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Discrete antiferromagnetic spin-wave excitations in the giant ferric wheel Fe18
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The low-temperature elementary spin excitations in the AFM molecular wheel Fe18 were studied experimentally
by inelastic neutron scattering and theoretically by modern numerical methods, such as dynamical density matrix
renormalization group or quantum Monte Carlo techniques, and analytical spin-wave theory calculations. Fe18

involves eighteen spin-5/2 FeIII ions with a Hilbert space dimension of ∼1014, constituting a physical system
that is situated in a region between microscopic and macroscopic. The combined experimental and theoretical
approach allowed us to characterize and discuss the magnetic properties of Fe18 in great detail. It is demonstrated
that physical concepts such as the rotational-band or L and E-band concepts developed for smaller rings are still
applicable. In particular, the higher-lying low-temperature elementary spin excitations in Fe18 or AFM wheels,
in general, are of discrete antiferromagnetic spin-wave character.

DOI: 10.1103/PhysRevB.86.104403 PACS number(s): 75.50.Xx, 75.10.Jm, 78.70.Nx

I. INTRODUCTION

Ringlike arrangements of a dozen or so of magnetic
spins experiencing nearest-neighbor antiferromagnetic (AFM)
exchange interactions, as realized experimentally for instance
by the AFM molecular wheels, have attracted significant
attention in the past decade.1–12 The molecular ferric wheel
[Fe18(pdH)12(O2CEt)6(NO3)6], or Fe18 in short, is the largest
magnetic molecular wheel synthesized to date.13 The molecule
contains N = 18 FeIII ions with spin s = 5/2, arranged
in a ringlike fashion as shown in Fig. 1(a), and exhibits
crystallographic C6 symmetry. Its large yet finite size makes it
an ideal candidate to explore the region between microscopic
and macroscopic physics (the system is mesoscopic). The
magnetism in the Fe18 wheel was studied before using high-
field magnetic torque measurements, and the low-lying energy
spectrum up to 2 meV was investigated by inelastic neutron
scattering (INS).14 The experimental data demonstrated the
dynamics of the Néel vector, and the magnetic torque provided
direct evidence for quantum oscillations in the Néel vector
tunneling gap due to quantum phase interference.14

The experimental observations have been well described
in terms of an effective two-sublattice Hamiltonian, which
had been demonstrated before for smaller wheels with up to
ten spin sites to approximate well the low-energy part of the
true spectrum.15,16 This Hamiltonian is in fact related to the
more general concept of the L and E-band picture, which
describes the elementary excitations as a set of rotational
(parabolic) energy bands, and which was shown to apply
to a variety of AFM spin clusters with bipartite or tripartite
sublattice structure.10,15–19 The effective Hamiltonian allowed
a description of the experiments because it operates in a
Hilbert space of dimension 2116 (for Fe18), which can easily
be handled on a personal computer using standard numerical
diagonalization techniques. However, direct confirmation of
its applicability to wheels as large as Fe18 is lacking and

important magnetic parameters such as magnetic anisotropy
could not be determined reliably. Furthermore, higher-lying
spin excitations, which are expected in the L and E-band
concept, were not observed.

The numerically exact evaluation of all energy eigenvalues
and eigenfunctions of a giant molecule such as Fe18 poses a
great challenge for theory since the size of the related Hilbert
space grows as (2s + 1)N and for Fe18 assumes a value of
approximately 1014. This dimension is much too big for a
matrix diagonalization. Even a decomposition of the Hamil-
tonian matrix according to the available symmetries, as
successfully done for the smaller AFM wheels such as CsFe8

or Fe10,20–23 is not efficient enough to ease the problem.
Fortunately, the magnetic molecule Fe18 is nonfrustrated,
which permits the application of quantum Monte Carlo (QMC)
methods,24–26 and furthermore is quasi-one-dimensional,
which makes it ideal for (dynamical) density matrix renor-
malization group (DDMRG and DMRG) calculations.27–32

The first method allows the evaluation of thermodynamic
observables such as the magnetic susceptibility whereas the
second delivers transition rates between low-lying energy
levels that can be related to the INS spectrum.

In this work, a comprehensive study of the higher-lying
excitations in Fe18, which in the language of the L and E-band
concept correspond to the E band or discrete spin-wave ex-
citations, is reported. Experimentally the excitation spectrum
was determined by high-energy INS measurements extending
the energy range to 13.5 meV, and the temperature-dependent
magnetic susceptibility, which probes the full energy spectrum.
Theoretically, the QMC and DDMRG techniques were used
to reproduce the experimental magnetic susceptibility and
INS data with excellent accuracy. Because of the size and
the structure of Fe18 the DDMRG calculations are time
consuming, which prevents a systematic scanning of the
magnetic parameter space or least-squares fit approaches. This
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FIG. 1. (Color online) (a) Ball-and-stick representation of the
molecular structure of the Fe18 molecule (Fe is green, O is red, N is
blue, C is gray, and H is white). The dashed box indicates the unit cell
used for magnetic modeling. (b) Unit cell (dashed box) and labeling
of the spin sites (text at bottom) used for the theoretical calculations as
suggested by the symmetry of the molecule. The exchange constants
J1, J2, and J3 associated to different bonds are indicated.

problem was circumvented by resorting to spin-wave theory as
an intermediate step. This allowed us to refine the microscopic
spin Hamiltonian for Fe18 and deduce accurate microscopic
magnetic parameters. A key result is that the spin-wave-like
character of the higher lying excitations is preserved although
the refined Hamiltonian is less symmetric compared to the
assumptions in Ref. 14. Furthermore, the validity of the
L and E-band concept is confirmed for Fe18.

The article is organized as follows. It begins with a
discussion of the experimental results for the susceptibility
and the INS cross section in Sec. II. This is followed by a
theoretical analysis in Sec. III and a discussion in Sec. IV.
After our final conclusions further details of the employed
methods are given in the Appendixes.

II. EXPERIMENTAL RESULTS

The experimental methods used for sample preparation, and
magnetic susceptibility and INS measurements are described
in Appendix A 1. Figure 2 shows the magnetic susceptibility
χ as a function of temperature measured on a polycrystalline
sample. At 250 K, a χ value of 0.17 cm3/mol is observed,
which increases with decreasing temperature, reaches a max-
imum of 0.23 cm3/mol at a temperature of approximately
50 K and decreases further with decreasing temperature. At
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FIG. 2. (Color online) Experimental (open circles) and simulated
(lines) magnetic susceptibilities as a function of temperature. The
three simulated curves were obtained from the microscopic model
Eq. (1) using QMC. The parameters in the simulations are as indicated
(with J1 = J2 = J and J3 = J ′).

the lowest temperature, an abrupt decrease is observed. Such
a behavior is typical for AFM molecular wheels,2 and the data
are consistent with earlier measurements on a microcrystalline
sample.13 The ground state of an even-membered AFM wheel
is a total spin singlet, S = 0, and the susceptibility is hence
expected to approach zero at zero temperature, which is not
observed here because in large wheels the drop to χ = 0 occurs
only at the lowest temperatures (the gap to the first excited
triplet is roughly given by ∼4J/N and is small in Fe18) and the
susceptibility in this temperature regime is strongly affected
by the presence of magnetic anisotropy (which is significant
in Fe18).33 The solid curves are theoretical results that are
discussed below.

The INS spectrum recorded at an incoming wavelength of
λ = 4.2 Å and a temperature of 1.9 K on the spectrometer
IN5 is shown in Fig. 3. At low energies, a strong feature
at 0.3 meV (peak Ia) together with its corresponding anti-
Stokes feature (peak Ia′) is observed. At around 1 meV, a
group of three features appears, peak ia at 0.8 meV, peak
Ib at 1 meV, and peak ib at 1.36 meV. These transitions were
already observed in the previous low-energy INS experiment14

and interpreted as follows: peaks Ia and Ib correspond to cold
magnetic transitions from the S = 0 ground state to the first
excited S = 1 multiplet, which is zero-field split by magnetic
anisotropy into its components M = ±1 and M = 0, and peaks
ia and ib were identified as hot magnetic transitions from this
first excited S = 1 multiplet to the next-higher lying S = 2
multiplet (see inset to Fig. 3). In addition to these transitions,
a further peak II at 3.0 meV is observed.

