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Landau-Lifshitz-Bloch equation for ferrimagnetic materials
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We derive the Landau-Lifshitz-Bloch (LLB) equation for a two-component magnetic system valid up to the
Curie temperature. As an example, we consider disordered GdFeCo ferrimagnet where the ultrafast optically
induced magnetization switching under the action of heat alone has been recently reported. The two-component
LLB equation contains the longitudinal relaxation terms responding to the exchange fields from the proper and
the neighboring sublattices. We show that the sign of the longitudinal relaxation rate at high temperatures can
change depending on the dynamical magnetization value and a dynamical polarization of one material by another
can occur. We discuss the differences between the LLB and the Baryakhtar equations, recently used to explain
the ultrafast switching in ferrimagnets. The two-component LLB equation forms the basis for the large-scale
micromagnetic modeling of nanostructures at high temperatures and ultrashort time scales.
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I. INTRODUCTION

The Landau-Lifshitz-Bloch (LLB) dynamical equation of
motion for macroscopic magnetization vector1 has recom-
mended itself as a valid micromagnetic approach at elevated
temperatures,2 especially useful for temperatures T close to the
Curie temperature TC (T > 3TC/4) and ultrafast time scales. In
several exciting novel magnetic phenomena, this approach has
been shown to be a necessary tool. These phenomena include
laser-induced ultrafast demagnetization,3–6 thermally driven
domain wall motion via the spin-Seebeck effect,7 spin-torque
effect at elevated temperatures,8,9 or heat-assisted magnetic
recording.10

In the area of laser-induced ultrafast demagnetization, the
LLB equation has been shown to describe adequately the
dynamics in Ni5 and Gd.6 The main feature of the LLB
equation allowing its suitability for the ultrafast magnetization
dynamics is the presence of longitudinal relaxation term
coming from the strong exchange interaction between atomic
spins. Because the exchange fields are large (10–100 T), the
corresponding characteristic longitudinal relaxation timescale
is of the order of 10–100 femtoseconds and thus manifests
itself in the ultrafast processes. The predictions of the LLB
equations related to the linear reversal path for the magneti-
zation dynamics4 as well as to the critical slowing down of
the relaxation times at high laser pump fluency5 have been
confirmed experimentally.

In ferrimagnetic GdFeCo alloys, not only the longitudinal
change of magnetization but also a controllable optical
magnetization switching has been observed, and this has
stimulated a great deal of effort to attempt on many levels to
explain this process, see review in Ref. 11. The ferrimagnetic
materials consist of at least two antiferromagnetically coupled
magnetic sublattices. The magnetic moments of each sublattice
are different, leading to a net macroscopic magnetization
M(T ) defined as the sum of magnetization coming from each
sublattice. The main feature of the ferrimagnetic materials
is that at some temperature, called magnetization compensa-
tion temperature TM , the macroscopic magnetization is zero
M(TM ) = 0, although the magnetization of each sublattice
is not. The angular momentum compensation temperature at
which the total angular momentum TA is zero is also of interest.

Simplified considerations of the ferromagnetic resonance of
two-sublattice magnets12 predict that at this temperature the
effective damping is infinite and this stimulated investigation
of the magnetization reversal when going through an angular-
momentum compensation point.13,14

Recently, K. Vahaplar et al.,4 suggested that the optically
induced ultrafast switching in GdFeCo involves a linear
reversal mechanism, proposed theoretically in Ref. 15. This
is an especially fast mechanism since it is governed by the
longitudinal relaxation time, which can be two orders of
magnitude faster than the transverse relaxation time governing
precessional switching. The modeling of Ref. 4 was based on
macrospin LLB approach, essentially treating a ferrimagnet
as a ferromagnet. The model showed that in order to have
the magnetization switching, a strong field around 20 T was
necessary. This field can, in principle, come in the experiment
with circularly polarized light from the inverse Faraday effect.
More recently, T. Ostler et al.16 used a multispin atomistic
approach based on the Heisenberg model showing that the
switching occurs without any applied field or even with
the field up to 40 T applied in the opposite direction. The
predictions for the heat-driven reversal were confirmed in
several experiments in magnetic thin films and dots using
linearly polarized pulses. Moreover, I. Radu et al.17 used
the same atomistic model for the magnetization dynamics
to simulate GdFeCo and compared the simulation results to
the experimental data measured by the element-specific x-ray
magnetic circular dichroism (XMCD). They unexpectedly
found that the ultrafast magnetization reversal in this material,
where spins are coupled antiferromagnetically, occurs by way
of a transient ferromagnetic-like state.

The latter experiments demonstrate the deficiency in appli-
cation of the macrospin ferromagnetic LLB model to the de-
scription of the ultrafast dynamics in a ferrimagnetic material
GdFeCo. It is clear that the situation of a ferromagnetic-like
state in a ferrimagnetic material cannot be described in terms
of a macrospin LLB equation in which a ferrimagnet is
essentially treated as a ferromagnet. In a ferromagnetic LLB
equation, the sublattices cannot have their own dynamics
and thus the processes such as the angular momentum
transfer between them are essentially ignored. In this situation,
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FIG. 1. (Color online) (Left) Sketch of atomistic regular ferri-
magnetic lattice. Each point represents a magnetic moment associated
with an atomic site. Magnetic moments of blue points are pointing
downwards and red ones upwards. (Right) A macroscopic view of
partial average magnetization mA = 〈sA〉 and mB = 〈sB〉 by two
macrospins in each sublattice as described by the Landau-Lifshitz-
Bloch equation.

the only possible reversal mode is the linear relaxation
requiring a strong applied magnetic field as was the case
of Ref. 4.

On a general basis, atomistic models are convenient to
model ferrimagnetic materials but for modeling of larger
spatial scales, a macroscopic equation similar to ferromagnetic
LLB equation is desirable. This will open a possibility to a cor-
rect micromagnetic modeling of ferri- and antiferromagnetic
nano and microstructures at ultrafast time scales and/or high
temperatures. Additionally, this can also allow more correct
understanding of longitudinal relaxation in two-component
(for example, ferrimagnetic) compounds, taking into account
the inter-sub-lattice exchange.

