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Steep energy landscapes and adjustable magnetization states in a four-layer mean-field
model with competing interactions
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We present a mean-field model with competing interlayer interactions which give rise to organized frustration.
The frustration arises due to the difference in modulation length of the interlayer exchange coupling in the
mixed-spin state. We calculate the energy landscapes and the equations of state of the system and show
how multiple configurations are possible. In addition, the study shows how in such a layered system with
competing interactions magnetization jumps can occur at low temperature due to the sharp energy barriers
in the landscape. Finally, we examine possible mechanisms of magnetization self-reversal via layer-moment
switching.
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I. INTRODUCTION

The energy balance in systems with competing interactions
which generate frustration has been a topic of intense study
in the past years.1–6 In the context of frustrated magnetic
materials a wide range of systems and concepts has been
investigated. These include spin glasses,7,8 spin liquids,9,10

and sublattice-frustrated ferrimagnets.11–13 The latter group
represents a special class of materials, in which the compe-
tition is manifested between long-range-ordered sublattices.
Moreover, mixed-spin ferrimagnets also exhibit compensation
points14–16 due to the different temperature dependence of the
magnetic constituents.

An excellent example of this class of materials are members
of the hemo-ilmenite solid solution series (x)FeTiO3-(1 −
x)Fe2O3 with x > 0.7.17–19 This system crystallizes in the
R3̄ symmetry,20 where the Fe(II) and Ti(IV) cations are
partitioned into consecutive A and B layers, respectively,
and the Fe(III) ions are randomly distributed in all layers to
compensate for charge imbalance. The cations are octahedrally
coordinated with oxygen.21 In this configuration both Fe ions
are in the high-spin state, i.e., 3d4, S = 4/2 for Fe(II) and
3d5, S = 5/2 for Fe(III).22,23 This setup generates Fe-rich
(A) and Fe-deficient (B) alternating layers. Inside each layer,
the spins of the Fe ions prefer parallel alignment due to
direct exchange interactions,24 but spins from neighboring
layers show different behavior. Fe(II) spins in subsequent A
layers in ilmenite order antiparallel to each other due to the
oxygen-induced superexchange, and thus have a modulation
of 4 crystalline layers;23,25 Fe(III) spins, however, exhibit
a modulation of 2 crystalline layers as in the end-member
hematite.26 Hence the system demonstrates layerwise frustra-
tion of the interactions due to the difference in modulation
lengths along the c axis which results in a freezing event at
a finite temperature Tf .17,19 This magnetic partitioning was
recently verified by low-temperature magnetization loops,
which exhibit multiple metamagnetic transitions attributed to
collective layer rotation.27 The layerwise frustration enables
a detailed theoretical study of such a system, where the
focus lies on the competition of the interlayer exchange
coupling.

In this work we investigate a four-layer model system
containing two A layers (major moment carriers) and two
B layers (minor moment carriers) (see Fig. 1), where all
layers interact with each other with competing interlayer
exchange energies. The study, even though motivated by
experimental observations, is purely theoretical and aims
towards understanding the mechanisms of energy-balance
competition in a virtual system with a finite number of
degrees of freedom, i.e., the four layers. For this purpose,
we compare two systems, one with composition x = 1.0,
i.e., only A layers, and one with x = 0.8. The comparison
between the two systems will elucidate the effect of the mixed
modulation of interlayer exchange energies in the mixed-spin
state.