Figure 4(a) presents the INS spectra recorded with an
incoming wavelength λ = 3.2 Å on the spectrometer FOCUS.
In the 1.5 K data, a prominent feature at 3 meV is observed
on the neutron-energy loss side, which obviously corresponds
to peak II found before in the IN5 data (see Fig. 3). Also,
a shoulder near the elastic line at approximately 1 meV is
observed, which obviously corresponds to peak Ib (peak ib is
not detected here because of its weak intensity and the lower

104403-2



DISCRETE ANTIFERROMAGNETIC SPIN-WAVE . . . PHYSICAL REVIEW B 86, 104403 (2012)

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

100

200

300

400

500

600

II
Ia' ibia

Ib

Ia

In
te

ns
ity

 (
a.

u.
)

Energy (meV)

S = 0 

S = 2 

S = 1, M = 0 

S = 1, M = ±1
Ia 

Ib 

ib ia

FIG. 3. (Color online) Experimental INS spectra recorded on IN5
with incoming neutron wavelength λ = 4.2 Å at 1.9 K. Positive
energy transfer corresponds to neutron energy loss. The labels
indicate observed transitions. The inset sketches the assignment of
the low-energy excitations as inferred previously.14

experimental resolution in the λ = 3.2 Å experiment). Two
further features are observed, a very weak feature at approx-
imately 2 meV and a weak broad feature at approximately
4.5 meV. The spectrum recorded at 75 K shows, apart from
a strongly increased background due to the excited lattice, no
clear features. It is therefore reasonable to assume that at this
temperature predominantly the lattice excitations are observed,
and the magnetic scattering intensity is distributed over all
energies. The lattice contribution (on the neutron-energy loss
side) at low temperatures may thus be estimated by scaling
the 75 K data with the Bose factor [1 − exp(−E/kBT )]−1,
which determines the temperature dependence of phononic
scattering. The estimated lattice contribution is then subtracted
from the low-temperature INS data, a procedure we call Bose
correction. This approach was used with considerable success
in the past.18,34,35 In the Bose-corrected 1.5 K data, shown also
in Fig. 4(a), peak II remains strong, providing a strong hint
that it is of magnetic origin.

Also the dependence of the INS intensity on momentum
transfer Q could be studied, which often allows for an
unambiguous conclusion as regards the origin of INS features.
The S(Q,ω) plot of the 1.5 K data is shown in Fig. 4(b). Peaks
Ib and II are clearly identified, which is impressive considering
that a nondeuterated molecular powder sample was measured
at high energies. Magnetic and phononic excitations may be
clearly differentiated by their Q dependence, since for the
former the intensity is either strongest at low Q values or
typically is maximal at around 1.2 Å−1,36 while for the latter
an increase of the intensity with Q2 is expected.37 Clearly,
the intensity of both peaks Ib and II is negligible at low Q

and passes through a maximum between 1.1 and 1.5 Å−1. At
higher Q values the observed intensity is almost constant. Such
a Q dependence is characteristic for the magnetic excitations
in AFM molecular wheels.10,18,33,38–41 Hence, on the basis of
the temperature dependence, the Bose correction, and the Q

dependence peaks Ib and II are clearly magnetic. In contrast,
the features at 2 and 4.5 meV do exhibit their strongest intensity
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FIG. 4. (Color online) (a) Experimental INS spectra recorded on
FOCUS with incoming neutron wavelength λ = 3.2 Å at 1.5 (blue
open circles) and 75 K (red open squares). The 75 K data were
Bose-scaled to yield the estimated lattice scattering at 1.5 K (gray
solid squares) and were subtracted from the 1.5 K data yielding the
Bose-corrected data (black solid circles). (b) S(Q,ω) plot of the (not
Bose-corrected) 1.5 K data shown in panel (a). Intensity is color-
coded from blue (low intensity) to red (high intensity). The labels
indicate observed transitions, and the asterisks spurion features as
discussed in the text. Positive energy transfer corresponds to neutron
energy loss.

at large Q values, and are hence safely assigned to spurious
and/or lattice contributions, which for the 2 meV feature is
also confirmed by its absence in the λ = 4.2 Å data, Fig. 3.

The INS spectra recorded on FOCUS with incident wave-
length λ = 2.26 Å at 1.5 and 75 K are displayed in Fig. 5(a).
In the 1.5 K spectrum, peak II at approximately 3 meV
is again observed. Furthermore, prominent features are also
observed at around 8.5 meV (peak III) and 12 meV (peak IV),
and at approximately 6 meV a weak feature is found. Peak
III is significantly broader than the experimental resolution,
and appears to consist of two features. The 75 K spectrum
exhibits an increased intensity reflecting the strong phononic
scattering intensity, and no detailed features are observed
at the lower energies. However, two features are present at
energies roughly corresponding to those of peaks III and IV. A
Bose correction as discussed before yielded the Bose-corrected
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FIG. 5. (Color online) (a) Experimental INS spectra recorded
on FOCUS with incoming neutron wavelength λ = 2.26 Å at
1.5 (blue open circles) and 75 K (red open squares). The 75 K
data were Bose scaled to yield the estimated lattice scattering at
1.5 K (gray solid squares) and were subtracted from the 1.5 K data
yielding the Bose-corrected data (black solid circles). (b) S(Q,ω)
plot of the (not Bose-corrected) 1.5 K data shown in (a). Intensity
is color coded from blue (low intensity) to red (high intensity).
(c) Q-sliced 1.5 K data, with the Q slices as indicated. The labels
indicate observed transitions and the asterisk a spurion feature as
discussed in the text. Positive energy transfer corresponds to neutron
energy loss.

1.5 K data shown in Fig. 5(a). Both peaks III and IV are
pronounced in the Bose-corrected data, which strongly hints
towards a magnetic origin of this scattering intensity. The
right shoulder at approximately 9 meV on the high-energy
side of feature III in the (original) 1.5 K data is significantly
reduced by the Bose-correction, which suggests a lattice origin
of this scattering intensity. The S(Q,ω) plot of the 1.5 K
spectrum is given in Fig. 5(b). The peaks II, III, and IV are
clearly present and exhibit strong scattering intensity at low
Q values, with indications of a maximum below 1.5 Å−1,
which unambiguously demonstrates their magnetic origin. At
all energies a significant phonon contribution is observed at
the largest Q values. To gain further insight into the nature
of the weak feature at approximately 6 meV, the INS data
were analyzed via Q slices, as shown in Fig. 5(c). The 6 meV
feature is the better detected in the Q slices the higher the Q

values are, and appears to be essentially absent in the Q slice
with the lowest Q values. It is hence assigned to a spurion or
lattice feature. In contrast, the peaks II, III, and IV are more
pronounced in the lower Q slices, again demonstrating their
magnetic origin.

To summarize the INS findings, besides the four low-energy
features Ia, Ib, ia, and ib, which were already observed before
in previous INS experiments,14 three further cold magnetic
transitions II, III, and IV were observed in the high-energy
regime up to 14 meV. An analysis of these transitions using
Gaussian fits with sloped background yielded the energy
positions as peak II: 3.0(1) meV, peak III: 8.5(2) meV, and
peak IV: 12.0(2) meV.