In this paper, we derive a macroscopic equation for the
magnetization dynamics of a two-component system valid at
elevated temperatures in the classical case. As a concrete ex-
ample, we consider the disordered GdFeCo alloy, the cases of
two-component ferromagnets as well as ordered ferrimagnets
and antiferromagnets can be easily deduced. Figure 1 shows
a sketch of an atomistic model for a ferrimagnetic material
and the corresponding micromagnetic approximation. The
atomistic model is based on the classical Heisenberg model
for a crystallographically amorphous ferrimagnetic alloy18 and
the Langevin dynamics simulations of a set of the Landau-
Lifshitz-Gilbert (LLG) equations for localized atomistic spins.
In the macroscopic approach, each sublattice is represented
by a macrospin with variable length and direction. We use
the mean-field approximation (MFA) to derive a macroscopic
equation of motion for the magnetization of each sublattice.
It contains both transverse and longitudinal relaxation terms
and interpolates between the Landau-Lifshitz equation at low
temperatures and the Bloch equation at high temperatures. We
investigate the signs of the relaxation rates of both transition
(TM) and rare-earth (RE) metals as a function of temperature.
We conclude that it is a good starting point for performing
large scale simulations in multilattice magnetic systems as the
LLB equation is for ferromagnetic materials.3,19

II. ATOMISTIC MODEL FOR A DISORDERED
FERRIMAGNET

The models for binary ferrimagnetic alloys of the type
AxB1−x , randomly occupied by two different species (A
and B) of magnetic ions have been previously extensively
investigated theoretically.20–22 In such models, A and B ions
have different atomic quantum spin values SA and SB (SA �=
SB). In the present paper, we use the classical counterpart of
these models by considering the classical spins with magnetic
moments μA �= μB . We denote A specie as TM and B specie as
RE. A further but nonessential simplification is to assume that
the interactions between spins in the disordered binary alloy
are of the Heisenberg form with the exchange interactions
different for different pairs of spins (AA,BB, or AB).

Let us start with the model for a ferrimagnet described by
the classical Hamiltonian of the type

H = −
N∑
i

μiH · si −
N∑
i

Di

(
sz
i

)2 −
∑
〈ij〉

Jij si · sj , (1)

where we have considered unit length classical vectors for
all lattice sites si = μi/μi . Here N is the total number of
spins, (i, j ) are lattice sites, μi is the magnetic moment
located at lattice site i. The external applied field is expressed
by H. The anisotropy is considered as uniaxial with Di

being the anisotropy constant of site i. The third sum is
over all nearest and next-to-nearest neighbor pairs. The
Heisenberg exchange interaction parameter between adjacent
sites is Jij = JAA(BB) > 0 if both sites (i,j ) are occupied by
A(B) type magnetic moments and Jij = JAB < 0 if the sites
(i,j ) are occupied by A and B, respectively. We consider
that the ordered TM alloy is represented by the fcc-type
lattice. To simulate the amorphous character of the TM-RE
alloy, x · 100% lattice sites are substituted randomly with RE
magnetic moments.

The magnetization dynamics of this model interacting with
the bath is described by the stochastic Landau-Lifshitz-Gilbert
(LLG) equation

ṡi = γi[si × Hi,tot + ζ i] − γiλi[si × [si × Hi,tot]], (2)

where λi is the coupling to the heat bath parameter and γi is
the gyromagnetic ratio. In what follows and for simplicity,
we use the same values for TM and RE, γTM = γRE =
γ = 1.76 × 107 rad s−1 Oe−1, λTM = λRE = λ = 0.1. The
stochastic thermal fields ζ i are uncorrelated in time and on
different lattice sites. They can be coupled to different heat
baths (via temperature of electrons or phonons) and could
have different strength of coupling (via λi and μi) for each
atom type (A or B). The correlators of different components
of thermal field can be written as

〈ζi,α(t)ζj,β(t ′)〉 = 2λikBT

μiγi

δij δαβδ(t − t ′), (3)

where α,β are Cartesian components, kB is the Boltzmann
constant, and T is the temperature of the heat bath to which
the spins are coupled. The effective fields are given by

Hi,tot ≡ − 1

μi

∂H
∂si

= H + 2Di

μi

sz
i ez + 1

μi

∑
j∈neig(i)

Jij sij .
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TABLE I. Table with parameters of transition metal (TM) and
rare-earth (RE) compounds. Anisotropy constant DTM(RE) is taken
equal for both lattices. Exchange parameters JTM(RE)/per link are
taken in order to give correct Curie temperature of pure compounds
(x = 0 pure TM or x = 1 pure RE). Antiferromagnetic exchange
parameter JRE-TM is chosen so that the temperature dependence of the
TM and RE sublattices agrees qualitatively with results of XMCD
measurements of static magnetization.18

μ/μB D (Joule) J (Joule)

Transition metal (TM) 2.217 8.0725 × 10−24 4.5 × 10−21

Rare-earth (RE) 7.63 8.0725 × 10−24 1.26 × 10−21

TM-RE . . . . . . −1.09 × 10−21

The particular values for exchange parameters and the
anisotropy constants (see Table I) are chosen in such a way that
the static properties coincide with experimental measurements
in GdFeCo.18

III. LLB EQUATION FOR CLASSICAL FERRIMAGNET

A. Equation derivation

The idea of the two-component LLB model is presented
in Fig. 1. Namely, our aim is to evaluate the dynamics
of the macrosopic classical polarization m = 〈s〉conf , where
the average is performed over temperature as well as the
microscopic disorder configurations.

The dynamics of the mean magnetization can be obtained
through the Fokker-Planck equation (FPE) for noninteracting
spins.1,23 The FPE for the distribution function of an ensemble
of interacting spins can be derived in the same way as in the
ferromagnetic case.1 The FPE has as the static solution the
Boltzmann distribution function f0({si}) ∝ exp[−βH({si})],
where H is given by Eq. (1) and β = 1/(kBT ). Since the
exact solution is impossible even in the simple ferromagnetic
case, then, we resort to the mean-field approximation (MFA)
with respect to spin-spin interactions and random average with
respect to disorder configurations. In the MFA, the distribution
function is multiplicative and we can use the same strategy as
in the ferromagnetic case,1 we take the distribution function fi

of each lattice site i, which satisfy the FPE for a noninteracting
spin and perform the substitution H ⇒ 〈HMFA

ν 〉conf , where
ν = TM or RE indicates the sublattices. Thus we start with
the paramagnetic LLB equation that was derived in the
original article by D. Garanin1 and is equally valid for the
present purpose and substitute the external field by the MFA
one in each sublattice. The corresponding set of coupled
LLB equations for each sublattice magnetization mν has the
following form:

ṁν = γν

[
mν × 〈

HMFA
ν

〉conf] − 
ν,‖

(
1 − mνm0,ν

m2
ν

)
mν

− 
ν,⊥
[mν × [mν × m0,ν]]

m2
ν

, (4)

where

m0,ν = B(ξ0,ν)
ξ 0,ν

ξ0,ν

, ξ 0,ν ≡ βμν

〈
HMFA

ν

〉conf
. (5)

Here, ξ0,ν ≡ |ξ 0,ν |, B(ξ ) = coth(ξ ) − 1/ξ is the Langevin
function,


ν,‖ = �ν,N

B(ξ0,ν)

ξ0,νB ′(ξ0,ν)
, 
ν,⊥ = �ν,N

2

[
ξ0,ν

B(ξ0,ν)
− 1

]
(6)

describe parallel and perpendicular relaxation, respectively,
�ν,N = 2γνλν/βμν is the characteristic diffusion relaxation
rate or, for the thermoactivation escape problem, the Néel
attempt frequency.