II. FOUR-LAYER MODEL

We model the magnetic unit cell of the system as a four-
layer magnet containing A1, B1, A2, and B2 layers (Fig. 1).
The interactions between the layers can be represented by
three effective exchange constants: JAA for A1-A2, JBB for
B1-B2, and JAB for A-B interactions. We assume that all spins
within each layer are ordered parallel due to direct exchange,
and thus the intralayer exchange energies are JA > 0 for A
layers and JB > 0 for B layers. Considering the interaction
modulation of Fe(II) and Fe(III) in the real system, A1 and
A2 will tend to align antiparallel to each other (JAA < 0, as in
FeTiO3), B1 and B2 will tend to align parallel to each other
(JBB > 0, as in Fe2O3), while the A’s and B’s will tend to align
antiparallel to each other (JAB < 0, as in Fe2O3). Therefore,
from the three effective exchange constants in this geometry,
only two of the interlayer bonds can be satisfied at any given
time. For example, when A1-A2 are antiparallel and B1-B2
are parallel, JAA and JBB are satisfied but JAB is not [Fig. 1(a)].
In another scenario, when both A1-A2 and B1-B2 are parallel,
the JBB and JAB are satisfied but the JAA is not [Fig. 1(b)]. In
a more general sense, the four layers represent a system with
four coupled degrees of freedom.

First, we construct a general Hamiltonian for a system with
K layers and then reduce it to the four layers. The Hamiltonian
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FIG. 1. (Color online) Illustration of the four-layer model with
interlayer interactions JAA, JBB, and JAB. The green arrows indicate
the direction of the layer moment, blue spirals correspond to satisfied
bonds, and red spirals to frustrated bonds between layers. Only two
bonds can be satisfied at the same time. Example (a) shows a case
where one of the JAB bonds is suppressed, and example (b) another
case where the negative JAA is suppressed.

of the kth layer in the system can be written as

Hk = −1

2

Nk∑
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⎛
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where Nk is the number of atoms in layer k, Jk,ij is the
intralayer interaction in layer k, Sk,i and Sk,j are the interacting
spins in layer k, zk is the number of interacting neighbors in
layer k, K is the total number of layers (in this case K = 4),
Jkl,ij is the interlayer interaction constant between spins Sk,i

and Sl,j , and h is the external field. We consider Ising-type
spins; i.e., the spins are all confined in one axis and S = ± |S|,
since hemo-ilmenite has been found to exhibit Ising-like
behavior.19,26 Moreover, in the Hamiltonian we assume that
all spins interact with each other, i.e., that we have a uniform
mean field.

We simplify the above Hamiltonian using a mean-field
approximation for both intra- and interlayer exchange inter-
actions, assuming uniform layer magnetization mk . Further,
we can estimate the relative layer moment using the ionic
contents of each layer which depend on the composition

of the solid solution and will be [(5 − x)/2]μB for A’s and
[5(1 − x)/2]μB for B’s. For the discussion the layer moments
are normalized to their relative value, i.e., −1 � mk � +1.
Finally, the mean-field Hamiltonian of the kth layer in the
system reads

HMFA
k = Nk

2
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which now has the familiar form of

Hk = Xk − Yk

Nk∑
i

Sk,i , (3)

where the spins are disentangled and this allows us to calculate
the partition function of the canonical ensemble Z(T ). From
this we calculate the energy density F (T )k for each sublattice:

F (T )k = − 1

βNk

ln Z(T )k

= − 1

βNk

ln{e−βXk [2 cosh(|Sk|βYk)]Nk }

= Xk

Nk

− 1

β
ln[2 cosh(|Sk|βYk)] , (4)

where β = 1/kBT is the inverse thermal energy at temperature
T with the Boltzmann constant kB. The total energy density
is then the sum of all four layer energies (Ftot = FA1 + FB1 +
FA2 + FB2). Finally we arrive at the equations of state of the
system, which have the form

mk = −
[
∂F (T )k

∂h

]
h

= |Sk| μBg tanh (|Sk| βYk) . (5)

These equations are self-consistent; i.e., they have the form
mk = f (mk). Therefore, we calculate the deviation from the
self-state as Ek = mk − f (mk), whereas for the whole system
it can be defined as

E =
√

E2
A1 + E2

B1 + E2
A2 + E2

B2. (6)

Using Eqs. (6) and (4) we can calculate the state E and
the energy F of the system, respectively, as a function of the
individual layer moments, i.e., as a function of either the A
or the B layers, at constant temperature. When calculating
E(mA1,mA2) and F (mA1,mA2) we have to assume a constant
configuration of the B layers and vice versa. By calculating the
energy landscapes and the equations of state of the system as
a function of the layer moments, we may locate the frustrated
symmetries in the system and be able to predict the energy
minima (global and local), as well as the mechanisms of layer-
moment switching.