III. ANALYSIS

A. Spin model for Fe18

The generic Hamiltonian for the description of the magnetic
properties of a molecular wheel of N = 18 FeIII spins is a
Heisenberg Hamiltonian with nearest-neighbor interactions
plus a term reflecting the single-ion anisotropy of the FeIII

ions.14 In principle, this would lead to at least 36 unknown
parameters. However, Fe18 possesses a crystallographic C6

symmetry axis perpendicular to the wheel plane, which
leads to a repeating unit of three FeIII ions, as indicated in
Fig. 1(b). Therefore the Heisenberg part of the Hamiltonian
can be formulated with at most three different exchange
constants:

ĤH =
L=6∑
l=1

J1Ŝl,1 · Ŝl,2 + J2Ŝl,2 · Ŝl,3 + J3Ŝl,3 · Ŝl+1,1, (1)

where L = N/3 is the number of unit cells and l enumerates
the repeating units and has to be understood modulo L [for the
enumeration of the individual spin sites see also Fig. 1(b)].

The magnetic susceptibility, Fig. 2, is compatible with a
nonmagnetic, total spin S = 0 ground state. In addition, the
high-temperature behavior of χ requires that the sum of all
exchange interactions is antiferromagnetic.42 Considering the
susceptibility function further, one can even conclude that all
couplings along the ring have to be antiferromagnetic because
if any of the exchange interactions were ferromagnetic, either
the ground state would possess a total spin of S = 15 or
the susceptibility would rise to much larger values at low
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temperatures than observed. Hence, we can safely restrict our
analysis to AFM exchange interactions, J1,J2,J3 > 0. A closer
look at the structure of the molecule suggests the simpler
model where J1 = J2 = J and J3 = J ′, since the exchange
bridges connecting the centers Sl,1 to Sl,2 and Sl,2 to Sl,3 are
chemically identical and structurally very similar, while the
bridge connecting centers Sl,3 to Sl+1,1 is chemically very
different (see Fig. 1). In the following, we will denote the
uniform ring with J1 = J2 = J3 = J as a one-J model, the
situation with J1 = J2 = J and J3 = J ′ as a two-J model,
and the general case of three different exchange constants as a
three-J model.

The interaction with an applied magnetic field B is
described by the Zeeman Hamiltonian

ĤZ = gμB

N=18∑
j=1

Ŝj · B , (2)

where the g factor is close to 2 for FeIII ions, j enumerates the
individual spin sites, and μB is the Bohr magneton. Previous
results suggest that the single-ion anisotropy of the FeIII ions,
which is modeled by the term

ĤD = D

N=18∑
j=1

(
Ŝz

j

)2
, (3)

is relatively small in magnitude yet strongly affects the spin
dynamics at very low energies.14 However, it is expected to
have negligible effect on the excitations at higher energies.18

Therefore this term is not included in our analysis, but this
assumption is carefully checked and confirmed in Sec. III C.

In order to determine the exchange parameters, we approach
the relevant energy spectrum in three steps. In a first step, we
analyze the spin-wave excitations and compare them with the
observed INS excitations in order to narrow down the range of
possible parameter values and to qualitatively understand the
character of the excitations. This approach is motivated by the
L and E-band picture, which connects the higher-energy low-
temperature excitations to discrete spin waves, and spin-wave
theory was indeed able to reproduce the excitations in the AFM
wheel CsFe8 with semiquantitative accuracy.18 In a second
step, we perform large-scale DDMRG calculations for quite a
number of parameter sets that yield model parameters of high
accuracy. Finally, these are compared with QMC calculations
of the magnetic susceptibility.

B. Spin-wave calculations

The one-magnon excitations of Hamiltonian Eq. (1) can
be obtained in the framework of standard spin-wave theory
(SWT).43 Some modification of the theory becomes inevitable,
however, when studying physical quantities such as the
dynamical correlation function in Eq. (A3), which exhibits
divergencies caused by the Goldstone modes. The gapped
structure of these modes in finite Heisenberg clusters and AFM
wheels in particular can be handled within the framework of
SWT by introducing chemical potentials for the spin sites,
yielding the so-called modified SWTs.44–52 We will come back
to this point in Sec. IV. Here, we calculate the one-magnon
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FIG. 6. (Color online) (a) Spin-wave excitation spectrum of
Hamiltonian Eq. (1) with L = 6 (symbols) and L = 300 (solid
curves) as obtained from SWT for the parameter b0 = 0.074. The
energy levels E1 to E4 are defined by Eq. (C15). The dashed-dotted
curves display the spectrum for the one-J model. (b) Dependence of
Eq. (4) for J1 = J2 = J and J3 = J ′ on the scaling variable y. The two
solutions y1 = 0.276 and y2 = 0.687 for b0 = 0.074 corresponding to
J ′/J ≈ 3 and J ′/J ≈ 0.3, respectively, are indicated. Both solutions
produce identical one-magnon spectra.

spectrum of Eq. (1) in a linear SWT approximation; for details
we refer to Appendix C.

The spin-wave excitation energies of the Fe18 system are
displayed in Fig. 6(a) as a function of a shift quantum number
k, which arises from Fourier transforming the periodic ring of
L unit cells (physically it would correspond to a wave vector
only in the infinite chain). For comparison, as guides to the eye,
the dispersions of the spin-wave branches of a large (L = 300)
ring are also shown. Three branches ω1(k), ω2(k), and ω3(k)
are observed as expected from the three centers in the unit cell.
For Fe18 the k values are restricted to the discrete values k =
0, ± 1

9π, ± 2
9π, 1

3π , and a discrete excitation spectrum with
17 energy states is obtained [ω1(0) is the ground state]. The
excitations fall into four energy levels E1, E2, E3, and E4 (each
is fourfold degenerate because of the symmetries in the SWT
approximation). The level L0 is formed by the Goldstone mode
ω1(k = π/3), which has zero energy in the standard SWTs. It
acquires a gap, however, when modified SWTs are used, which
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in the quantum spectrum relates to the gap between the S = 0
ground state and first excited S = 1 multiplet (singlet-triplet
gap). Within the L and E-band concept the energies in the
levels E1 to E4 correspond to the E band, and the ground state
and lowest k = π/3 mode to the L band.16 The dispersions
for the uniform ring or one-J model are also displayed in
Fig. 6(a) for comparison (J was chosen here such that the
maximal energy coincides).

The SWT calculations allow some useful insight. A
modulation of the exchange constants away from uniform
opens a gap between the branches ω1(k) and ω2(k), which
in relative terms shifts E1 down and E2 up. As shown in
Appendix C, SWT implies three relations between the reduced
energies E1/E3, E2/E3, and E4/E3, which depend only on the
dimensionless parameter b0,

b0 = 3J 2
1 J 2

2 J 2
3

(J1J2 + J2J3 + J3J1)3
. (4)

Detailed inspection shows that the difference between the
energy levels E3 and E4 does of course vary with varying
exchange constants, but always remains relatively small, and
it turns out that it is always significantly too small to account
for the experimentally observed energy difference of peaks
III and IV. Finally, the relation E1 + E2 = E4 follows from
the first two equations in Eq. (C18). The conclusion from all
this is that even in the most general case of three different
exchange couplings, the possible variation in the relative
energies of the levels is restricted. In particular, the three-J
model does not introduce significantly more flexibility in
adjusting the energies as compared to the two-J model, despite
the additional free parameter. Intuitively this is reasonable,
since the main characteristics which govern the dispersions in
Fig. 6(a) is the maximal energy (or E4) and the size of the gap
between the energies E1 and E2. This strongly suggests that
the possible small differences between the exchange constants
J1 and J2 cannot be resolved in the present experiments, and
that therefore the two-J model is appropriate for Fe18.

Comparing the spin-wave spectrum with the experimental
INS peaks, it is obvious that the level E1 corresponds to
peak II (peaks Ia and Ib are related to the singlet-triplet
gap or level L0, which in the present SWT calculation is
obtained at zero energy). However, at higher energies, SWT
predicts three further levels while only two INS peaks III
and IV are observed. This results in several possibilities
for the assignment, which could all be ruled out because
of discrepancies with experiment except one, namely the
assignment that E2 corresponds to peak III and E4 to peak
IV. According to SWT, an excitation corresponding to level
E3 between peaks III and IV is expected but not observed.
This problem will be resolved by the DDMRG calculations
discussed in the next subsection, which additionally provides
scattering intensities.