Next step is to use in Eqs. (4) and (5) the MFA expressions.
The MFA treatment for the disordered ferrimagnet has been
presented in Ref. 18. The resulting expressions for the fields
have the following forms:〈

HMFA
RE

〉conf = H′
eff,RE + J0,RE

μRE
mRE + J0,RE-TM

μRE
mTM, (7)

〈
HMFA

TM

〉conf = H′
eff,TM + J0,TM

μTM
mTM + J0,TM-RE

μTM
mRE, (8)

where J0,TM = qzJTM-TM, J0,RE = xzJ TM-TM, J0,RE-TM =
qzJ TM-RE, J0,TM-RE = xzJTM-RE, z is the number of nearest
neighbors between TM moments in the ordered lattice, x and
q = 1 − x are the RE and TM concentrations. The field H′

eff,ν
contains the external applied and the anisotropy fields acting
on the sublattice ν = TM, RE.

The equilibrium magnetization of each sublattice me,ν

within the MFA approach can be obtained via the self-
consistent solution of the Curie-Weiss equations:

mRE = B (ξRE)
ξRE

ξRE
; mTM = B (ξTM)

ξTM

ξTM
. (9)

The resulting equation (4) with expressions (7) and (8)
constitutes the LLB equation for a ferrimagnet and can be
already used for numerical modeling at large scale since in
what follows some approximations will be used. The use
of these approximations is necessary for understanding the
relaxation of a ferrimagnetic system from theoretical point of
view. We will also get the LLB equation in a more explicit and
compact form.

We treat the most general case where the continuous
approximation in each sublattice can be used. Basically, in the
spirit of the MFA approximation, in each sublattice, we treat
the k = 0 mode. In order to handle the problem analytically, we
decompose the magnetization vector mν into two components
mν = �ν + τ ν , where �ν is perpendicular to mκ , so that
it can be expressed as �ν = − [mκ × [mκ × mν]] /m2

κ , and
τ ν is parallel to mκ , and it can be expressed as τ ν =
mκ (mν · mκ ) /m2

κ , where κ �= ν.
We can shorten the notation by definition of the following

new variable �νκ :

�νκ = mν · mκ

m2
κ

=⇒ mν = �ν + �νκmκ . (10)

As a consequence, the MFA exchange field 〈HMFA
EX,ν〉conf in

Eqs. (7) and (8) can be written as the sum of the exchange
fields parallel and perpendicular to magnetization of the
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sublattice ν:〈
HMFA

EX,ν

〉conf =
(

J0,ν

μν

+ J0,νκ

μν

�κν

)
mν + J0,νκ

μν

�κ

= J̃0,ν

μν

mν + J0,νκ

μν

�κ

= H‖
EX,ν + H⊥

EX,ν , (11)

where we have defined a new function J̃0,ν (mκ ,mν) as
J̃0,ν = J0,ν + J0,νκ�κν (mκ ,mν), we remark that J̃0,ν is not
a constant but a function of both sublattice magnetization. The
exchange field is, therefore, separated in two contributions, a
longitudinal one, H‖

EX,ν = (J̃0,ν/μν)mν , and a transverse one,
H⊥

EX,ν = (J0,νκ/μν)�κ .
In the following, we will consider that the transverse

contribution is small in comparison to longitudinal one, i.e.,
|H‖

EX,ν | � |H⊥
EX,ν |. This is a good approximation because

differently to the ferromagnetic case, where the transverse
fluctuations are defined by the anisotropy and Zeeman fields
(of the order of 1 T strength), in the case of ferrimagnets, the
fluctuations included in H⊥

EX,ν are defined by the interlattice
exchange field (of the order of 10 T), which is usually very
large in comparison to the anisotropy or Zeeman fields. Thus
the transverse magnetization fluctuations are small in com-
parison to the longitudinal component. Finally, 〈HMFA

ν 〉conf 
H‖

EX,ν + H′′
eff,ν where H′′

eff,ν = H + HA,ν + H⊥
EX,ν and HA,ν is

the anisotropy field.
We now expand m0,ν up to the first order in H′′

eff,ν , under the

assumption |H‖
EX,ν | � |H′′

eff,ν |. Similar to the ferromagnetic
case, from Eq. (5), we get (see details in Appendix):

m0,ν  Bν

mν

mν + B ′
νβμν

(mν · H′′
eff,ν)mν

m2
ν

− Bνμν

mνJ̃0,ν

[[H′′
eff,ν × mν] × mν]

m2
ν

, (12)

substituting this into Eq. (4) and repeating the same calcula-
tions as in the ferromagnetic case we get the following equation
of motion:

ṁν = γν[mν × H′′
eff,ν]

− γνα
ν
‖

(
1 − Bν/mν

μνβB ′
ν

− mν · H′′
eff,ν

m2
ν

)
mν

− γνα
ν
⊥

[mν × [mν × H′′
eff,ν]]

m2
ν

, (13)

where Bν = Bν(βJ̃0,ν(mν,mκ )mν) depends on the sublattice
magnetizations (mν,mκ ) and the damping parameters are

αν
‖ = 2λν

βJ̃0,ν

, αν
⊥ = λν

(
1 − 1

βJ̃0,ν

)
. (14)

B. Temperature dependence of damping parameters

The temperature dependence of the damping parameters
is obtained in the first order in deviations of magnetization
from their equilibrium value. Note that in Eq. (13), all terms
are of the first order in the parameter H ′′

eff,ν/HEX,ν so that
the damping parameters should be evaluated in the zero order
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FIG. 2. (Color online) Damping parameters αν
‖(⊥)(ϑ) (normalized

to the corresponding intrinsic values) for a pure ferromagnet (FM),
rare-earth (RE) component in a GdFeCo ferrrimagnet and a transition
metal (TM) in a ferrimagnet as a function of reduced temperature
ϑ = T/TC for three different rare earth (RE) concentrations x.
The blue solid line represents the x = 0 limit that corresponds to
a pure ferromagnet (FM). (Up) The corresponding curves for a
25% concentration of RE. (Middle) The corresponding damping
parameters for a 50% alloy. (Bottom) Damping values for 75% RE
amount. It can be also seen as a RE doped with a 25% of transition
metal (TM).

in this parameter. Consequently, we can use the following
equilibrium expression:

J̃0,ν  J0,νme,ν + |J0,νκ |me,κ

me,ν

, (15)

where the sign of the second term does not depend on
the sign of the interlattice exchange interaction, J0,νκ . The
effective damping parameters depend on temperature T via
temperature-dependent equilibrium magnetization. The tem-
perature dependence of damping parameters (14), normalized
to the intrinsic coupling parameter, are presented in Fig. 2 for
a GdFeCo RE-TM ferrimagnet and for various concentrations
of RE impurities.