The energy-balance in the system is decided by the values
of JAA, JAB, and JBB. Considering that each spin has three
nearest neighbors within the layer and one nearest neighbor
in the neighboring layer, the intralayer exchange will be
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FIG. 2. (Color online) Energy landscapes (left) and equation of state (right) calculated using Eqs. (4) and (6), respectively, for compositions
x = 1.0 [(a), (b)] and x = 0.8 [(c), (d)] as a function of A-layer moments at T = 1 × JA. The color bar on the right indicates the value of the
normalized landscapes. The white lines in the right-hand panels indicate the possible movements of the system.

three times stronger. Moreover, taking into account the inter-
ion distances within the layers and between neighboring
layers,25 we may assume that interlayer interactions will be
four times weaker than intralayer interactions. We therefore
assign |JAA| = |JBB| ≈ |JA| /4, and |JAB| ≈ |JA| /2. Since the
occupancy of each layer is not the same, the contribution
of the individual exchange constant to the total energy of
the system is mediated via the layer moment, which is
scaled to the occupancy. For simplicity, we scale all the
exchange constants and the temperature to JA (=1) in the
calculations.

III. RESULTS AND DISCUSSION

As a first step, we calculate the energy landscape and the
state of the system as a function of the A-layer moments
at temperature T = JA for compositions x = 1.0 and 0.8
(see Fig. 2). In the case of x = 1.0, mB1 and mB2 are zero
and do not have to be considered for the calculation. The
system is described by a symmetric energy landscape and an
equation of state which allows five A-layer configurations:
(mA1,mA2) = (0,0), (1,1), (1,−1), (−1,1), and (−1,−1). The
energy landscape, however, has only two minima at (1,−1) and
(−1,1), i.e., at antiparallel configuration of the layer moments.

Therefore, the ground state of the system with x = 1.0 is
clearly either (1,−1) or (−1,1). From the landscape of the
equation of state [Fig. 2(b)] we can also determine the possible
pathways of the layer moments in a case of switching from one
state to another. As seen in the figure, at this temperature only
switching between (−1,−1) and (1,1) via (0,0) is possible.
Such a switching, although it is allowed by the equation of
state, can be excluded because it lies at the energy maxima as
seen in Fig. 2(a).

For x = 0.8 the B-layer moments are nonzero and for
the calculation they are assumed to be fixed at a parallel
configuration. As seen in the figure [Figs. 2(c), 2(d)] the
diagonal symmetry is lost and a new energy minimum is
generated at (−1,−1); i.e., the A-layer moments may be
parallel to each other and antiparallel to the B-layer moments.
From the landscape of the equation of state [Fig. 2(d)] we see
that there is a pathway between the states (1,−1), (−1,−1),
and (−1,1). This suggests that upon application of an external
field to the negative direction, the A-layer moments could be
directed into a parallel configuration, antiparallel to the B-layer
moments, and that the process would be reversible. If, however,
a strong external field forces the A layers in a parallel positive
configuration, i.e., (1,1), which is allowed by the equation of
state, then the system would be trapped in that local minimum
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FIG. 3. (Color online) Same as Fig. 2 but at temperature T = 0.1 × JA.

and it would stay in that configuration, resulting in a ferrimag-
netic state with finite total magnetic moment. This finding is
in agreement with experimental observations of metamagnetic
transitions in the real system, where application of an external
field at low temperature (T < 25 K) resulted in the generation
of a metastable state with finite magnetic moment.19 It should
be noted that if the same calculation were performed while
keeping the B-layer moments parallel in the negative direction,
the symmetries in Figs. 2(c), 2(d) would be inverted; i.e., the
new energy minimum would be at the position (1,1).