Due to the restrictions for the energies mentioned before
(cf. Appendix C), a perfect mapping of the spin-wave spectrum
onto the positions of the above three INS peaks is not possible
even in the general case of three exchange parameters. A good
approximation to the INS peaks can, however, be obtained
with the two-J model, which is also compatible with the
chemical structure of Fe18. A least-squares fit resulted in the
optimal parameter b0 = 0.074, which yields the energy levels

E1 = 3.17 meV, E2 = 8.67 meV, E3 = 10.61 meV, and E4 =
11.84 meV, which for E1, E2, and E4 can be compared to the
INS energies peak II = 3.0 meV, peak III = 8.5 meV, and
peak IV = 12.0 meV. The good agreement suggests that the
exchange constants obtained from this analysis should provide
excellent starting values for a more refined analysis.

In fact, from Eq. (4), for any fixed value of b0 there are two
different pairs of exchange constants which produce identical
one-magnon spectra (in the two-J model). The dependence
of b0 on the scaling variable y = J2/

√
J 2

1 + J 2
2 + J 2

3 is
presented in Fig. 6(b), and the graphical solution of Eq. (4)
for the optimal parameter b0 = 0.074 is also shown. The
two solutions correspond to J ′/J ≈ 3 and J ′/J ≈ 0.3, which
in the following will be referred to as the J ′ > J and
J ′ < J scenario, respectively. DDMRG considered in the next
subsection allows us to disentangle these two cases.

It is finally mentioned that a good approximation to the
experimental spectrum cannot be achieved by a uniform ring
or the one-J model, see also Fig. 6(a). The two-J model is thus
both the minimal and appropriate model for Fe18. This is in
accordance with similar findings for another, but structurally
similar Fe18 spin ring.4

C. DDMRG analysis of the experimental data

In the first part of this section, the magnetic susceptibility
and high-energy INS (peaks II-IV) data are analyzed. The
single-ion anisotropy term is neglected and only the Heisen-
berg Hamiltonian Eq. (1) is used. In the second part, using
the low-energy INS data (peaks Ia and Ib) the magnitude
and influence of the single-ion anisotropy term Eq. (3) are
investigated.

Using DDMRG30–32 (see Appendices A 2 and B) the INS
intensities where first calculated for the one-J model. The
calculated peaks correspond to transitions from the S = 0
ground state to excited states with S = 1, and occur approx-
imately at 0.27J , 2.0J , 3.6J , 4.8J , and 5.5J . Therefore, as
already deduced from SWT, it is not possible to find a single
J for which more than two INS peaks can be reproduced.
Furthermore, simulations of the magnetic susceptibility (see
Fig. 2) are in marked discrepancy with experiment. The one-J
model is hence disregarded for interpreting the magnetism in
Fe18. This model will, however, be helpful for the discussion
of the general physics in AFM molecular wheels in Sec. IV.

Simulations of the magnetic susceptibility for the two-J
model (see Fig. 2) showed that for both the J ′ > J and
J ′ < J scenarios the experimental data can be excellently
reproduced. The simulations are in fact not very sensitive
to small variations of the exchange constants, as long as
their average remains constant.42 Using the information from
the SWT calculations and magnetic susceptibility simulations
extensive DDMRG calculations for several (J,J ′) parameter
sets were performed that aimed at fitting the high-energy INS
data. The broadening η = 0.5 meV (cf. Appendix A 2) was
chosen such that in the DDMRG calculation the FWHM
of the Lorentzian peaks approximately corresponds to the
experimental resolution (1.1 meV for the λ = 2.26 Å INS
measurements). For small parameter variations (and for not
too small a difference between J and J ′) the following
qualitative results were obtained [cf. Fig. 7(b)], which for
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FIG. 7. (Color online) INS spectra as obtained by DDMRG
calculations (solid lines) and comparison to the experimental Bose-
corrected data (solid and open circles) deduced from the λ = 2.26 Å,
1.5 K INS run. (a) Best-fit simulation for the J ′ > J scenario, with
exchange parameters J = 1.42 meV and J ′ = 4.57 meV. The arrows
indicate features in the simulated spectrum discussed in the text.
(b) Best-fit simulation for the J ′ < J scenario, with exchange
parameters J = 2.88 meV and J ′ = 1.02 meV. The inset shows
simulated INS spectra for three slightly different exchange constants
used to infer the errors in the determined exchange constants.

brevity will be discussed for the J ′ < J scenario (for the
J ′ > J scenario interchange J and J ′): (1) a variation of
J ′ while keeping J constant affects the complete spectrum,
but the peak positions depend approximately linearly on J ′;
(2) variation of J with constant J ′ mainly shifts the peaks
above 6 meV without changing the relative positions of those
peaks, i.e., the “bandwidth” of the high-energy part above
6 meV is not significantly changed. The positions and heights
of the peaks below 6 meV are almost unaffected by variation
of J .

These findings are in accordance with the SWT results.
Using these trends for the J ′ > J scenario, the best agreement
with experiment was obtained for J = 1.42 meV and J ′ =
4.57 meV [see Fig. 7(a)]. Five prominent peaks are observed
in the DDMRG spectrum at the energies of approximately
0.43, 3.0, 9.4, 10.9, and 12.1 meV (which can in fact contain

some nearly degenerate transitions, which are not resolved
due to the finite broadening η). The calculated spectrum is
compared with the Bose-corrected INS spectrum recorded at
a wavelength of 2.26 Å in Fig. 7(a). The agreement with the
experimental peak III could probably be further optimized by
fine-tuning of J and J ′. However, in the DDMRG spectra
an additional peak at about 11 meV is observed, marked by
an arrow in Fig. 7(a), which obviously corresponds to the
spin-wave level E3 discussed in the preceding subsection. It
is, however, not seen in the experiment, which disfavors the
J ′ > J scenario as a model for the magnetism in Fe18.

Further efforts therefore concentrated on the J ′ < J sce-
nario. Here also five peaks are observed in the DDMRG spectra
at approximately 0.43, 3.0, 8.9, 10.1, and 11.6 meV. However,
the intensity of the peak at 10.1 meV, which relates to the
spin-wave level E3, is relatively weak. The best agreement
of the DDMRG spectra with the experimental high-energy
data was obtained for J = 2.88 meV and J ′ = 1.02 meV.
The agreement is in fact very good, see Fig. 7(b), and in
particular considerably better than for the J ′ > J scenario [see
Fig. 7(a)]. The errors of the determined exchange constants
were estimated to ∼0.15 meV for J and ∼0.05 meV for
J ′. These estimates are based on the variation of the peak
positions for varied parameters [cf. inset to Fig. 7(b)]. The
smaller error for J ′ stems from the fact that the experimental
position of peak II has been measured more precisely than the
positions of peaks III and IV, and the position of the simulated
peak II is mainly determined by this coupling constant. Within
these error bounds, it is possible to match the positions of all
experimental high-energy peaks in the DDMRG simulation.
The magnetic susceptibility is also reproduced excellently with
these exchange parameters.

The consideration of a nonzero but small temperature in
the simulations would not change the positions of the main
peaks, but would change their heights a bit. Additional hot
peaks resulting from transitions from excited states would
also appear, but because of the singlet-triplet gap of about
0.3 meV, which should be compared to the temperature of
1.5 K at which the high-energy INS data were obtained, the
ground-state population is estimated to be larger than 90%.
Hence transitions from the ground state clearly dominate,
and comparing the zero-temperature DDMRG and 1.5 K
experimental spectra is justified.

