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Berry curvature and the phonon Hall effect
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We show that an effective magnetic field acting on phonons naturally emerges in the phonon dynamics of
magnetic solids, giving rise to the phonon Hall effect. A general formula for the intrinsic phonon Hall conductivity
is derived by using the corrected Kubo formula with the energy magnetization contribution incorporated properly.
We thus establish a direct connection between the phonon Hall effect and the intrinsic phonon band structure,
i.e., the phonon Berry curvature and phonon dispersion. Based on the formalism, we predict that phonons could
also display the quantum Hall effect in certain topological phonon systems. In the low-temperature regime, we
predict that the phonon Hall conductivity is proportional to T 3 for ordinary phonon systems, while that for the
topological phonon system has a linear T dependence with a quantized temperature coefficient.
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I. INTRODUCTION

The phonon Hall effect (PHE) has been discovered recently
in Tb3Ga5O12 (TGG):1,2 a magnetized solid can give rise to
a temperature difference between two edges of the sample
in the direction transverse to both the magnetization and the
driving thermal flow. The discovery of the Hall effect in
neutral carriers such as phonons has incited great theoretical
interest.3–7 Most of the theories relate the effect to Raman
spin-lattice coupling,8 and standard linear response theory,
i.e., the Kubo formula3,5–7 or its equivalent,4 is employed to
calculate the thermal Hall coefficient. These investigations,
while all focusing on the intrinsic limit, have not yet revealed
a simple connection between the phonon Hall effect and the
intrinsic phonon band structure for a general system, as has
been done in electron systems.9 There is also a natural and
interesting question: could phonon systems have the quantum
(anomalous) Hall effect as well?6,10,11

In this paper, we establish a direct connection between
the PHE and the intrinsic phonon band structure, i.e., the
phonon Berry curvature and phonon dispersion. To do this,
first, we derive the general phonon dynamics applicable for
magnetic solids, incorporating the Mead-Truhlar term in the
Born-Oppenheimer approximation.12 The resulting dynamics
contains an effective magnetic field acting on phonons, which
gives rise to the PHE. It clarifies the microscopic origin of
the spin-lattice coupling, and is readily amendable to first-
principles calculation. Second, we calculate the thermal Hall
coefficient of the system using the corrected Kubo formula, in-
corporating the contribution of the energy magnetization,13,14

which was overlooked in previous calculations. As a result,
we obtain a general formula for calculating the intrinsic
phonon Hall coefficient. Based on the formalism, we predict
that phonons could also have the quantum (anomalous) Hall
effect in properly defined topological phonon systems. In
the low-temperature regime, we predict that the phonon
Hall conductivity is proportional to T 3 for ordinary phonon
systems, while that for topological phonon systems has a linear
T dependence with a quantized temperature coefficient.

This paper is organized as follow. In Sec. II, we discuss the
general phonon dynamics in a magnetic field. In Sec. III, we
present our central formula for the phonon Hall conductivity. In

Sec. IV, we give the definition for topological phonon systems
and also discussed the possibility of realizing them. In Sec. V,
we show the T 3 law in the low-temperature limit for the phonon
Hall conductivity. In Sec. VI, we have a brief summary. We
also include an Appendix to show details of the derivations.

II. PHONON DYNAMICS OF MAGNETIC SOLIDS

The Hamiltonian for the nuclear motion of a magnetic solid
is determined by the complete form of the Born-Oppenheimer
approximation:12

Ĥ =
∑
lκ

[−ih̄∇lκ − Alκ ({R})]2

2Mκ

+ Veff(R), (1)

where ∇lκ = ∂/∂ulκ , and Veff({R}) = Ẽe({R}) + Ei({R})
is the effective interaction potential for nuclei, including
the direct Coulomb interaction between nuclei, Ei({R}),
as well as the nuclear interaction mediated by elec-
trons: Ẽe({R}) =E0({R}) + (h̄2/2Mκ )