When we go to lower temperature (T = 0.1 × JA), the
situation is similar but the borders between possible layer con-
figurations become much sharper (see Fig. 3). The symmetries
for both systems remain exactly the same but the sharp borders
suggest that the system is locked in a specific configuration.
The system with composition x = 1.0 [Figs. 3(a), 3(b)] now
has no possible switching mechanisms and the layer moments
may only exhibit local variations, as seen by the white lines in
the landscape.

For the system with x = 0.8, however, switching of
the layer moments is possible, but the presence of sharp
borders suggests that the system needs to jump from one
configuration to another. This is made clear when comparing
panels (c) and (d) of Fig. 3: The equation of state shows a
sharp minimum border, which begins at (−1,0) and (0,−1).
At the same locations the energy landscape exhibits local

maxima. This means that although the system is allowed
to assume that configuration, it will need to overcome the
energy barrier (during a switching process). This will, in
turn, manifest a metamagnetic transition, where the system
jumps between layer configurations. This is also in agreement
with experimental observations of strong magnetization jumps
in the hemo-ilmenite system with x = 0.8 and 0.9 at low
temperature (T < 3 K), which were investigated by means
of Monte Carlo simulations, and revealed collective layer-
moment switching.27

We now turn our focus on the behavior of the B layers in
the system with x = 0.8. Since the A layers are the major
moment carriers, they will impact the total energy of the
system, and thus the dynamics of the B layers. We therefore
consider the two scenarios where (i) A layers are fixed at a
parallel configuration (1,1), and (ii) the A layers are fixed in
an antiparallel configuration (1,−1). Then we calculate the
energy landscape and the equation of state as a function of the
B-layer moments. The results are seen in Fig. 4. The top panels
in the figure show calculations with scenario (i), where the A
layers are parallel. As can be clearly seen from the energy and
the state of the system, the B layers prefer a quasiparallel
alignment in the negative direction, i.e., in the direction
opposing that of the parallel A layers. The energy landscape
has one global minimum at (mB1,mB2) = (−0.5,−1) and the
equation of state is minimum at (−1,−1). Considering that
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FIG. 4. (Color online) Energy landscape (left) and equation of state (right) calculated using Eqs. (4) and (6), respectively, for compositions
x = 0.8 as a function of B-layer moments at T = 0.1 × JA. (a) and (b) show the case when the A-layer moments are (1,1), and (c) and (d)
show the case when the A-layer moments are (1,−1). The color bar on the right indicates the value of the normalized landscapes.

the state of the system needs to be satisfied, the negative
configuration with (−1,−1) will be the preferred state. This
result reflects the previous finding that A-layer moments are
generally antiparallel to B-layer moments. This is mediated
via the JAB exchange, which is negative.

If we calculate the energy and state of the system using
scenario (ii), i.e., an antiparallel A-layer configuration, the
situation changes strongly. As seen in Figs. 4(c), 4(d),
the B-layer moments have two possible configurations: (1)
(mB1,mB2) = (−0.5,−1), which has a negative net moment,
and (2) (mB1,mB2) = (0.5,1), which has a positive net moment.
The two possible states have the same probability, as can be
seen by the equally low energy levels at those configurations.

From this finding we may conclude that when the A-layer
moments transfer from parallel to antiparallel, and thus cancel
each other out, the net moment of the system will be that of the
B layers. As seen by these calculations, the net moment can be
either negative or positive with respect to the original direction
of the parallel A-layer moments. Considering that the B-layer
moments were in the negative regime in the original scenario,
they will remain in the negative configuration. Therefore, by
this mechanism the system may exhibit a self-reversal of the
net magnetic moment when the A-layers change from parallel
to antiparallel. This canceling out of the A-layer moments

may occur, e.g., during heating of the system, when the
energy barrier between parallel and antiparallel configuration
becomes very low (compare Fig. 2).