Interestingly, the DDMRG spectra for both scenarios
produce a very weak scattering intensity at approximately
6 meV (indicated in Fig. 7 by arrows), where a weak
feature is indeed observed in the experiment. The analysis
of the experimental data in Sec. II suggested that this
intensity is of nonmagnetic origin. In view of the DDMRG
results, it could be possible that this feature is, at least in
parts, i.e., at low momentum transfer Q, due to magnetic
scattering. The present experiments, however, cannot resolve
this issue.

In a next step, the influence and magnitude of the single-
ion anisotropy term, Eq. (3), are analyzed. Peaks Ia and Ib,
observed at energies of 0.3 and 1.0 meV in the λ = 4.2 Å
INS experiment and in a previous work,14 were assigned to
the transitions from the S = 0 ground state to the first excited
S = 1 multiplet, which exhibits a zero-field splitting (ZFS)
due to the single-ion anisotropy of the FeIII ions which can
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FIG. 8. (Color online) Calculated low-energy spectrum for J =
2.88 meV and J ′ = 1.02 meV as obtained using DMRG with multiple
target states. (a) Energy spectrum for D = 0 as a function of total
spin S. (b) Energy spectrum for D = 0.03 meV as a function of the
magnitude of the magnetic quantum number M , showing the ZFS
of the S = 1 multiplets. For the lowest S = 1 multiplet, the ZFS is
determined by D1. The gray box is centered at the center of gravity
of the higher-lying multiplets and has a height corresponding to the
experimental resolution (430 μeV) of the data shown in Fig. 4. The
ZFS of the lowest S = 1 multiplet is 0.7 meV and much larger than
the splitting of the next two, nearly degenerate multiplets, which is
0.3 meV, and smaller than the experimental resolution. The observed
cold INS transitions are indicated by arrows.

be characterized by an anisotropy constant D1 [see Fig. 8(b)].
The relation between D and D1 was estimated in Ref. 14
by extrapolating results on smaller wheels, but the accuracy
remained unclear, and therewith the accuracy of the deduced
value of D in Fe18. Therefore we used the ALPS DMRG code26

to calculate the lowest-lying energies for Ĥ = ĤH + ĤD . For
J = 2.88 meV, J ′ = 1.02 meV, and D = 0.030 meV, the low-
lying energies reproduced excellently the transition energies
observed for peaks Ia and Ib. Based on parameter variations in
the calculations and the widths of the experimentally observed
peaks, we estimate the error in D to be ∼5 μeV.

The comparison of the energy level structure with and
without ĤD in Fig. 8 shows that the anisotropy-induced
splitting is largest for the first S = 1 multiplet but much
smaller for the next two (nearly degenerate) S = 1 multi-
plets. This is in agreement with findings on e.g. the CsFe8

wheel.18 This is a clear indication that the effect of the
single-ion anisotropy on the higher-lying excitations studied
in this work can be neglected: the position of the center of
gravity is nearly unaffected and the splitting is smaller than
experimental resolution. It is mentioned that the center of
gravity is not equal to the “center of INS intensity” since
the INS intensity is generally distributed unequally among the
excitations.

To summarize this section, the experimental magnetic
susceptibility and INS data for Fe18 can very well be repro-
duced with the microscopic parameters J = 2.88(15) meV,
J ′ = 1.02(5) meV, and D = 0.030(5) meV [J = 33(2) K,
J ′ = 11.8(6) K and D = 0.35(6) K]. Alternative exchange
parameters were extensively searched for but found to provide
inferior agreement with experiment.

IV. DISCUSSION

According to the L and E-band picture, the low-
temperature excitations in even-membered AFM wheels fall
into two energy regimes with different character. For the
wheels Cr8 and CsFe8, this scenario was confirmed both
experimentally and theoretically in detail,10,18 but for Fe18

the picture has been incomplete so far. For Fe18, the L-
band excitations at the lowest energies were experimentally
investigated in detail in the previous study Ref. 14 by means
of low-energy INS (peaks Ia, Ib in Fig. 3) and ultra-low-
temperature high-field magnetization and magnetic torque
measurements. The E-band or the higher-lying elementary
excitations accessible at low temperatures were carefully
studied in the present work. However, different models were
used in the interpretation of the low-energy and high-energy
data, and their relation is considered now.

The low-energy experimental data14 could be described
extremely well by the effective two-sublattice Hamiltonian

ĤAB = j ŜA · ŜB + d
[(

Ŝz
A

)2 + (
Ŝz

B

)2]
, (5)

where ŜA and ŜB represent the total spins of length SA =
SB = Ns/2 on each of the two sublattices A and B, and
with appropriate effective exchange constant j and anisotropy
d. This simple two-spin Hamiltonian is suggested by the
L and E-band picture, and was established as an effective
low-energy approximation of the uniform ring (one-J ) model
with an additional anisotropy, or Ĥuni = ĤH + ĤD with J1 =
J2 = J3 = J .53 The magnetic parameters are related through
j = a1J and d = b1D, where the coefficients a1 and b1

depend strongly on N and s. The underlying assumption
is that the eigenstates of Ĥuni in the low-energy sectors are
well approximated by “quasi-classical” spin states of the form
|SASBSM〉 (with SA = SB = Ns/2). Within this space, Ĥuni is
equivalent to ĤAB in first order, yielding a1 = aAB

1 with aAB
1 =

4/N and b1 = bAB
1 with bAB

1 = (2s − 1)/(Ns − 1). However,
quantum corrections modify these parameters significantly,
which can be accounted for by matching the low-energy states
to the exact energy spectrum, if the latter is available, yielding
values a

qm
1 and b

qm
1 .53 For N = 18, s = 5/2 relevant for Fe18,

a
qm
1 = 0.2721 was extracted from QMC calculations,54

and b
qm
1 ≈ 0.07 was determined by extrapolating results of

rings with lengths of up to N = 10.14,53 Using these results
J = 1.64 meV and D = 0.026 meV was inferred for Fe18

from the low-energy data in Ref. 14.
We recalculated the parameters a

qm
1 and b

qm
1 as follows: aqm

1
was determined from the singlet-triplet gap of the Heisenberg
part of Ĥuni since it can be obtained very accurately by DMRG.
For the estimation of b

qm
1 , the spectra of Ĥuni and ĤAB were

compared for different values of b1 and D using DMRG
and exact diagonalization codes of the ALPS package.26,55

Our results are a
qm
1 = 0.2683(1) and b

qm
1 = 0.063(2). Hence

the refined magnetic parameters J = 1.64(3) meV and D =
0.029(1) meV are obtained, with which Ĥuni describes very
well the experimental low-energy excitations in Fe18.

The susceptibility and high-energy INS data, however,
cannot be reproduced by a uniform ring model as demonstrated
in Sec. III C. The two-J model was required. From the
susceptibility simulations, two equally good parameter sets
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were found (one with J ′ < J and one with J ′ > J ). Based
on susceptibility, it was not possible to prefer one set over
the other. Also, spin-wave theory predicted no differences
between these two models regarding the excitation energies.
The simulation of the high-energy INS data using DDMRG
revealed differences between these two models, and favored
the J ′ < J model (see Fig. 7).

Also for the three-J model, or Ĥ = ĤH + ĤD with general
exchange couplings, the effective two-sublattice Hamilto-
nian ĤAB is obtained in first order as the effective low-
energy approximation. The modulations in the exchange (and
anisotropy) constants along the wheel are effectively averaged
out in the L-band states,56 suggesting the average exchange
constant J = (J1 + J2 + J3)/3. However, the parameter a1 is
strongly modified. Indeed, for the J ′ < J and J ′ > J models
determined in this work the average exchange constants are
J = 2.26 and 2.47 meV, while for the uniform ring model
J = 1.64 meV (all three models yield identical low-energy
spectra, e.g., energies for peaks Ia and Ib). It is interesting to
observe that the parameter b1 is comparatively less affected;
for the models here D = 0.030(5) meV is deduced while the
uniform ring model yielded D = 0.029(1) meV, which agree
within the errors.