Let us consider some limiting cases. First, we consider
the simplest case of a completely symmetric antiferromagnet
(AFM). In the AFM, all the relevant parameters are equal
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for both lattices, they have the same magnetic moments
μA = μB and the same intralattice exchange parameters
J0,ν , the interlattice exchange parameter is also the same
J0,νκ = J0,κν in contrast to our disordered ferrimagnet. In
this case, the equilibrium magnetizations as a function of
temperature are the same me,ν(T ) = me,κ (T ) and the effective
exchange parameter reduces to J̃0,ν = J0,ν + |J0,νκ |, i.e., the
sum of the two interactions coming from the intralattice and
interlattice exchanges. The Néel temperature in the MFA
reads kBTN = J̃0,ν/3 and the damping parameters recover the
ferromagnetic type expression

α
ν(AFM)
‖ = λν

2T

3TN

, α
ν(AFM)
⊥ = λν

(
1 − T

3TN

)
. (16)

The use of the critical temperature provides an expression in
which the damping parameters do not depend explicitly on the
interlattice exchange, the implicit dependence comes from the
change of the Néel temperature as the exchange parameter
J0,νκ varies. There is a more simple AFM, with nearest-
neighbor interactions only and one interlattice exchange
parameter J0,νκ , it gives the same result as above and exactly
the same as for the ferromagnet.

Next interesting case is when one of the three exchange
parameters can be neglected. We can consider, for example,
a negligible exchange between the rare-earth magnetic mo-
ments, it is a good approximation if the impurity content is
low. Then we can write the effective exchange as

J̃0,TM = J0,TMme,TM + |J0,TM-RE|me,RE

me,TM
 J0,TM, (17)

J̃0,RE = |J0,RE-TM|me,TM

me,RE
. (18)

In this case, the TM damping parameters can be approximately
expressed with the antiferromagnetic or ferromagnetic (TN →
TC) formula (16) because in the limit x → 0 the Curie
temperature of the disordered ferrimagnet is close to kBTC =
J0,TM/3.16 The damping parameter for the RE lattice, however,
is different. It strongly depends on the polarization effect of
the TM lattice on the RE magnetization. In this case close to
TC , where mRE(TM) are small, the polarization effect can be
expressed using the expansion of the Langevin function B for
ξ → 0, i.e. B ≈ ξ/3 [note that B ′(0) = 1/3]. In this case, we
have B(ξRE) = me,RE ≈ βJ0,RE-TMme,TM, thus, Eq. (18) can
be approximated as J̃0,RE ≈ 1/(3β). Therefore we have the
following expressions:

αTM
‖ = λTM

2T

3TC

, αRE
‖ = 2

3
λRE. (19)

αTM
⊥ = λTM

(
1 − T

3TC

)
, αRE

⊥ = 2

3
λRE. (20)

We observe in Fig. 2 that even for quite large amounts of
RE of 25% and 50%, the above approximation holds quite
well. These relations become quite important above TC since
they can be used to extend the damping parameters for the
region T > TC , similar to the ferromagnetic case. However,
the correct description of the damping parameters above Tc

turned out to be more complicated for ferrimagnet than for
ferromagnet.

If the interlattice exchange is large in comparison to the
intra-lattice one then the equilibrium magnetization of both

lattices is similar and the damping parameters behave similar
to those of the FM damping parameters, presented above. This
case is in agreement with a concentration of 75% of RE in
Fig. 2 (down). As predicted, we observe that the damping
parameters are very similar for both sublattices.

Note that these damping parameters should be distinguished
from those of the normal modes (FMR and exchange)28

with more complicated expressions that can be obtained via
linearization of the set of two-coupled LLB equations, similar
to the LLG approach.

C. Longitudinal relaxation parameters

The function 1 − Bν/mν in Eq. (13) is a small quantity
proportional to the deviation from the equilibrium in both
sublattices. It can be further simplified as a function of the
equilibrium parameters after some algebra. Similar to the
ferromagnetic case, the ferrimagnetic LLB equation can be
put in a compact form using the notion of the longitudinal
susceptibility.

The initial longitudinal susceptibility can be evaluated on
the basis of the Curie-Weiss equations (9). Let us assume
that in the absence of an external field, the equilibrium
sublattice magnetizations mTM and mRE are, respectively,
parallel and antiparallel to the z axis (a stronger condition
of the smallness of the perpendicular components can be also
applied). The z axis is chosen such that it is the easy axis of the
magnetic crystal. To evaluate the longitudinal susceptibility,
the field should be applied parallel to the easy direction,
then in the approximation of small perpendicular components
(large longitudinal exchange field) we can neglect in the first
approximation the possible change of directions of mRE and
mTM. In order to calculate the susceptibility, we expand the
right-hand side of Eq. (9) in terms of the external field:

mν(T ,Hz) ≈ mν(T ,0) + μνHzβB ′
ν

(
1 + ∂Hz

EX,ν

∂Hz

)
, (21)

where Bν = Bν(βμνHEX,ν) and its derivative B ′
ν =

B ′
ν(βμνHEX,ν) are evaluated in absence of applied and

anisotropy fields. Then,

χ̃ν,|| =
[
∂mν(T ,Hz)

∂Hz

]
Hz=0

= μνβB ′
ν

[
1 + ∂Hz

EX,ν

∂Hz

]
, (22)

where

∂Hz
EX,ν

∂Hz

= βJ0,ν χ̃ν,|| + β|J0,νκ |χ̃κ,||.

Thus the longitudinal susceptibility of one sublattice is
expressed in terms of another:

χ̃ν,|| = μν

J0,ν

J0,νβB ′
ν

1 − J0,νβB ′
ν

( |J0,νκ |
μν

χ̃κ,|| + 1

)
. (23)

Finally, we obtain two coupled equations for χ̃RE,|| and
χ̃TM,||, solving them, we get the MFA expression for the
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susceptibilities:

χ̃ν,|| =
(

μκ

|J0,κν |
) |J0,κν |βB ′

ν |J0,νκ |βB ′
κ + (μν/μκ )|J0,κν |βB ′

ν(1 − J0,κβB ′
κ )

(1 − J0,νβB ′
ν)(1 − J0,κβB ′

κ ) − (|J0,κν |βB ′
ν)(|J0,νκ |βB ′

κ )
=

(
μκ

|J0,κν |
)

Gν(T ). (24)

The longitudinal susceptibility χ̃ν,|| is, therefore, a function
of temperature that we have called Gν(T ). It tends to zero at
low temperature and diverges approaching Curie temperature
TC of the magnetic system, similar to the ferromagnetic case.
The function Gν = (|J0,νκ |/μν)χ̃ν,|| can be seen as a reduced
longitudinal susceptibility.