∑
lκ [〈∇lκ�0|∇lκ�0〉−

|〈�0|∇lκ�0〉|2], where E0({R}) is the energy of the ground
state |�0({R})〉 of the electron subsystem at the instantaneous
nuclear positions {R}. For a crystalline solid, the equilibrium
positions of the nuclei form a Bravais lattice, and we use
{R} ≡ {R0

lκ + ulκ , l = 1, . . . ,N ; κ = 1, . . . ,r} with R0
lκ ≡

R0
l + dκ , where R0

l is the center equilibrium position of the
lth unit cell, dκ is the equilibrium position of the κth nucleus
(with mass Mκ ) related to the center, ulκ is the corresponding
vibrational displacement, N denotes the total number of unit
cells, and r is the number of atoms in each unit cell.

The most notable feature of Eq. (1) is the presence of the
vector potential Alκ ({R}) ≡ ih̄〈�0({R})|∇lκ�0({R})〉 (∇lκ ≡
∂/∂ulκ ), as first pointed out by Mead and Truhlar.12 In modern
language, the vector potential is related to the Berry phase.15

The corresponding “physical field” at the limit ulκ → 0 is

Gκκ ′
αβ

(
R0

l − R0
l′
) = 2h̄Im

〈
∂�0

∂uβ,l′κ ′

∣∣∣∣ ∂�0

∂uα,lκ

〉∣∣∣∣
ulκ→0

, (2)

where α,β = x,y,z, and the translational symmetry dictates
that it must be a function of R0

l − R0
l′ .

In an external magnetic field, the ion will experience two
vector potentials:16 one from the real magnetic field and the
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other from the Berry phase. The role of the latter is crucial here.
In a single atom, there is exact cancellation between the two,
or the neutral atom would be deflected in the magnetic field.
Therefore, it is not correct to deal with the ion in the magnetic
field directly by “minimal substitution.”17 In a lattice system,
the cancellation is not exact, and the spin-orbit coupling of the
electron will give rise to nonzero Gκκ ′

αβ (R0
l − R0

l′).
To proceed, we adopt the usual harmonic approximation

by expanding Veff({R}) to the second order of the vibrational
displacement ulκ .18 For the periodic lattice, it is more con-
venient to use the Fourier-transformed displacement uκk =√

Mκ/N
∑

l ulκe
−ik·R0

lκ with k being the quasimomentum, and
the Hamiltonian can be written as

Ĥ = 1

2

∑
k

(P̂ †
k P̂k + û

†
kDkûk), (3)

where P̂k and ûk have 3r components with P̂κα,k ≡
−ih̄∂/∂uκα,−k − Aκα,k and ûκα,k, α = x,y,z, respectively,
Aκα,k = ih̄〈�0|∂�0/∂uκα,−k〉, and Dk is the 3r × 3r dynam-
ical matrix.18

The momentum P̂κα,k has the commutation relation at the
limit ulκ → 0

[P̂κα,k,P̂
†
κ ′β,k′ ] = ih̄Gκα,κ ′β (k) δkk′ , (4)

Gκα,κ ′β (k) = 1√
MκMκ ′

∑
l

Gκκ ′
αβ

(
R0

l

)
e−ik·(R0

l +dκκ′ ), (5)

where dκκ ′ ≡ dκ − dκ ′ . Gκα,κ ′β(k) acts like an effective
magnetic field for the phonon dynamics. Using Eqs. (2) and
(5), the quantity is readily calculable for real materials using
a first-principles approach.

The general phonon dynamics for a magnetic solid can
now be determined. From Eq. (3), the linearized canonical
equations of motion read

˙̂uk = P̂k, (6)

˙̂Pk = −Dkûk + GkP̂k, (7)

where Gk is a 3r × 3r matrix with the component Gκα,νβ (k).
The corresponding eigenequation is

ωkiψki =
[

0 i

−iDk iGk

]
ψki ≡ H̃kψki , (8)

where ψki is the ith eigensolution, and ωki is the corresponding
eigenfrequency. For the non-Hermitian H̃k, we define ψ̄ki =
ψ

†
kiD̃k with D̃k ≡ [ Dk 0

0 I3r×3r
] and I3r×3r is a unit matrix of

dimension 3r × 3r , and ψki is normalized by ψ̄kiψkj = δij .
Note that the 6r eigensolutions can be divided into two groups
of 3r positive- and negative-energy branches, and the two are
related by ω

(−)
ki = −ω

(+)
−ki and ψ

(−)
ki = ψ

(+)∗
−ki with 1 � i � 3r .