The energy spectra of the elementary excitations are
compared for the J ′ < J , J ′ > J , and uniform ring models
in Fig. 9, where only the Heisenberg parts were considered
(D = 0). Also, the spin-wave energies as predicted by our
SWT (Appendix C) are indicated. Apparently, the lowest-lying
triplet, which belongs to the L band, has identical energy in
all three models (as necessitated by experiment). Furthermore,
the next-higher lying triplet state, corresponding to the energy
level E1 or peak II, which belongs to the E band, is produced
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FIG. 9. (Color online) Effect of different coupling constants
in the Fe18 wheel. The left panel shows the ground state and the
excitations in the one-magnon energy sector for the three models
J = 2.88 meV, J ′ = 1.02 meV (J ′/J ≈ 0.3), J = J ′ = 1.64 meV,
and J = 1.42 meV, J ′ = 4.57 meV (J ′/J ′ ≈ 3). The bars represent
the energies as obtained from DDMRG calculations, and the crosses
the results of LSWT. The LSWT excitation energies were calculated
using Eq. (C15) (see Appendix C). The right panel shows a zoom
into the high-energy region.

at nearly identical energies in all models. The main difference
is in the further higher-lying states of the E band. In the one-J
model their “bandwidth” of approximately 2.5 meV is obtained
approximately correctly, but is predicted at significantly too
low an energy. Hence the key experimental signature for
modulated exchange couplings in Fe18 is the large energy gap
between peaks II and III. Notably, for all three models, the
simple LSWT can reproduce the DDMRG excitation energies
in the E band semiquantitatively. This strongly suggests
that these excitations do indeed correspond to discrete AFM
spin-wave excitations. The lowest-lying singlet-triplet gap or
L band is not reproduced by the LSWT (i.e., is calculated zero
energy) by reasons discussed before in Sec. III B.

Finally, the excitations of the uniform Heisenberg ring shall
be considered in detail by comparing the results of (D)DMRG
calculations to those of various SWTs. The discussion parallels
that in Ref. 18 for the AFM wheel CsFe8 with N = 8,
s = 5/2. AFM systems with disordered ground states, such
as the AFM wheels, represent a challenge for any SWT
since these start by construction from an ordered ground
state. As a result, the energies of the Goldstone modes are
obtained as zero even in finite spin systems, and divergencies
appear, e.g., in the magnetization (which actually can be used
as an indication of the absence of order in the considered
spin model43,44). Linear and interacting SWTs (LSWT and
ISWT) are typical representatives.44,45 These drawbacks can
be eliminated by introducing chemical potentials for each spin
center, which result in finite excitation gaps for Goldstone
modes (or the singlet-triplet gap) and thereby remove the
divergencies. This branch of SWTs is denoted as modified
SWTs,57 the simplest of which is linear modified SWT
(LMSWT),46–48 but also a number of interacting variants exist.
Here, we use full-diagonalization interacting modified SWT
(IMSWT).49 A conceptually different approach is to introduce
Schwinger bosons and treat the resulting Hamiltonian at the
mean-field level (Schwinger-boson mean field theory),50,51

which, however, yields exactly the same excitation spectrum
as LMSWT and is hence not further considered here. For the
N = 8, s = 5/2 system it was found that a simple correction
of the LSWT spectrum, called LSWT + �c, gave the best
agreement with the exact energies.18 In this approach, the
first-order approximation �c = 4J/N for the singlet-triplet
gap (or a1 = aAB

1 ) is added to the excitation energies. We will

TABLE I. (D)DMRG and SWT results for the ground-state energy
Eg , singlet-triplet gap �, height of the dispersion curve, and mean
deviation for a N = 18, s = 5/2 uniform AFM Heisenberg ring in
units of J . The numerical inaccuracy of the DMRG ground-state
energy is two orders smaller than given.

Eg/J �/J height/J χ 2

(D)DMRG −129.703 0.2683(1) 5.50(1) 0
LSWT −128.835 0 4.924 0.0602
LMSWT −129.082 0.1228 4.926 0.0582
ISWT −129.759 0 5.288 0.0246
IMSWT −129.693 0.1319 5.289 0.0246
LSWT + �C 0.2222 5.146 0.0316
ISWT + �C 0.2222 5.511 0.0066
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FIG. 10. (Color online) (a) Dispersion of the one-magnon exci-
tations of the uniform Heisenberg ring (one-J model) as obtained
by DDMRG calculations compared with the dispersion relations
obtained with LSWT and ISWT (see text for details). The LMSWT
and IMSWT results are not shown as their dispersions are virtually
identical to that of LSWT and ISWT, respectively, except near
k = 0, ± π/3. The k quantum numbers have to be understood
relative to the ground-state quantum number. (b) Oscillator strength
calculated with DDMRG (stars and numbers) compared with the
intensity obtained from LSWT.

additionally consider ISWT + �c, where the estimated gap is
added to the spectrum of ISWT.

For these theories, the ground-state and one-magnon en-
ergies can be calculated analytically for AFM wheels.44–51

The resulting ground-state energies, singlet-triplet gaps, and
maximal energies (= heights of the dispersion curves) are
listed in Table I, which also presents the corresponding
values for the one-J model Hamiltonian obtained from
(D)DMRG, see appendix B. Furthermore, the mean deviation
of SWT and DDMRG excitation energies or χ2 = ∑

k[ω(k) −
ωDDMRG(k)]2/( 1

2NJs) is given. The excitation energies are
also displayed in Fig. 10(a).

The trends for N = 18 and s = 5/2 are similar to what has
been observed for N = 8 and s = 5/2;18 for the ground-state
energy, IMSWT provides the best approximation to the DMRG

result. The singlet-triplet gap cannot be reproduced by LSWT
and ISWT, in contrast to LMSWT and IMSWT. However, their
predictions are about a factor two too small, and in particular
significantly poorer than the simple estimate �c = 4J/N .
The calculated excitations for LSWT and LMSWT are nearly
identical as seen by similar mean deviations, as well as that for
ISWT and IMSWT [LMSWT and IMSWT dispersion curves
were hence not plotted in Fig. 10(a) for clarity]. Thus, as a
conclusion, similar to the situation for N = 8, s = 5/2 wheels,
IMSWT provides the best results also for N = 18, s = 5/2
wheels as regards the ground-state and E-band excitation
energies, and the singlet-triplet gap is underestimated by about
a factor of 2. The best description for the excitations is in
fact provided by the simple LSWT + �c and ISWT + �c

approaches, with a significant advantage of ISWT + �c (in
contrast to the N = 8 ring, where LSWT + �c did better).

Besides the position of the energy levels also the oscillator
strengths16 |〈S,M|Ŝz(k)|S ′,M ′〉|2 [Ŝz(k) = ∑

j exp(−ikj )Ŝz
j ]

of the transitions from the ground state (S = 0) to the excited
S ′ = 1 states were calculated for the uniform N = 18, s = 5/2
wheel using DDMRG. The oscillator strength is not identical
to the INS intensity for a specific transition, but both are
intimately related.36 The oscillator strengths are independent
of specific INS-experiment parameters and are thus better
suited for general discussions. The results are summarized
in Fig. 10(b). As expected, the oscillator strengths increase
with increasing k, becoming maximal at the zone boundary,
reminiscent to the behavior of Goldstone modes at the Bragg
points k = π in infinite lattices. Interestingly, the oscillator
strengths are well described, at least on the logarithmic scale
used in Fig. 10(b), by the predictions of LSWT.58 The LSWT
result shows a divergency at the Bragg point k = π , which
reflects the underlying assumption of a long-range Néel-
ordered ground state or zero singlet-triplet gap, as discussed
before several times. The good agreement of the DDMRG and
LSWT oscillator strength provides a further strong indication
that the elementary excitations in N = 18 and s = 5/2 AFM
wheels are indeed discrete spin-wave excitations, and for the
validity of the L and E-band picture.

