitude, but there is an important class of nonisochronous
auto-oscillators where generated frequencies depend on the
auto-oscillation amplitude.3–5 For example, the human heart,
all the auto-oscillators exploiting ferromagnetic resonance,
and, in particular, the recently developed spin-torque nano-
oscillators (STNOs)3–11 belong to this class.

The nonisochronous property (or nonlinearity of the auto-
oscillation frequency) provides a mechanism to convert the
amplitude noise into phase noise and creates an additional
effective source of a nonwhite (correlated) phase noise that
substantially broadens the generation linewidth.3–5 The same
property is responsible for the broadening of a frequency band
of synchronization in an array of coupled auto-oscillators,3,12

and therefore, the quantitative information about the auto-
oscillator nonlinear parameters that determine synchroniza-
tion, modulation, and other nonautonomous properties is of
crucial importance for applications. Usually, these parameters
can be determined only from rather complicated time-resolved
experiments9,10,13 or from nonautonomous frequency-domain
measurements involving additional external signals.14,15

In our current work we demonstrate that there is a significant
difference between isochronous and nonisochronous auto-
oscillators in the linewidth values of higher generation har-
monics due to the nonlinearity of the generation frequency in
the latter case. This difference provides a method to determine
the intrinsic nonlinear parameters of the auto-oscillator, such

as the nonlinear coefficient of linewidth broadening ν and
the damping rate of the amplitude fluctuations �p, which
determine the nonautonomous auto-oscillator dynamics.3

The general theory of the auto-oscillator linewidth for an
isochronous auto-oscillator was developed in Refs. 2 and 16.
It was shown in Ref. 2 that the phase variance �φ2 of
an auto-oscillator increases linearly with time τ (�φ2 ∼ τ ,
corresponding to a “random walk” of phase) and that the
generation line has a Lorentzian shape. Considering that the
phase variance of the nth harmonic is given by

�φ2
n = n2�φ2, (1)

and since the phase performs a random walk in the isochronous
case (�φ2 ∼ τ ), it results that the spectrum of the nth
isochronous auto-oscillator harmonic has a Lorentzian shape
with the linewidth2

�f iso
n = n2�f iso

1 , (2)

which is n2 times larger than the fundamental linewidth �f iso
1

(full width at half-maximum; FWHM).
We would like to note that the linewidth of the nth harmonic

in a passive (damped) isochronous nonlinear resonator is
determined by a different relation,

�f res
n = n�f res

1 , (3)

and is only n times larger than the passive resonator linewidth
�f res

1 determined by the resonator damping.
In contrast with Ref. 2, in the case of a nonisochronous

auto-oscillator3 the shape of the generation line becomes non-
Lorentzian,6 and the phase variance of the main frequency is
a nonlinear function of τ [see Eq. (6) in Ref. 5]:

�φ2
1(τ ) = 2π�f iso

1

[
(1 + ν2)|τ | − ν2 1 − e−2�p |τ |

2�p

]
, (4)

where �f iso
1 is the linewidth of the main frequency in

an isochronous auto-oscillator (in the absence of frequency
nonlinearity), ν is the dimensionless coefficient characterizing
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the strength of this nonlinearity, and �p is the damping rate
of amplitude fluctuations in the auto-oscillation regime (for
details see Refs. 3 and 5).

Obviously, expression (2) will not hold in the non-
isochronous case and the main goal of this work is to find
a correct description for the linewidth of the nth harmonic
in a nonisochronous auto-oscillator. First, to illustrate the
importance of this problem we demonstrate that the linewidth
of higher harmonics in a nonisochronous auto-oscillator,
indeed, deviates substantially from the well-known relation,
(2), established in Ref. 2.

A relevant example of a nonisochronous auto-oscillator that
currently attracts a lot of attention from researchers is the
STNO.3–11 For STNOs multiharmonic spectra of the steady-
state oscillations were observed both in experiments and in
simulations.11,17

In Fig. 1(a) we present the linewidth of a main auto-
oscillation mode �f1 (filled circles) and the linewidth of
its second harmonic �f2 (filled triangles) experimentally
measured on a magnetic tunnel junction (MTJ) STNO as
functions of the supercriticality parameter ζ = I/Ic, defined
as the ratio of the bias current I to its critical value Ic at which
the auto-oscillation regime starts. In the same figure, we show,
for comparison, values of 2�f1 (open circles) and 4�f1 (open
triangles). The experimental linewidths were obtained from
the Lorentzian fits of the power spectral density (PSD) of
the magnetoresistive voltage signal acquired in the frequency
domain (resolution bandwidth, 3MHz; experimental details
can be found elsewhere).18 An example of such a power
spectrum is shown in the inset in Fig. 1(a) for ζ = 1.2.