This is a result of the symmetries G∗
k = G−k and D∗

k = D−k.
In the following we use only the positive-energy branches and
drop the superscript (+) for brevity.

The Hamiltonian Eq. (3) can be diagonalized with the basis
ψk. By defining the field operator �̂k ≡ (ûk,P̂k)T , Eq. (3)
can be rewritten as Ĥ = (1/2)

∑
k

ˆ̄�k�̂k with ˆ̄�k ≡ �̂
†
kD̃k.

Introducing the transformation

�̂k =
3r∑

i=1

√
h̄ωkiψki âki +

√
h̄ω−kiψ

∗
−ki â

†
−ki , (9)

with [âki ,â
†
kj ] = δij , i,j = 1, . . . ,3r , we can recover all the

commutation relations, and diagonalize the Hamiltonian to

Ĥ =
3r∑

k;i=1

h̄ωki

(
â
†
ki âki + 1

2

)
. (10)

Similar to the electronic dynamics in magnetic solids,19

the intrinsic phonon band structure is determined not only by
the phonon dispersion, but also by the Berry connections
of the phonon bands. We can define the phonon Berry
connection as Aki ≡ iψ̄ki(∂ψki/∂k), and the corresponding
Berry curvature as

�ki = −Im

[
∂ψ̄ki

∂k
× ∂ψki

∂k

]
. (11)

We will show that the phonon Berry curvatures �ki and the
phonon dispersions ωki will fully determine the intrinsic
phonon Hall conductivity. On the other hand, the interband
Berry curvatures proposed in some previous studies are not
needed in general.6

III. PHONON HALL CONDUCTIVITY

Following the established general procedure,13 we can
calculate the thermal Hall coefficient contributed by phonons.
For a magnetic system, the transport thermal Hall coefficient
includes two contributions: the usual linear response contribu-
tion κKubo and the contribution from the energy magnetization
ME :

κ tr
xy = κKubo

xy + 2Mz
E

T V
, (12)

where V is the total volume of the system, and T is the
temperature. ME is the circulation of the phonon energy
current, and the reason for the circulation can only be attributed
to our effective magnetic field.

A. Kubo contribution κKubo
x y

κKubo
xy is determined by the usual Kubo formula20

κKubo
xy = 1

V kBT 2
lim
s→0

lim
q→0

∫ ∞

0
dte−st

〈
Ĵ

y

E,−q ; Ĵ x
E,q(t)

〉
, (13)

where ĴE,q is the Fourier-transformed energy current operator
in the wave vector q, and 〈; 〉 denotes the Kubo canonical
correlation.21 Using the procedure developed by Hardy,22 and
with the harmonic approximation and in the small-q limit, we
find that (see Appendix A 1):

ĴE,q = 1

8

∑
k

ˆ̄�k(Ṽ k + Ṽ k+q)�̂k+q + (H.c.,q → −q) ,

(14)

where Ṽ k ≡ ∇kH̃k, and (H.c.,q → −q) denotes the Hermi-
tian conjugation of the first term after replacing q by −q.
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With the phonon current operator ĴE,q , we have (see
Appendix B)

κKubo
xy = h̄

V T

3r∑
k;i=1

Mz
kiωki

(
nki + 1

2

)
, (15)

where Mki = Im[ ∂ψ̄ki

∂k × H̃k
∂ψki

∂k ], and nki ≡ nB(h̄ωki) is the
Bose-Einstein distribution. The presence of the “zero-point”
contribution (the extra 1

2 inside the parentheses) is due to
the phonon number nonconserving terms (e.g., akiak+qj or
a
†
kia

†
k+qj ) in the energy current operator, which were often im-

properly dropped in many previous calculations.3–5 As a result
of the zero-point contribution, κKubo

xy diverges when T → 0.