V. CONCLUSIONS

In summary, we report a combined experimental and
theoretical study of the magnetism in the antiferromagnetic
molecular ferric wheel Fe18. It is demonstrated that nowadays
advanced experimental and theoretical tools such as inelastic
neutron scattering, (dynamical) density matrix renormaliza-
tion group techniques, and quantum Monte Carlo together with
established methods such as spin-wave theory permit a detailed
characterization of large magnetic molecules with huge Hilbert
space dimensions, such as the molecular ferric wheel Fe18. The
combined approach allowed us to determine accurate magnetic
parameters as well as to test and rationalize effective models
such as the L and E-band picture, which are of paramount
importance for a deeper understanding of the physics in AFM
wheels and quantum-spin clusters in the mesoscopic regime in
general. The concrete result for the Fe18 wheel, whose size is
situated at the border between microscopic and macroscopic, is
that the higher-lying elementary excitations have the character
of discrete antiferromagnetic spin waves.
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APPENDIX A: METHODS

1. Experimental methods

The Fe18 material was synthesized according to the proce-
dure described in the literature.13 The magnetic susceptibility
data was recorded on a microcrystalline sample using a SQUID
magnetometer (Quantum Design) in an applied field of 0.5 T.
The dates were corrected for the contribution of the sample
holder. The sample was prepared by selecting sufficiently
many single crystals from the mother liquor, squash them and
mount them on the sample holder, and to cool the sample down
as quickly as possible. This procedure typically minimizes
contamination by magnetic impurities. INS spectra were
recorded at the time-of-flight disk chopper spectrometer IN5 at
the Institute Laue-Langevin (Grenoble, France) with incoming
neutron wavelength λ = 4.2 Å and at the direct time-of-flight
spectrometer FOCUS at the Paul Scherrer Institut (Villigen,
Switzerland) with incoming neutron wavelengths λ = 3.2 and
2.26 Å. For each INS experiment a fresh nondeuterated powder
sample of Fe18 was synthesized, and filled in a double-walled
hollow aluminum can. The weight of the samples were
approximately 0.5 and 1.8 g for the measurements at IN5
and FOCUS, respectively. All data were corrected for detector
efficiency with a measurement of a vanadium standard. At
FOCUS also empty can measurements were done and used
for empty can corrections. Experimental resolutions at the
elastic line were 165 μeV in the IN5 experiment and 430 and
1100 μeV in the FOCUS experiments. If not stated otherwise,
spectra were summed over all detector banks. Positive energies
correspond to energy loss of the neutron.

2. Numerical methods

The INS spectra were calculated as follows. The formula for
the differential INS cross section of powder-averaged isotropic
systems36,37,59 reads

d2σ

d	dω
∝ k′

k
e−2WF 2(Q)Szz(Q,ω), (A1)

where Q = k − k′ is the momentum transfer, e−2W is the
Debye-Waller factor, and F (Q) is the magnetic form factor
of FeIII ions. The scattering function Szz(Q,ω) is defined as

Szz(Q,ω) =
∑
j,j ′

sin(QRjj ′)

QRjj ′
Szz

jj ′ (ω), (A2)

where Szz
jj ′ (ω) is at zero temperature given by

Szz
jj ′(ω) ≡

∑
n

〈0|Ŝz
j |n〉〈n|Ŝz

j ′ |0〉 δ(h̄ω − En + E0). (A3)

For the calculation of Szz
jj ′ (ω), the dynamical density-matrix

renormalization group (DDMRG) technique was used.30–32

Details of the calculation are given in Appendix B. Strictly
speaking, the molecule Fe18 is zero dimensional, but effec-
tively forms a one-dimensional chain with periodic boundary
conditions and is hence suited for DDMRG. However, the
calculations are nevertheless very time consuming due to the
applied periodic boundary conditions. For the calculations
on the model with different coupling constants, up to 600
density matrix eigenstates were kept. For the calculations
on the uniform Heisenberg model up to 850 density matrix,
eigenstates were kept in order to achieve a smaller broadening
η. The truncated weight depends on the energies h̄ω as well
as η, and ranged between 10−7 and 10−4, which is a very
large, but not unusual value for a DDMRG calculation, cf.
Ref. 60. We checked the results for a different number of
kept density matrix eigenstates and no significant changes
of peak positions or heights were observed. For the direct
calculation of the low-lying energy levels, the ALPS DMRG
code26 was used, and up to 3000 density matrix eigenstates
were kept.

The magnetization of Fe18 was evaluated by means of
Quantum Monte Carlo (QMC) calculations24,25,54 employing
again the ALPS code.26 Since the underlying Hilbert space is
huge, dimension (2s + 1)N = 101 559 956 668 416, we used
10 000 000 sweeps for the thermalization and 10 000 000 000
sweeps for the evaluation of the magnetization for every
value of the temperature. All calculations were performed on
a BULL supercomputer with 128 cores and 386 GB RAM
running ScaleMP vSMPTM.

APPENDIX B: DYNAMICAL DMRG

The basic steps of the DDMRG technique are briefly
discussed. DDMRG30–32,61 is an extension of the standard
DMRG method.27–29,62 It is a powerful numerical method
for the calculation of zero-temperature dynamical correlation
functions such as (we set h̄ = 1 in this section)

GA,B(ω) = − 1

π
〈0|Â† 1

E0 + ω + iη − Ĥ
B̂|0〉, (B1)

where |0〉 denotes the ground state with the energy E0. For the
comparison to a spectroscopic experimental method such as
inelastic neutron scattering, the important part of this function
is the imaginary part [by setting Â = Ŝz

j and B̂ = Ŝz
j ′ one

obtains the function Im GA,B(ω) = Szz
jj ′ (ω), cf. Sec. A 2]

Im GA,B(ω) = 1

π
〈A| η

(E0 + ω − Ĥ )2 + η2
|B〉 (B2)

=
∑

n

〈A|n〉〈n|B〉δη(ω + E0 − En), (B3)

where δη(x) is the Lorentzian broadened delta function with
limη→0 δη(x) = δ(x), and |A〉 ≡ Â|0〉, |B〉 ≡ B̂|0〉. En denotes
the energy eigenvalue belonging to the eigenstate |n〉. A
calculation of the matrix elements 〈A|n〉 by directly calculating
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the excited states |n〉 using standard DMRG is possible only
for low energies since all energy eigenstates up to the desired
state have to be included as target states in forming the reduced
density matrix. Many target states, however, decrease the
accuracy of a DMRG calculation.27 The basic idea of the
DDMRG method is a reformulation of this equation using
the so-called correction vector, which is defined as31

|C(ω)〉 = 1

E0 + ω + iη − Ĥ
|B〉. (B4)

If one splits the correction vector into |C(ω)〉 = |Cr (ω)〉 +
i|Ci(ω)〉 with

|Ci(ω)〉 = −η

(E0 + ω − Ĥ )2 + η2
|B〉 (B5)

and

|Cr (ω)〉 = Ĥ − E0 − ω

η
|Ci(ω)〉, (B6)

a direct calculation of Im GA,B(ω) is possible as

Im GA,B(ω) = − 1

π
〈A|Ci(ω)〉. (B7)

|Ci(ω)〉 is calculated as the solution of a linear equation
system within the reduced DMRG basis. The target states
for the reduced density matrix are |0〉, |B〉, |Ci(ω)〉, and
|Cr (ω)〉. For A = B, a different calculation of Im GA,B(ω) by
reformulating Eq. (B5) as a minimization is also possible32

but we found no significant differences between the two
approaches. For solving the linear equation system we use
a simple CG algorithm.63 DDMRG is a very time-consuming
method because the calculation has to be repeated for every ω.
However, since calculations for different ω are independent,
this method is easy to parallelize.