Now we derive an approximate expression for the small
quantity 1 − Bν/mν as a function of equilibrium quantities
and the deviation of each sublattice magnetization from its
equilibrium. In the first approximation, we expand the function
Bν/mν near the equilibrium, as was done for the ferromagnet.
The function Bν in the zero order in perpendicular field
components, H ′′

eff,ν/HEX,ν , can be written as a function of mν

and mκ as follows:

Bν ≈ Bν(β[J0,νmν + |J0,νκ |τκ ]), (25)

where τκ = |(mν · mκ )|/mν is the length of the projection of
the magnetization of the sublattice κ onto the sublattice ν. We
expand the function Bν/mν in the variables mν and mκ near
the equilibrium:

Bν

mν

≈ Be,ν

me,ν

+
[

1

mν

(
∂Bν

∂mν

)
− 1

m2
ν

Bν

]
eq

δmν +
[

1

mν

∂Bν

∂τκ

]
eq

δτκ

= 1 − [1 − βJ0,νB
′
ν]eq

δmν

me,ν

+ [β|J0,νκ |B ′
ν]eq

δτκ

me,ν

, (26)

here, δmν = mν − me,ν , with me,ν = Bν(βμνHEX,ν), where
HEX,ν is evaluated at the equilibrium, and δτκ = τκ − τe,κ ,
where τe,κ = |(me,ν · me,κ )|/me,ν and it corresponds to the
projection of the equilibrium magnetization me,κ onto the
other sublattice magnetization direction. It is easy to show
that ∂τκ/∂mν = 0. Similar to the ferromagnetic case, we
would like to arrive to a simplified expression as a function
of sublattice susceptibilities. For this purpose, we divide the
above expression by μνβB ′

ν :

1 − Bν/mν

μνβB ′
ν

= 1

χ̃ν,||

δmν

me,ν

+ Gκ

(
1

χ̃ν,||

δmν

me,ν

− 1

χ̃κ,||

δτκ

me,ν

)
,

(27)

where we have used Eq. (23) and the function Gκ =
|J0,νκ |χ̃κ,||/μν has now more sense. Thus the contribution
to the dynamical equation (4) of the exchange interaction
(the LLB equation with longitudinal relaxation only) given
by Eq. (27) reads

ṁν

γν

|EX = − αν
‖

me,ν

(
1 + Gκ

χ̃ν,||
δmν − |J0,νκ |

μν

δτκ

)
mν . (28)

Note that the first term defines the intralattice relaxation of
the sublattice (for example, TM) to its own direction. The
second term describes the angular momenta transfer between
sublattices driven by the temperature. This equation has the

form

ṁν

γν

= 
̃νmν (29)

and it gives the LLB equation for the case when the average
magnetization of the two sublattices remains always parallel
or antiparallel.

D. Final forms of the LLB equation

In order to be consistent with the ferromagnetic LLB
equation (and the Landau theory of phase transitions), we
expand the deviations δmν (δτκ ) around m2

e,ν (τ 2
e,ν) up to the

quadratic terms. Similar to FM case, we write

δmν

mν,e

≈ 1

2m2
e,ν

(
m2

ν − m2
e,ν

)
. (30)

Therefore we can write the effective longitudinal fields as

Hν
eff,|| =

[
1

2�νν

(
m2

ν

m2
e,ν

− 1

)
− 1

2�νκ

(
τ 2
κ

τ 2
e,κ

− 1

)]
mν, (31)

where in order to shorten the notations we have defined the
longitudinal rates as

�−1
νν = 1

χ̃ν,||
(1 + Gκ ) , �−1

νκ = τe,κ

me,ν

|J0,νκ |
μν

with ν �= κ,

(32)

where Gκ is also expressed in terms of the longitudinal
susceptibility via Eq. (24).

1. Form 1

Finally, we collect all the above derived approximate
expressions and we finish up with the compact form of the
LLB equation for the reduced magnetization vector, mν =
Mν/Mν(T = 0 K):

ṁν = γν[mν × Heff,ν] − γνα
ν
‖

(mν · Heff,ν)

m2
ν

mν

− γνα
ν
⊥

[mν × [mν × Heff,ν]]

m2
ν

, (33)

where the effective field Heff,ν for sublattice ν is defined as

Heff,ν = H + HA,ν + J0,νκ

μν

�κ

+
[

1

2�νν

(
m2

ν

m2
e,ν

− 1

)
− 1

2�νκ

(
τ 2
κ

τ 2
e,κ

− 1

)]
mν (34)

and the relaxation parameters αν
‖ and αν

⊥ are given by
Eq. (14).
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Or in a more explicit form, as a function of sublattice
magnetizations mν and its values at the equilibrium me,ν :

ṁν = γν[mν × Heff,ν] − γνα
ν
‖

(mν · H‖
eff,ν)

m2
ν

mν

− γνα
ν
⊥

[mν × [mν × Heff,ν]]

m2
ν

, (35)

where we have defined the longitudinal field H‖
eff,ν as

H‖
eff,ν =

{
1

2�νν

(
m2

ν

m2
e,ν

− 1

)
− 1

2�νκ

[(
mν · mκ

me,ν · me,κ

)2

− 1

]}
mν (36)

and the effective field Heff,ν reads

Heff,ν = H + HA,ν + J0,νκ

μν

mκ .

In Eq. (35), also the temperature-dependent damping parame-
ters are given by Eq. (14).

2. Form 2

It is also interesting to put the LLB equation in a more
symmetric form in terms of the macroscopic magnetization,
Mν = xνμνmν/υν , where xν stands for the concentration of
sites of type ν =TM or RE (xν = x for RE and xν = q for
TM), μν is the atomic magnetic moment of the lattice ν, and
υν is the atomic volume. We multiply each sublattice LLB
equation (35) by the corresponding factor, for example, in the
case of TM by qμTM/υTM and we obtain

Ṁν = γν[Mν × Heff,ν] − L‖,ν
(Mν · H‖

eff,ν)

M2
ν

Mν

− L⊥,ν

[Mν × [Mν × Heff,ν]]

M2
ν

, (37)

where the effective fields read

H‖
eff,ν =

{
1

2�̃νν

(
M2

ν

M2
e,ν

− 1

)

− 1

2�̃νκ

[(
Mν · Mκ

Me,ν · Me,κ

)2

− 1

] }
Mν . (38)

The rate parameters are �̃νκ = υν�νκ/μνxν and the effective
field Heff,ν has the following form:

Heff,ν = H + HA,ν + AMκ .

Here, the exchange parameter is introduced as A =
zJTM-RE/μREμTM. The damping coefficients L‖,ν and L⊥,ν

read

L‖,ν = γνxνμνα
ν
‖/υν, L⊥,ν = γνxνμνα

ν
⊥/υν.