B. Phonon energy magnetization M z
E

The unphysical divergence can be removed by the second
term of Eq. (12). The energy magnetization is determined as
follows:13

2Mz
E − T

∂Mz
E

∂T
= M̃z

E, (16)

M̃z
E = 1

kBT
i

∂

∂qy

〈
ĥ−q ; Ĵ x

E,q

〉∣∣∣∣
q→0

, (17)

where hq is the Fourier-transformed energy density operator:

ĥq = 1

2

∑
k

ˆ̄�k�̂k+q . (18)

The energy current operator defined in Eq. (14) should satisfy
the scaling law necessary for the applicability13 of Eqs. (16)
and (17) (see Appendix A 2).

For the phonon energy magnetization in Eqs. (16) and (17),
we have (see Appendix C)

M̃z
E = −h̄

2

3r∑
k;i=1

ωki

[
�z

kiω
2
kin

′
ki

+Mz
ki(2nki + ωkin

′
ki + 1)

]
, (19)

where n′
ki = ∂nki/∂ωki . M

z
E is obtained by integrating over the

temperature T with the boundary condition that 2Mz
E coincides

with M̃z
E when T = 0.

C. Phonon Hall conductivity

We are in a position to present our central result for the
phonon Hall conductivity.

κ tr
xy = − (πkB)2

3h
ZphT − 1

T

∫
dεε2σxy (ε)

dn (ε)

dε
, (20)

where

σxy (ε) = − 1

Vh̄

∑
h̄ωki�ε

�z
ki (21)

and

Zph = 2π

V

3r∑
k;i=1

�z
ki . (22)

Equation (20) gives the general formula of the intrinsic phonon
Hall conductivity for a magnetic solid. As expected, the

intrinsic phonon Hall conductivity is fully determined by the
dispersions and the Berry curvatures.

In the following, we show how the topological term emerges
naturally in Eq. (20). First, we express κKubo

xy , M̃
z,inter
E , and

M̃
z,intra
E as

κKubo
xy = 1

2T

∫
dεεm6r

1z (ε) n (ε) , (23)

M̃
z,inter
E = −1

2

∫
dεεm6r

1z (ε) n (ε) , (24)

M̃
z,intra
E = −1

4

∫
dε

(
m6r

1z (ε) − 1

h̄
εσ̃ 6r

xy (ω)

)
ε2 ∂n (ε)

∂ε
,

(25)

where

m6r
1z (ε) = 1

V

6r∑
k,i=1

Mz
kiδ (ε − h̄ωki) , (26)

σ̃ 6r
xy (ε) = − 1

Vh̄

6r∑
k,i=1

�z
kiδ (ε − h̄ωki) . (27)

So the real energy magnetization Mz
E is

Mz
E = −V

4

∫
dεεm6r

1z (ε)
1

β2

∫ β

dβ ′β ′
(

2n (ε) + ε
∂n (ε)

∂ε

)

+ V

4

∫
dεε3σ̃ 6r

xy (ε)
1

β2

∫ β

dβ ′β ′ ∂n (ε)

∂ε
, (28)

where the boundary condition is that 2Mz
E coincides with M̃z

E

when T = 0. There is no indefiniteness in Eq. (28), for the
thermodynamic quantity13 Ms = ME/T should be zero in the
high-temperature limit. We can change the integration over β ′
into integration over ε and we have

κ tr
xy = κKubo

xy + 2Mz
E

T V
(29)

= 1

2T

∫
dεσ̃ 6r

xy (ε)

(
−2

∫ ε

dxxn (x) + ε2n (ε)

)
. (30)