To gain information about the one-magnon dispersion
relation of the uniform chain, we have calculated the dynamical
correlation function Sz(k,ω), which is defined as

Sz(k,ω) =
∑
j,j ′

eik(j−j ′)Szz
jj ′ (ω) , (B8)

(k = 2πq/N,q = 0,1, . . . ,17) and can thus be obtained by
simply Fourier transforming the Szz

jj ′ (ω) data.61 A differ-
ent way to calculate Sz(k,ω) is to set Â = B̂ = Ŝz(k) ≡∑

j exp(−ikj )Ŝz
j for the calculation of Im GA,B(ω).31 How-

ever, with this procedure only excitations which contribute
sufficiently to the dynamical correlation function can be
detected. For the transition from the ground state to the lowest
three S = 1 states it is also possible to directly calculate the
transition matrix elements and the oscillator strengths using
standard DMRG (cf. Ref. 64). If possible, we have employed
and compared all three approaches to obtain and validate the
results shown in Fig. 10. However, the numbers shown in
Fig. 10 are not numerically exact values. We estimate the
relative errors of the oscillator strengths to be smaller than
10% in all cases.

APPENDIX C: SPIN-WAVE THEORY FOR THE AFM
J1 − J2 − J3 HEISENBERG RING

The one-magnon spectrum of the isotropic Heisenberg ring
Eq. (1) or three-J model was considered in a first-order (next
to linear) SWT approximation. Since the unit cell of the model
contains three half-integer spins with s = 5/2, the Lieb-Mattis
theorem implies that the ground state in the case of AFM bonds
is a singlet.65,66

For the SWT calculations, it is convenient to introduce
spherical coordinates JR , θ , and φ through the standard
relations:

J1

JR

= cos φ sin θ ≡ x,
J2

JR

= sin φ sin θ ≡ y,

(C1)
J3

JR

= cos θ ≡ z, JR =
√

J 2
1 + J 2

2 + J 2
3 ,

where 0 � φ � π
2 and 0 � θ � π/2 for AFM exchange

constants. The radial coordinate JR appears as an overall factor
in the Hamiltonian, Eq. (1), and sets the energy scale. The spin
operators were parameterized as follows:

Ŝz
l,α = cos �

[
s + 1

2
− 1

2

(
p̂2

l,α + q̂2
l,α

)] − sin �
√

s q̂l,α,

Ŝx
l,α = sin �

[
s + 1

2
− 1

2

(
p̂2

l,α + q̂2
l,α

)] + cos �
√

s q̂l,α,

Ŝ
y

l,α = √
s p̂l,α, (C2)

where α = 1,2,3 and l = 1,2, . . . ,L. The angle � alterna-
tively takes the two values 0 and π on the lattice sites along
the ring. The coordinate q̂l,α and momentum p̂l,α satisfy the
usual commutation relations [̂ql,α,p̂l′,β] = iδl,l′δα,β .

In terms of the Fourier transforms

(̂qk,α,p̂k,α) = 1√
L

L∑
l=1

(̂ql,α,p̂l,α) exp (−ikl), (C3)

the linear spin-wave theory (LSWT) Hamiltonian reads

ĤLSWT = E
′
g + JRs

2

∑
k

(̂p−k · Mk · p̂k + q̂−k · Nk · q̂k),

(C4)

where E
′
g = −JR(x + y + z)s(s + 1)L, q̂k = (̂qk,1 ,̂qk,2 ,̂qk,3),

and p̂k = (p̂k,1,p̂k,2,p̂k,3). The Hermitian matrices Mk and Nk

read

M
αβ

k =

⎛
⎜⎝

x + z x z exp(−3ik)

x x + y y

z exp(3ik) y y + z

⎞
⎟⎠ , (C5)

N
αβ

k =

⎛
⎜⎝

x + z −x −z exp(−3ik)

−x x + y −y

−z exp(3ik) −y y + z

⎞
⎟⎠ . (C6)

The Hamilton equations of motion for the vectors q̂k and p̂k

take the form

dq̂k

dt
= JRsMkp̂k, (C7)

dp̂k

dt
= −JRsNkq̂k, (C8)
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which yield three spin-wave branches with dispersions ωα(k)
defined by the secular cubic equation

det

(
Mk · Nk − ωα(k)2

J 2
Rs2

I
)

= 0, (C9)

where I is the unit (3 × 3) matrix. In diagonal form, the spin-
wave Hamiltonian ĤLSWT then becomes

ĤLSWT = Eg +
3∑

α=1

∑
k

ωα(k)̂nk,α, (C10)

where n̂k,α is the occupation number operator of the (k,α)
state and Eg is the ground-state energy:

Eg = −J1 + J2 + J3

3
Ns(s + 1) + 1

2

3∑
α=1

∑
k

ωα(k). (C11)

It is useful to present the cubic equation for ωα(k) in the
following dimensionless form:

ξ 3 + a2ξ
2 + a1ξ + a0 = 0, (C12)

with

a0 = − 4x2y2z2

(xy + yz + zx)3
sin2(3k), a1 = 1, a2 = −2.

(C13)

The spin-wave energies are related to the three roots ξk,α of
Eq. (C12) by the expressions

ωα(k) =
√

J1J2 + J2J3 + J3J1 s

(
1 + R

s

)√
ξk,α. (C14)

Notice that in this expression the first-order correction to
the one-magnon energies was introduced through Oguchi’s
renormalization factor R.45 For the uniform ring or one-J
model holds R = 1/2 − 1/π ≈ 0.1817. In the general case, R
is expected to be a smooth regular function of the parameters
θ and φ. In principle, one can calculate this function in
the next-order SWT. However, the correction is small (few

percent) and is hence not employed here. For the three-J model
of Fe18, the spin-wave excitations are distributed in five energy
levels defined as follows:

L0 = ω1(0) = ω1(π/3), E1 = ω1(±π/9) = ω1(±2π/9),

E2 = ω2(±π/9) = ω2(±2π/9),
(C15)

E3 = ω2(0) = ω3(0) = ω2(π/3) = ω3(π/3),

E4 = ω3(±π/9) = ω3(±2π/9).

The degeneracies are dictated by the spatial C6 symmetry plus
the underlying bipartite sublattice structure.

Since the coefficient a0 in Eq. (C12) vanishes for k = 0 and
±π/3, the roots at these special points of the Brillouin zone
can easily be determined to ξ1 = 0, ξ2,3 = 1. In terms of the
energy levels, one hence finds L0 = 0 and

E3 = s

(
1 + R

s

)√
J1J2 + J2J3 + J3J1, (C16)

and the energy E3 plays the role of an overall prefactor in the
dispersion of the magnon excitations since

ωα(k) = E3

√
ξk,α. (C17)

Actually, E3 absorbs the explicit dependence on the parameters
J1, J2, and J3 apart from the dependence of ξk,α through a0.

Useful relations between the energy levels E1, E2, E3,
and E4 follow from Viète’s formulas at k = π/9: ξk,1 +
ξk,2 + ξk,3 = −a2 = 2, ξk,1ξk,2 + ξk,2ξk,3 + ξk,3ξk,1 = a1 = 1,
and ξk,1ξk,2ξk,3 = b0, where b0 ≡ −a0(π/9). With Eqs. (C15)
one obtains

2E2
3 = E2

1 + E2
2 + E2

4 , E4
3 = E2

1E
2
2 + E2

2E
2
4 + E2

4E
2
1 ,

b0E
6
3 = E2

1E
2
2E

2
4 . (C18)

Equations (C16) and (C18) are very handy to investigate the
trends in the one-magnon spectrum with varying exchange
constants J1, J2 and J3, and led to a number of general
conclusions which are useful for analyzing the INS peaks,
see Sec. III B.
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