IV. RELAXATION OF MAGNETIC SUBLATTICES

The rate of the longitudinal relaxation is temperature
dependent through parameters such as the damping parameters
αν

‖ , see Eq. (14) and Fig. 2, and the longitudinal susceptibilities.

˜ΓRE > 0

˜ΓTM < 0,

˜ΓRE < 0˜ΓTM < 0,

˜ΓRE < 0

˜ΓTM > 0

mTM

m
R
E

0.60.50.40.30.20.10

0.6

0.5

0.4

0.3

0.2

0.1

0.0

FIG. 3. (Color online) Different longitudinal relaxation regions
for T/TC = 0.95 for parameters of the GdFeCo alloy with x = 0.25.

The sign of the rate, 
̃ν ≶ 0, depends on the instantaneous
magnetization values. From Eq. (28), we can consider the
following lines separating different relaxation signs:

δmν = |J0,νκ |
μν

χ̃ν,||
Gκ + 1

δτκ = χ̃νκ,||δτκ, (39)

where we have defined the dimensionless variable χ̃νκ,||, which
describes the effect of the change in one sublattice on the other.
This variable can be interpreted as a susceptibility χ̃νκ,|| =
δmν/δmκ . Indeed, we can expand

mν(T ,δmν,δmκ ) ≈ mν(T ,0,0) + βJ0,νB
′
νδmν

+β|J0,νκ |B ′
νδmκ. (40)

Now using that by definition δmν = mν(T ,δmν,δmκ ) −
mν(T ,0,0), we obtain

χ̃νκ,|| = |J0,νκ |
(

βB ′
ν

1 − J0,νβB ′
ν

)
. (41)

Next, we substitute Eq. (23) into Eq. (41) and we get the
relation between the susceptibilities, exactly described by
Eq. (39).

The problem of relaxation sign is, therefore, reduced to
the study of the sign of the function δmν − χ̃νκ,||δτκ . Let us
assume the equilibrium state that is close to TC , describing the
situation during the ultrafast laser-induced demagnetization.17

Figure 3 shows three possible instantaneous rates for T =
0.95TC , depending on the relative state of both sublattice
magnetizations. The lines separating different relaxation types
are straight lines with the slope χ̃νκ,||(T ).

In the following, we use atomistic LLG Langevin sim-
ulations described in Sec. II as well as the integration of
the LLB equation (4) for the same material parameters, see
Table I. In order to compare MFA based LLB equation and
the atomistic simulations, we have renormalized exchange
parameters, as described in Ref. 18. In the atomistic simulation,
the system size is taken as N = 603, i.e., 3N coupled
differential equations has to be solved simultaneously within
this approach, whereas only six (two sublattices and three
components for each) are used in the macrospin LLB approach.
We compare the different relaxation regions depending on
the instantaneous magnetic state with those predicted by the
LLB equation and depicted in Fig. 3. The initial conditions in
the simulations are the following: in all three cases we start
from a an equilibrium state at T = 600 K (for the considered
concentration x = 0.25, we get TC = 800 K). After that, for
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FIG. 4. (Color online) Comparison between atomistic LLG-
Langevin and macrospin LLB calculations of the longitudinal
relaxation of the GdFeCo alloy (x = 0.25) corresponding to the three
different relaxation cases in Fig. 3. In the left column, we show
atomistic LLG-Langevin multispin simulations and in the right one,
the LLB macrospin calculations. The graphs (a) and (b) correspond
to the region with 
̃TM > 0 and 
̃RE < 0. The graphs (c) and (d)
correspond to the region with 
̃TM < 0 and 
̃RE < 0. The graphs (e)
and (f) correspond to the region with 
̃TM < 0 and 
̃RE > 0.

the situations of Figs. 4(a) and 4(e) we put one of the sublattice
magnetizations equal to zero, mTM(RE) = 0. In the atomistic
approach this is done by totally disordering the system. Finally,
the temperature is set to T = 0.95TC and the relaxation of both
sublattices is visualized. The results are presented in Fig. 4.

For the region mRE � mTM above the gray line in Fig. 3,
the rate for the TM is positive, 
̃TM > 0, thus the TM magneti-
zation will increase while 
̃RE < 0 and the RE magnetization
will decrease. Thus we have initially a dynamical polarization
of TM by RE. As it can be seen in Figs. 4(a) and 4(b) initially
the TM magnetic order increases from a totally disordered
state, while the RE relaxes directly to the equilibrium, i.e., the
sign of the RE rate is always the same. In the central region
of Fig. 3, between gray and red lines, both magnetizations go
to the equilibrium by decreasing their value, see Figs. 4(c)
and 4(d). Finally, in the low region of Fig. 3, the situation
is symmetric to the upper region but now TM magnetization
decreases and the RE magnetization increases initially, see
Figs. 4(e) and 4(f). Thus the predictions of the LLB equation

are in agreement with full atomistic simulations which also
provides a validation for our analytic derivation.

As a representative example, in GdFeCo near the mag-
netization reversal the situation is the following:17 the TM
magnetization is almost zero, mTM ≈ 0 and the RE has finite
magnetization value mTM > 0. This happens due to the fact
that the Gd sublattice is intrinsically slower than the FeCo one
due to a larger magnetic moment. This situation corresponds
to the upper region in Fig. 3 where the rates are 
̃TM > 0
and 
̃RE < 0. Under these circumstances, the RE magnetiza-
tion dynamically polarizes the TM sublattice magnetization
through the interlattice exchange interaction HEX,TM-RE ≈
|J0,TM-RE|mRE > 0. Consequently, the TM magnetization goes
opposite to its equilibrium position mTM

e = 0 [see Figs. 4(a)
and 4(b)]. The existence of opposite relaxation signs in TM
and RE is consistent with a recently reported ferromagnetic
state in a ferrimagnetic materials Ref. 17, however, it does not
necessary lead to it, nor it necessary means the switching of
the TM magnetization, as was suggested in Ref. 24. To have a
switching one should cross the line mTM

z = 0, which cannot be
done within the approach of longitudinal relaxation only which
only describes the relaxation to the equilibrium. The crossing
of the line mTM

z = 0 can be only provided by a stochastic
kick which is always present in the modeling using stochastic
atomistic approach.16,17 This topic will be the subject of future
work.