We can define σ̃ 6r
xy (ε) = dσ 6r

xy (ε)
dε

, so we have

κ tr
xy = 1

2T
σ 6r

xy (ε)

(
−2

∫ ε

dxxn (x) + ε2n (ε)

)∣∣∣∣
∞

−∞

− 1

2T

∫
dεσ 6r

xy (ε) ε2 dn (ε)

dε
. (31)

The first term in Eq. (31) is zero, for the following reasons:

σ 6r
xy (ε) =

∫ ε

−∞
dxσ̃ 6r

xy (x) , (32)

σ 6r
xy (∞) = 0, (33)

σ 6r
xy (−∞) = 0. (34)

We can show Eq. (33) using the properties of the phonon Berry
curvature: �

(−)
ki = −�

(+)
−ki where 1 � i � 3r , because of the

symmetry properties of ψki . Equation (34) is zero because of
the integration limit. Therefore,

κ tr
xy = − 1

2T

∫
dεε2σ 6r

xy (ε)
dn (ε)

dε
. (35)
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Next, we express κ tr
xy using the 3r positive-energy bands:

σ 6r
xy (ε) =

∫ 0

−∞
dxσ̃ 6r

xy (x) +
∫ ε

0
dxσ̃ 6r

xy (x) (36)

= − Zph

2πh̄
+

∫ ε

0
dxσ̃ 6r

xy (x) . (37)

Using our definition in Eq. (21), we can write Eq. (37) as

σ 6r
xy (ε) =

{
− Zph

2πh̄
+ σxy (ε) , ε > 0,

− Zph

2πh̄
+ σxy (−ε) , ε < 0.

(38)

Therefore,

κ tr
xy = − 1

2T

∫ ∞

0
dεε2

(
− Zph

2πh̄
+ σxy (ε)

)
dn (ε)

dε

− 1

2T

∫ 0

−∞
dεε2

(
− Zph

2πh̄
+ σxy (−ε)

)
dn (ε)

dε
. (39)

Finally, after some simple algebra we obtain the phonon
Hall conductivity in Eq. (20) and the topological term emerges
naturally.

IV. TOPOLOGICAL PHONON SYSTEM

The first term in Eq. (20) is of topological nature,
determined by the global phonon band structures. This is
different from the second term which is determined only by
the low-energy sectors of the phonon bands limited by kBT .
For two-dimensional (2D) systems, Zph is the Chern number,
quantized as an integer. For three-dimensional (3D) systems,
Zph is quantized23 in units of Gz/2π , where Gz is the z

component of the reciprocal lattice vector G. As the result, the
phonon Hall conductivity has a topological contribution with a
quantized linear temperature coefficient in units of (πkB)2/3h

(2D) or πk2
BGz/6πh (3D).

Not surprisingly, most phonon systems have Zph = 0. It is
natural to define the topological phonon systems as those with

Zph 
= 0. (40)

This puts a stringent constraint on the definition of a real
topological phonon system: it requires that the sum of
the Chern numbers of all phonon bands must be nonzero.
Previous theoretical studies have had success in constructing
phonon systems with nonzero Chern numbers of individual
bands.6,10,11 However, these models rely on the reorganization
of the phonon bands within the positive-energy branches,
so still have zero Zph. They are not topological phonon
systems in the stringent sense, nor will they manifest unusual
phonon Hall conductivity. To realize a real topological phonon
system, we need to look for insulating materials with spin-orbit
coupling so strong that the resulting effective magnetic field
can intermix and reorganize the phonon bands between the
positive- and negative-energy branches. A realistic lattice
model for realizing the topological phonon system is an
interesting topic for future investigation.