Finally, we can deduce the possible ordering schemes of
the system with x = 0.8 using the energy and system state.
If we cool the system from T > TC, the A layers assume an
antiparallel configuration so that the system dwells in one
of the two global minima [Fig. 2(c)]. This means that the B
layers have two possible configurations which would result
either in a net positive moment or a net negative moment.
Therefore, the total moment of the system would be the net
moment of the B layers, considering that the A layers cancel
each other out. If, however, we apply an external field at low
temperature and force the A layers in a parallel alignment,
they will dwell in the local minimum [see Fig. 2(d)] and the
system will have a large positive net magnetic moment. The
B layers will have to assume a negative configuration so that
the system transfers to the global minimum of Figs. 4(a), 4(b).
When the A layers return to an antiparallel configuration the
net moment of the system is again that of the B layers and
it will have a negative direction, as discussed above. With
this in mind, we can compare these theoretical findings to
experimental observations in the FeTiO3-Fe2O3 system with
high Ti content. The metamagnetic transitions observed at low
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temperature (T < 3.0 K) for compounds with composition
x = 0.9 and 0.827 correspond to reconfiguration of the Fe-rich
layers in the model upon crossing the sharp energy barriers
in Fig. 3. Moreover, the magnetization self-reversal observed
after field cooling in the real systems28 corresponds to scenario
(i) mentioned above, where field cooling forces A layers in
a parallel configuration and upon heating the layers become
antiparallel, leaving the compound with the negative net
moment of the B layers.

IV. CONCLUSIONS

In conclusion, we have demonstrated that the frustration
in this partitioned structure becomes organized, provided that
the partitions (layers) act collectively, and that the presence
of both Fe(II) and Fe(III) creates additional minima in the
energy landscape. Under such conditions it is possible to

shift the physical location of frustration and thus control the
macroscopic behavior of the system by the application of
an external force. Our findings extend beyond magnetism,
with implications for a variety of strongly correlated systems
with coupled degrees of freedom, illustrating how changes in
the energy balance between interacting agents can influence
macroscopic phenomena. The presented principle of organized
frustration and energy balance is vital and may also be
relevant in other scientific fields, where interacting units with
conflicting demands attempt to reach an optimized state in a
frame of consensual compromise.

ACKNOWLEDGMENTS

The authors would like to thank A. Jackson and C. Finlay
for fruitful discussions. This work was funded by the Swiss
National Science Foundation via Grant No. 200021-121844.

*Corresponding author: michalis.charilaou@erdw.ethz.ch
†Present address: School of Minerals, Metallurgical and Materials
Engineering, Indian Institute of Technology, Bhubaneswar 751 007,
India.
1M. J. Harris, S. T. Bramwell, D. F. McMorrow, T. Zeiske, and
K. W. Godfrey, Phys. Rev. Lett. 79, 2554 (1997).

2G. Aeppli and P. Chandra, Science 275, 177 (1997).
3A. P. Ramirez, in Handbook of Magnetic Materials, edited by
K. J. H. Buschow (New Holland, New York, 2001), pp. 423–520.

4S.-H. Lee, C. Broholm, W. Ratcliff, G. Gasparovic, Q. Huang,
T. H. Kim, and S.-W. Cheong, Nature (London) 418, 856 (2002).

5P. Schiffer, Nature (London) 420, 35 (2002).
6R. Moessner and A. P. Ramirez, Phys. Today 59(2), 24 (2006).
7K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).
8K. H. Fischer and J. A. Hertz, Spin Glasses (Cambridge University
Press, Cambridge, 1991).

9A. P. Ramirez, Nat. Phys. 4, 442 (2008).
10L. Balents, Nature (London) 464, 199 (2010).
11O. Kahn, Nature (London) 399, 21 (1999).
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