V. THE LLB EQUATION AND THE
BARYAKHTAR EQUATION

In this section, we would like to discuss the differences
between the LLB equation and the equation derived by V.
Baryakhtar25 and used in Ref. 24 to explain the ultrafast
magnetization reversal and the transient ferromagnetic-like
state in ferrimagnets. The Baryakhtar equation was derived
from the Onsager principle which in general is valid near the
thermodynamic equilibrium only. The general derivation is
based on the symmetry approach. Another strong supposition
made in its derivation is the separation of the time scales: the
exchange interaction time scale and the relativistic interaction
time scale (defined in our case by the parameter λ) are assumed
to be separated. The resulting equation has the following form:

1

γν

dMν

dt
= λe (Hν − Hκ ) + λνHν. (42)

Here, ν = TM, RE, λν describes transfer of the angular
momentum from sublattices to the environment, λe is of
the exchange origin and stems from spin-spin interactions,
conserving the total angular momentum but allowing for the
transfer of angular momentum between the sublattices. The
effective fields defined as Hν = −δW/δMν are derived from
the magnetic energy W . In Ref. 24, the authors used the Landau
type free energy expansion near the critical temperature,
corresponding to the form Eq. (30).

In comparison to the Baryakhtar equation, the LLB equa-
tion, derived here includes the transverse exchange mode and
allows the transfer of the energy or momentum between the
longitudinal and transverse motion. The ferrimagnetic LLB
equation has three terms among which it is the precession term
that conserves the total angular momentum. The precession in
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the interlattice exchange field given by [mTM × mRE] allows
the transfer of angular momentum between sublattices. The
longitudinal and transverse relaxation terms, which are related
to the coupling to the heat bath, are both proportional to
λ. Differently to ferromagnets, both the transverse motion
given by precession and transverse relaxation terms are not
negligible on the femtosecond time scale in comparison to
longitudinal motion because in both cases the field acting on
both motions is of the exchange origin.

In principle, the ferrimagnetic LLB equation can be cast in a
form, similar to the Baryakhtar equation if we restrict ourselves
to longitudinal motion only, considering the antiparallel
sublattices alignment. For the longitudinal relaxation only [see
Eq. (28)], we have the following expression:

ṁν
z

γν

= αν
‖H

′
ν + α‖

νκ (H ′
ν + H ′

κ ), (43)

where H ′
ν = −( δmν

χ̃ν,||
)mν

z/mν , stands for the fields coming from
interaction of each lattice with itself and H ′

κ—with the opposite
sublattice. One can see that the sign of the effective field
coming from the other sublattice is opposite for the LLB
Eq. (43) and the Baryakhtar equation Eq. (42). In order
to illustrate the consequence of this, we can compare the
equations for the limiting case close to TC . In this case, the
Baryakhtar equation [see Eq. (1.33) in Ref. 25] reads

ṁν
z

γν

= −λν
mν

z

χ̃ν,||
− λe

(
mν

z

χ̃ν,||
+ mκ

z

χ̃κ,||

)
, (44)

where mν
z is the absolute value of the z component of the

magnetization in the sublattice ν and we explicitly considered
that the sign of z components is opposite for the sublattice ν

and κ . In the same limit, considering mTM(RE) = me,TM(RE) +
δmTM(RE), and following Eq. (28), the LLB equation takes a
similar form:

ṁν
z

γν

= −αν
‖

mν
z

χ̃ν,||
− αν

‖
|J0,νκ |

μν

(
χ̃κ,||
χ̃ν,||

mν
z − mκ

z

)
. (45)

Note that for the LLB equation the contribution of the opposite
sublattice is negative while for the Baryakhtar equation it is
positive. This has important consequences in the longitudinal
interlattice relaxation of the sublattices, changing the results
of Fig. 3. Particularly, in Fig. 3 the straight lines (grey and red)
could have negative slopes for the Baryakhtar approach. Then,
in Fig. 4, the different sign would give a contrary relaxation
direction of the magnetization recovery of TM in the first 0.3 ps
as compared to Fig. 4(a) and of RE as compared to Fig. 4(e).

Furthermore, in Fig. 5, we show the temperature de-
pendence of the ratio of partial susceptibilities, χ̃κ,||/χ̃ν,||
appearing in Eq. (45). We can see that at temperatures not very
close to TC : χ̃TM,||/χ̃RE,|| � 1 and the contrary behavior close
to TC . Thus for the TM and temperatures close to TC the second
term in the right-hand side of Eq. (45) could be neglected and
the third term with the opposite sign can compete with the
first one, leading either to slowing down of the relaxation rate
or even to changing its sign, as presented in Figs. 4(a) and
4(b). The behavior of RE on the contrarily is dominated by
this term and the sign of relaxation cannot be changed, as is
seen in the same figure. Obviously, this behavior cannot be
described by Eq. (44) where all terms have the same sign. In

x = 0.75
x = 0.5

x = 0.25

T/TC

χ
TM

/
χ
R
E

10.750.50.250

10

1

0.1

0.01

FIG. 5. (Color online) Temperature dependence of the ratio
between longitudinal susceptibilities for parameters of the GdFeCo
alloy.

order to have the opposite relaxation sign, one has to assume
for this equation a priori that the signs of the z components
of magnetization in both sublattices are the same, i.e., to start
with the ferromagnetic-like state without specifying its origin.

Finally, we would like to note that because we have treated
the spin-spin interaction in MFA we have lost correlation con-
tribution. Consequently, both LLB and Baryakhtar equations
do not describe the energy transfer from the uniform modes
into nonlinear spin waves and vice versa. In ferromagnets,26

this contribution is usually two or three orders of magnitude
smaller than the contribution to relaxation through the coupling
to the bath. At this stage we do not know how large this
contribution can be in ferrimagnets. In Ref. 26, the contribution
of nonlinear spin waves was artificially incremented by using
a random anisotropy to cause noncoliniarities. In principle, in
ferrimagnets one can see a small amount of RE as precursor of
noncoliniarities, with the strength of the order of interlattice
exchange parameter JTM-RE. For completeness, a microscopic
treatment of the spin wave contribution would be desirable,
we let this task for the future. Particularly, this should take
into account magnetisation relaxation in the absence of any
external coupling to the bath, not described at present time by
the LLB equation.

VI. CONCLUSIONS

We have derived the Landau-Lifshitz-Bloch equation for a
two-sublattice system such as a GdFeCo ferrimagnet for which
an ultrafast switching has been reported.14,17 Although in our
derivation we refer to a TM-RE alloy, it is equally valid for a
two-component ferromagnet, as well as for an antiferromagnet.
The generalization to more components is straightforward.
The new equation constitutes an important step forward
in classical description of the dynamics of ferrimagnets,
which is traditionally based on two-coupled macroscopic LLG
equations. For example, the FMR and exchange modes have
recently attracted attention due to possibility to optically excite
them.13,27 Their temperature dependence can be now correctly
understood in terms of our approach.28 Furthermore, recent
ultrafast dynamics experiments using XMCD showed different
sublattice dynamics on ultrafast time scale in a two-sublattice
magnets such as GdFeCo17 or FeNi,29 which can be modeled
using this new approach. Finally, this equation can serve in the
future as a basis for multiscale modeling in two-component
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systems at high temperatures and/or ultrafast time scales,
the same way as the LLB equation for ferromagnets.19

This also opens a possibility for micromagnetic modeling
of ultrafast dynamics in large structures, such as sub-micron
and micron-size ferrimagnetic dots, whose dimensions do not
allow modeling by atomistic approach. Similarly, it will be
useful for micromagnetic modeling at high temperatures, such
as thermally-driven domain wall motion in nanostructures.