We note that the value of the topological contribution to
the thermal Hall conductivity is actually the same as the
longitudinal thermal conductivity of a dielectric quantum
wire with Zph acoustic phonon modes.24–26 This is because
topological phonon systems have chiral edge phonon modes

that behave just like the 1D acoustic phonon modes. The
edge-bulk correspondence picture in the topological phonon
system is very similar to that in quantum Hall systems.
On the other hand, unlike the phonons in a quantum wire,
phonons in the chiral edge modes cannot be backscattered
without coupling to the bulk. This will make the topological
phonon Hall effect more robust against imperfections than the
quantized thermal conduction in a 1D quantum wire. The latter
has been observed experimentally.25

V. LOW-TEMPERATURE LIMIT

At low temperatures, only the low-energy phonon modes
are relevant for ordinary systems. It is thus sufficient to
consider the long-wave acoustic phonon modes.

A. Constraint for the effective magnetic field

An important constraint for this case is∑
lκκ ′

Gκκ ′
αβ

(
R0

l

) = 0. (41)

This can be verified directly by using the effective magnetic
field in Eq. (2). As we will show, this is still true even when
we explicitly consider the external magnetic field because of
the overall charge neutrality. It is easy to see that∑

lκκ ′
Gκκ ′

αβ

(
R0

l

)

= 2h̄

N
Im

〈
∂�0({R0 + u0})

∂u0β

∣∣∣∣ ∂�0({R0 + u0})
∂u0α

〉∣∣∣∣
u0→0

+Ztoteεαβγ Bγ , (42)

where �0({R0 + u0}) is the ground-state wave function of the
electron subsystem when the whole system is displaced by u0,
and Ztot is the total charge number of the nuclei in an unit cell.
We have assumed that there is an external magnetic field B.
Since the displacement is equivalent to a redefinition of the
origin, we have

�0({R0 + u0},{r}) = exp

[
−i

e

2h̄
(B × u0) ·

(∑
i

r i

)]

·�0({R0},{r − u0}), (43)

where {r} ≡ {r1,r2, . . . ,rNe
} denotes the coordinates of the

electron. We have

∂�0({R0 + u0},{r})
∂u0

= − i

h̄
exp

[
−i

e

2h̄
(B × u0) ·

(∑
i

r i

)]

·
∑

i

(
p̂i − e

2
B × r i

)
�0({R0},{r − u0}). (44)

Substituting Eq. (44) into (42), one can easily verify that the
first and second terms of the right-hand side of Eq. (42) exactly
cancel each other due to the overall charge neutrality.
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B. T 3 law

It is easy to see that the phonon dynamics with the constraint
always has three acoustic modes that have zero energy at
k = 0, consistent with the general requirement of global
translational symmetry. This remedies an important issue of
the widely adopted phenomenological model of Raman spin-
lattice coupling, which has nonvanishing coupling constant
even in the long-wave limit, inducing nonzero acoustic phonon
energies at k = 0. We will see that the constraint will change
the theoretical expectation of the low-temperature behavior of
the phonon Hall conductivity.

With this constraint in mind, we can write down the
general Hamiltonian for the long-wave acoustic phonons of
an isotropic continuous medium:27

Ĥ =
∫

dx
[

P̂ (x)2

2ρ
+ μ1

2
∇û · ∇û + μ2

2
(∇ · û)2

]
, (45)

where P̂(x) = −ih̄δ/δû(x) − A[û], u(x) is the vibrational
displacement, μ1 and μ2 are elastic constants, and ρ is the
mass density. The symmetry dictates that A[û] = γ1∇∇ ·
(M × û) + γ2∇2(M × û), where M is the magnetization of
the system, and γ1 and γ2 are coupling constants characterizing
the spin-lattice coupling. After Fourier transformation, we can
identify Dαβ(k) = (1/ρ)(μ1δαβk2 + μ2kαkβ) and Gαβ(k) =
(1/ρ)

∑
γ εαβγ [−γ1kγ k · M + (γ1 + 2γ2)k2Mγ ] with k = |k|

and α,β,γ = x,y,z. We can then adopt our general formula
for calculating the phonon Hall conductivity.