In Fig. 1(b) we present the results of numerical simulations
of the magnetization dynamics in an STNO with parameters
(same as in Ref. 9) that are qualitatively similar to those of
our experimental MTJ STNO [Fig. 1(a)], assuming that the
dynamic magnetization in the STNO free layer is spatially
uniform. In the framework of these “macrospin” simulations
we performed numerical integration of the Landau-Lifshitz-
Gilbert equation,19 where the Slonczewski spin-torque term,20

as well as the Gaussian white-noise term simulating the
influence of thermal fluctuations,21 were included. In Fig. 1(b)
the linewidth �f1 of the main mode is shown by the filled
circles, the linewidth �f2 is shown by the filled triangles,
and the calculated values 2�f1 and 4�f1 are shown by open
symbols.

The simulations give a good qualitative description of the
auto-oscillation modes observed experimentally in an STNO
based on an MTJ. In both cases (experiment and simulation)
the dynamics corresponds to the in-plane precession mode of
the in-plane magnetized free layer, whose static magnetization
is antiparallel to the static magnetization of the STNO pinned
layer. While in the simulations harmonics up to the order
n = 7 can be analyzed, in the experiment they are limited
to n = 2.

The behavior of the linewidth �f2 of the second harmonic
in our macrospin simulations [Fig. 1(b)] is qualitatively similar
to the behavior of �f2 in the experiment [see Fig. 1(a)] in both
the subcritical and the supercritical regime. In particular, the
second harmonic �f2 of the second harmonic in the subcritical
(ζ < 1) (or passive resonator) regime practically coincides
with 2�f1.
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FIG. 1. FWHM �f1 and �f2 extracted from PSDs (a) for
experiments on MTJs (sample A; nanopillar of 85-nm diameter,
resistance area product RA = 1	 μm2, tunneling magnetoresistance
TMR = 70%) and (b) for macrospin simulations as in Ref. 9. In the
simulations the even (odd) harmonics were obtained from the PSD
of the in-plane magnetization parallel (perpendicular) to the static
equilibrium orientation. In (a) and (b) the �f2 values are compared
with 2�f1 (open circles) and 4�f1 (open triangles). Inset in (a):
Experimental PSD for ζ = 1.2.

At the same time, it is clear from Fig. 1 that in the
auto-oscillation regime (ζ > 1) the linewidth of the second
harmonic does not follow the predictions of the well-known
theory2 and that the experimental and numerical ratios of
the second harmonic to the fundamental mode are lower
than expected from Eq. (2) but higher than expected from
Eq. (3); i.e., they lie in the interval 2�f1 < �f2 < 4�f1.
To understand the qualitative reason of this discrepancy we
present below an analytical derivation of the higher harmonics
linewidth in a general nonisochronous auto-oscillator.

It has been shown in Ref. 3 that the complex amplitude c(t)
of the oscillating variable in a nonisochronous auto-oscillator
can be described by the equation

dc

dt
+ iω(p)c + �+(p)c − �−(p)c = ξ (t), (5)

where p = |c|2 is the dimensionless oscillation power, ω(p)
is the nonlinear oscillation frequency, �+(p) is the positive
nonlinear damping, �−(p) is the negative damping (in the
STNO it is caused by the spin-torque effect), and ξ (t) is
the stochastic process describing the influence of the white
Gaussian noise. In the model, (5), the steady auto-oscillations
are excited when ζ ≡ �−(0)/�+(0) = 1, i.e., at the point
where negative damping compensates positive damping at zero
oscillation power. The complex amplitude of the nth harmonic

104418-2



LINEWIDTH OF HIGHER HARMONICS IN A . . . PHYSICAL REVIEW B 86, 104418 (2012)

of the main oscillation mode excited in the auto-oscillator, (5),
is proportional to cn.