The LLB equation correctly shows the possibility to reverse
the sign of relaxation at high temperatures and, therefore, is
consistent with the existence of a recently reported ferromag-
netic state in a ferrimagnet.17 The validity of the approach
has been checked against full-scale atomistic simulations
presented in Fig. 4. However, unlike the equation, derived
by Baryakhtar and used recently to describe the GdFeCo
switching,24 it is not based on the separation of time scales
and on the Onsager principle. Instead, both the coupling to
the external bath and the exchange interaction form part of the
same longitudinal and transverse relaxation terms. We show
important differences in the resulting form of the equation.

Unfortunately, at the present time, the compact derivation
was possible only under some assumptions. The employed
conditions certainly allow to describe the normal modes such
as ferromagnetic resonance and antiferromagnetic exchange
precessional modes in ferrimagnets.28 The same way the
approximation is sufficient to describe the switching of
ferrimagnet if it occurs through a linear reversal path4,24

or if sublattices noncollinearities are not too large. Weather
the applied approximation completely describes the situation
of the ultrafast reversal is an open question which we will
investigate in the future. For modeling, the initial paramagnetic
equation (4) with the MFA field (7) and (8) can always be
used, providing the check for the approximation. Finally, up
to now, we were not able to derive a compact expression for
the equation above TC which is also a necessary step for the
full modeling of the ultrafast switching.
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APPENDIX

In this appendix, we present detailed derivation of the LLB
equation in the form of Eq. (13). Our starting point is the LLB
equation (4). First, we obtain an approximate expression for
m0,ν as given by Eq. (12), and later we simplify expressions
for the relaxation rates 
ν,‖ and 
ν,⊥ [see Eq. (6)] to express
the damping parameters in the form of Eqs. (14).

We start from Eq. (5),

m0,ν = B(ξ0,ν)ûν, ξ 0,ν ≡ βμν

〈
HMFA

ν

〉conf
, (A1)

where ûν = ξ 0,ν/ξ0,ν and 〈HMFA
ν 〉conf = H‖

EX,ν + H′′
eff,ν . Here,

H′′
eff contains the anisotropy, applied and the perpendicular

component of the exchange field (see Sec. III A). In the case
of a strong homogeneous exchange field |H‖

EX,ν | � |H′′
eff,ν |,

the MFA field can be expanded up to first order in H ′′
eff,ν as

∣∣〈HMFA
ν

〉conf∣∣  H
‖
EX,ν + H‖

EX,ν · H′′
eff,ν

H
‖
EX,ν

. (A2)

Therefore, ξ0,ν = βμν |〈HMFA
ν 〉conf | can be written as ξ0,ν =

ξEX,ν + δξν with ξEX,ν � δξν , where we identify ξEX,ν =
βμνH

‖
EX,ν and δξν = βμν(H‖

EX,ν · H′′
eff,ν)/H ‖

EX,ν . Expanding
the Langevin function around ξEX,ν we get

B(ξ0,ν)  Bν + B ′
νδξν (A3)

and

ûν  H‖
EX,ν + H′′

eff,ν

H
‖
EX,ν

[
1 − H‖

EX,ν · H′′
eff,ν

(H ‖
EX,ν)2

]
, (A4)

where Bν = B(ξEX,ν) and B ′
ν = B ′(ξEX,ν). Substituting

Eqs. (A3) and (A4) in Eq. (A1) and neglecting the terms
quadratic in H ′′

eff,ν/HEX,ν , we get

m0,ν  Bν

[
H‖

EX,ν + H′′
eff,ν

H
‖
EX,ν

− (H‖
EX,ν · H′′

eff,ν)H‖
EX,ν

(H ‖
EX,ν)3

]

+B ′
νβμν

(H‖
EX,ν · H′′

eff,ν)H‖
EX,ν

(H ‖
EX,ν)2

. (A5)

Using the vector calculus identity (a × b) × c = b(a · c) −
a(b · c), Eq. (A5) can be written as

m0,ν  Bν

H‖
EX,ν

H
‖
EX,ν

+ B ′
νβμν

(H‖
EX,ν · H′′

eff,ν)H‖
EX,ν

(H ‖
EX,ν)2

− Bν

H
‖
EX,ν

[[H′′
eff,ν × H‖

EX,ν] × H‖
EX,ν]]

(H ‖
EX,ν)2

. (A6)

Finally, we use H‖
EX,ν = (J̃0,ν/μν)mν [see Eq. (11)] in

Eq. (A6), and we obtain

m0,ν  Bν

mν

mν + B ′
νβμν

(mν · H′′
eff,ν)mν

m2
ν

− Bνμν

mνJ̃0,ν

[[H′′
eff,ν × mν] × mν]

m2
ν

, (A7)

which corresponds to Eq. (12).
In order to get the final LLB equation (13), which is

valid in the first order in the small parameter H ′′
eff,ν/HEX,ν ,

it is enough to evaluate 
ν,‖ and 
ν,⊥ in the zero order.
Therefore the term B(ξ0,ν)/ξ0,ν appearing in both relaxation
rates in Eq. (6) can easily be approximated considering
the facts that B(ξ0,ν) = m0,ν and ξ0,ν  ξEX,ν = βμνH

‖
EX,ν =

βJ̃0,νm0,ν , thus we get B(ξ0,ν)/ξ0,ν = βJ̃0,ν and also B ′
ν ≡

B ′(ξ0,ν)  B ′(ξEX,ν). Thus the relaxation rates can be written
as


ν,‖ = 2γνλνβJ̃0,ν

βμνB ′
ν

, 
ν,⊥ = γνλν

βμν

(
1

βJ̃0,ν

− 1

)
. (A8)
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Finally, we substitute Eqs. (A7) and (A8) into Eq. (4). From
there, we get the equation of motion [see Eq. (13)]:

ṁν = γν[mν × H′′
eff,ν] − γνα

ν
‖

(
1 − Bν/mν

μνβB ′
ν

− mν · H′′
eff,ν

m2
ν

)
mν

− γνα
ν
⊥

[mν × [mν × H′′
eff,ν]]

m2
ν

,

and the transverse and longitudinal damping parameters [see
Eqs. (14)],

αν
‖ = 2λν

βJ̃0,ν

,

αν
⊥ = λν

(
1 − 1

βJ̃0,ν

)
.
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