In the subcritical regime ζ < 1, the FWHM of a passive
oscillator (or resonator) is determined by the positive linear
damping �+(0). This regime can be easily analyzed using
Eq. (5) linearized near c = 0 and all the nonlinearities of the
STNO parameters in this regime are neglected. In this linear
subcritical regime, Eq. (5) has the following analytic solution:

c0(t) =
∫ t

0
ξ (t ′) exp[−(iω0 + �s)(t − t ′)]dt ′, (6)

where ω0 = ω(0) is the frequency of linear oscillations
and �s = �+(0) − �−(0) = (1 − ζ )�+(0) is the effective re-
laxation rate. The autocorrelation function Kn(τ ) = 〈cn(t +
τ )[c∗(t)]n〉 of the nth-order harmonic can be easily found from
the above expression and is an exponentially decaying function
with n�s as the characteristic decay time,

Kn(τ ) = n!cn
0 exp(−n�sτ ), (7)

where the mode amplitude c0 is proportional to the noise
power.

Two important properties follow from this equation. The
first is that in the subcritical regime ζ < 1 the lineshape of
the main mode and all its harmonics is Lorentzian and that
the corresponding linewidth of the nth harmonic is related to
the linewidth of the main mode by Eq. (3). This theoretical
result is confirmed by both the simulations and the experiment
shown in Fig. 1 for the second harmonic. Here, it is clear that
Eq. (3) holds up to the point ζ = 0.95, where nonlinear terms
in Eq. (5) become important.

The second important property is that the fundamental
linewidth is given by the amplitude relaxation rate with �f1 =
�s/π ∝ (1 − ζ ). This result is confirmed by the almost-linear
decrease in the linewidth with ζ shown in Fig. 1.

In the supercritical regime, when the oscillation power
substantially exceeds the noise level (this condition is typically
satisfied for ζ > 1.05), the amplitude fluctuations do not
contribute directly to the correlation function Kn(τ ), and
it is determined solely by the phase decoherence, Kn(τ ) ∝
exp(−n2�φ2). For a nonisochronous oscillator, however, the

amplitude fluctuations change the phase dynamics through
the nonlinear amplitude-frequency coupling, and the phase
variance �φ2 is determined by Eq. (4) (see Refs. 3 and 5 for
details).

The phase variance, Eq. (4), is plotted in Fig. 2(a) for typical
STNO parameters. One can distinguish three regimes. For
long time scales τ 	 1/2�p and for short time scales τ 

1/(2�pν2) the phase variance is linear in τ , while in between,
the phase variance is quadratic in τ 5.

To find the generation linewidth �fn from the phase
variance �φ2, one should, in principle, find the generation
spectrum as a Fourier image of the correlation function Kn(τ ),
which cannot be done analytically. It is clear, however, that at
the correlation time Tn = 1/�fn the value of the nth harmonic
phase variance n2�φ2(Tn) should be of the order of unity. Our
calculations show that a good estimation of the linewidth can
be obtained from the following simple relation:

�φ2(Tn) = 2π/n2. (8)

Equation (8) gives an exact value of the linewidth �fn for a
random-walk process �φ2 ∼ τ , and its error does not exceed
6% in the quadratic region �φ2 ∼ τ 2.

Combining Eqs. (4) and (8), one can easily understand why
for a nonisochronous oscillator the linewidths �fn deviate
from the well-known relation (2). The fundamental linewidth
�f1 corresponds to the coherence time T1 = 1/�f1, for
which the phase variance is �φ2(T1 = 1/�f1) = 2π [line
A in Fig. 2(a)]. The linewidth �fn of the nth harmonic
is, then, found as the inverse of the coherence time Tn =
1/�fn for which the phase variance is 2π/n2 [line B in
Fig. 2(a)]. It can be seen immediately that the corresponding
coherence time in the case of a nonisochronous oscillator
(line B) is larger than that for an isochronous one (line C),
whose phase variance is linear in time for all time scales
(pure random-walk phase). Correspondingly, the linewidths
of higher harmonics are smaller than predicted by Eq. (2)
with �fn < n2�f1. Moreover, since the logarithmic slope of
�φ2(τ ) changes between 1 (�φ2 ∼ τ ) and 2 (�φ2 ∼ τ 2),
for a general nonisochronous oscillator the linewidth �fn

always lies in the interval n�f1 < �fn < n2�f1 as has been
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FIG. 2. (a) Calculated phase variance �φ2(τ ) from Eq. (4) using �f0 = 10 MHz, 1/�p = 3.18 ns, and ν = 10. Point A corresponds to
1/�f1, point B corresponds to the expected coherence time (1/�fn) for the n = 10 harmonic for the nonisochronous oscillator, and point
C corresponds to the isochronous oscillator. (b) Ratio �fn/�f1 versus harmonic order n from simulations. Dashed and solid black lines
are for �fn = n�f1 and �fn = n2�f1, respectively. The gray line shows the values calculated from Eqs. (4) and (8) with the nonlinear
parameters �p and ν extracted from the first harmonic signal. Open circles are the results of a “macrospin” numerical simulation performed
for ζ = 1.8.
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FIG. 3. (Color online) Verification of the method based on the higher harmonic linewidths. Linewidth of the n harmonic (shown by open
circles) extracted from the time-domain data [(a) numerically simulated for n = 3; (c) experimentally measured for n = 2] in comparison
with the analytical results for isochronous2 and nonisochronous [Eq. (8)] models. Results from the model in Ref. 2 are shown by the dashed
(black) line, while results from Eq. (8) are shown by the solid (red) line. Nonlinear parameter �p (shown by open circles) extracted from the
time-domain data [(b) numerically simulated; (d) experimentally measured] in comparison with the same parameter calculated using Eq. (8)
from the calculated or measured values of �f1, �f2 and ν. Note that a different MTJ device was used in the experiments in (c) and (d) compared
to Fig. 1(a).

found in experiment and in simulations (Fig. 1). By fitting
the experimental (or numerically calculated) dependence
�fn(n) using (8), it is possible to determine the nonlinear
auto-oscillator parameters ν and �p. Thus, Eq. (8) and the
above-presented analysis constitute the main theoretical results
of this paper.

In order to further verify the presented theoretical de-
scription, we compare the linewidth of the higher harmonics
obtained from a Lorentzian fit of the numerically calculated
PSD [open circles in Figs. 3(a) and 3(c)] to the results
obtained from the analytical model, (4) and (8) [solid (red)
lines in Figs. 3(a) and 3(c)]. For the analytical model the
nonlinear parameters ν and �p of the auto-oscillator were
extracted in each case independently from the phase and
amplitude noise of the first harmonic (fundamental frequency)
following Refs. 9 and 13, and the intrinsic linewidth �f0

was calculated from Eq. (4) for �f1. Using the set of values
�p, ν, �f0, obtained solely from the analysis of the signal
at the fundamental frequency, we then calculated �fn from
Eqs. (4) and (8) to obtain the solid (red) lines in Fig. 3. One
can see that the model, (4) and (8), gives a good description
of �fn in the auto-oscillation regime ζ > 1, as shown in
Fig. 3(a) for the third harmonic obtained from macrospin
simulations and in Fig. 3(c) for the second harmonic measured
experimentally. In Fig. 2(b), this is shown more explicitly
for the macrospin simulation for orders n = 2–7. In contrast
to the nonisochronous model, Eq. (8) [solid (red) lines] the
well-known model of an isochronous auto-oscillator2 [dashed

(black) line; see also Eq. (1)] does not provide an adequate
description of the higher order harmonic linewidths.

An important consequence of the above-developed non-
isochronous model, (8), is that by measuring experimen-
tally the linewidths of three harmonics in a nonisochronous
auto-oscillator, it is possible to extract via the analytical
model, (4) and (8), the three parameters �p, ν, and �f0

that define many properties of the dynamics of the system
[see Figs. 3(b) and 3(d)], where the values of the nonlinear
STNO parameter �p, determined from the time-domain
data, are compared with the values of the same parameter
determined from the higher harmonics linewidths data using
the model, (8). This method of extraction of the nonlinear
auto-oscillator parameters is very general and can be used for
auto-oscillators of different physical natures in a wide range
of auto-oscillation amplitudes (or supercriticalities ζ ). It will
be of particular importance when the time-domain data from
the auto-oscillator (e.g., used in Refs. 9, 10, and 13) are not
available.

In conclusion, we have provided a general analytical
description for the linewidth �fn of higher harmonics in a
nonisochronous auto-oscillator. Using this analytical descrip-
tion it is possible to determine all the nonlinear parameters of
a nonisochronous auto-oscillator if the linewidths of at least
three generated harmonics are experimentally measured or
numerically calculated. Using these parameters it is possible
to theoretically predict the nonautonomous behavior of the
auto-oscillator.3
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