To the first order in the magnetization M, we obtain the
phonon dispersions ωk1 = cLk and ωk2(3) = cT k ± γ2kk · M,
where cT = √

μ1/ρ and cL = √
(μ1 + 2μ2)/ρ are the trans-

verse and longitudinal phonon velocities, respectively. The
phonon Berry curvatures are

�k1 = −g1(k2 M + kk · M)

k3
, (46)

�k2(3) = ± k
k3

+ g2(k2 M + kk · M)

k3
, (47)

where g1 = (γ1 + 2γ2)(1 + 3δ2)/[2cT δ(δ2 − 1)], g2 =
g1δ(3 + δ2)/[2(1 + 3δ2)], and δ = cL/cT .

Using Eq. (20), we determine the phonon Hall conductivity:

κ tr
xy = 4π2k4

B

45c3
T h̄3

[
1 − γ1 + 2γ2

2γ2

4δ3 + δ2 + δ + 1

δ3(δ2 + δ + 1)

]
γ2MzT

3,

(48)

where we assume M is along the z direction and the Debye
energy h̄ωD � kBT . We can see that at low temperature, κ tr

xy

is proportional to T 3, instead of T as proposed in previous
studies.3

We can obtain insights from the above calculation into
how the phonon would be deflected by the effective magnetic
field. We can see from Eqs. (46) and (47) that, on different
branches, the phonon will experience different “reciprocal-
space magnetic fields.” The corresponding anomalous velocity
of the phonon is proportional to �ki × ∇T , similar to that for
electrons.19 The net deflection direction will be perpendicular
to the directions of both the magnetization and the temperature
gradient.

We make a few comments concerning the disorder effect:28

In analogy to the anomalous Hall effect of electron systems,29

we generally expect that the total phonon Hall coefficient can
be decomposed into κ tr

xy = κ in
xy + κ

sj
xy + κskew

xy , where κ in
xy is the

intrinsic phonon Hall conductivity we calculate in Eq. (20),
and the disorder will introduce the side jump contribution
κ

sj
xy and the skew scattering contribution κskew

xy . However,
there is an important difference between the phonon and
electron systems: the mean free path of phonons in TGG
had been determined to be ∼1 mm,30 much longer than
its electron counterpart. Moreover, in the low-temperature
limit, the dominant contribution to the thermal conductivity
is from the long-wave phonons which are not affected by the
disorder.31 We thus expect that the disorder correction is less
important in phonon systems, and the T 3 law of the phonon
Hall conductivity will survive.

VI. SUMMARY

In summary, we establish the general phonon dynamics
for magnetic solids. Based on the dynamics, we propose
a general theory of the PHE. Using the corrected Kubo
formula, we link the intrinsic phonon Hall conductivity to the
phonon Berry curvature. The general formula suggests that
the phonons could also experience the quantum Hall effect,
and our theory presents a rigorous definition of the topological
phonon system. We predict that the phonon Hall conductivity
of the ordinary phonon system is proportional to T 3 at low
temperature, while that for the topological phonon system has a
linear T dependence with a quantized temperature coefficient.
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APPENDIX A: PHONON ENERGY CURRENT OPERATOR
AND ITS SCALING LAW

1. Phonon energy current operator

We follow Hardy22 in deriving the phonon energy current
operator. The Hamiltonian density is

ĥ (x) = 1

2

∑
lκ

{� (x − Rlκ ) Ĥlκ + H.c.}, (A1)

where Ĥlκ = P̂
2
lκ

2Mκ
+ V̂lκ and P̂ lκ = −ih̄∇lκ − Alκ , and �(x)

is a localized function near x = 0 with
∫

dx�(x) = 1.
We adopt the harmonic approximation for V̂lκ : V̂lκ =
1
2

∑
l′κ ′αβ ûlκαDκκ ′

αβ (R0
l − R0

l′ )ûl′κ ′β where Dκκ ′
αβ (R0

l − R0
l′) is

the dynamical matrix. The Hamiltonian is Ĥ = ∫
dxĥ(x) =∑

lκ Hlκ . The energy current operator is defined by the energy
conservation equation:

˙̂h (x) + ∇ · ĴE (x) = 0, (A2)

where ĴE(x) is the phonon energy current operator, and˙̂h(x) ≡ (1/ih̄)[ĥ(x),Ĥ ].
We can express [ĥ(x),Ĥ ] as a divergence. We have

i

h̄
[ĥ(x),Ĥ ] = i

2h̄

∑
lκ,l′κ ′

� (x − Rlκ ) [Ĥlκ ,Ĥl′κ ′] + H.c. + · · · ,

(A3)
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where “· · · ” denotes higher-order terms such as [�(x −
Rlκ ), P̂

2
l′κ′

2Mκ′ ]Ĥlκ , which will be a cubic product of ûlκ and P̂ l′κ ′ .
Noting that

[Ĥlκ ,Ĥl′κ ′ ] =
[

P̂
2
lκ

2Mκ

,V̂l′κ ′

]
+

[
V̂lκ ,

P̂
2
l′κ ′

2Mκ ′

]
+ ih̄

2MκMκ ′

×
∑
αβ

Gκκ ′
αβ

(
R0

l − R0
l′
) (

P̂ α
lκ P̂

β

l′κ ′ + P̂
β

l′κ ′ P̂
α
lκ

)
,

(A4)

and interchanging subscripts lκ and l′κ ′, we have

i

h̄
[ĥ(x),Ĥ ]

= i

2h̄

∑
lκ,l′κ ′

[� (x − Rlκ ) − � (x − Rl′κ ′)]

([
P̂

2
lκ

2Mκ

,V̂l′κ ′

]

+ ih̄

2MκMκ ′

∑
αβ

Gκκ ′
αβ

(
R0

l − R0
l′
)
P̂ α

lκ P̂
β

l′κ ′

)
+ H.c. (A5)

Inserting the expansion

� (x − Rlκ ) − � (x − Rl′κ ′)

≈ 1

2

(
R0

l′κ ′ − R0
lκ

) ·
(

∂�
(
x − R0

l′κ ′
)

∂x
+ ∂�

(
x − R0

lκ

)
∂x

)
(A6)

into Eq. (A5), we obtain

i

h̄
[ĥ(x),Ĥ ] = ∇ · ĴE (x) , (A7)

where

ĴE(x) = i

4h̄

∑
lκ,l′κ ′

(
R0

l′κ ′ − R0
lκ

) [
�

(
x − R0

l′κ ′
)

+�
(
x − R0

lκ

) ]([
P̂

2
lκ

2Mκ

,V̂l′κ ′

]
+ ih̄

2MκMκ ′

×
∑
αβ

Gκκ ′
αβ

(
R0

l − R0
l′
)
P̂ α

lκ P̂
β

l′κ ′

)
+ H.c. (A8)

Doing the Fourier transformation ĴE,q =∫
dx ĴE(x)e−iq·x , we have

ĴE,q = − i

8
�q

∑
k

[ P̂
†
k∇k

(
Dk + Dk+q

)
ûk+q

− P̂
†
k∇k(Gk + Gk+q) P̂ k+q], (A9)

where Dk is the dynamical matrix with components
Dκα,κ ′β(k) = 1√

MκMκ′

∑
l D

κκ ′
αβ (R0

l )e−ik·(R0
l +dκκ′ ). In the small-

q limit, �q → 1. We obtain

ĴE,q = 1

8

∑
k

�̂
†
k[∇k(H̃k + H̃k+q) + ∇k(H̃ †

k + H̃
†
k+q)]�̂k+q .

(A10)

Using the identities ∇kH̃k = D̃k∇kH̃k and ∇kH̃
†
k =

(∇kH̃
†
k )D̃k, we obtain Eq. (14).

2. Scaling law for the energy current operator

In order to calculate the energy magnetization, we
need to verify that the energy current satisfies the scaling
law13

Ĵψ

E (x) = [1 + ψ (x)]2 ĴE (x) + O(∇(2)ψ(x)) (A11)

in the presence of the gravitational field ψ(r) which modifies
the local Hamiltonian density by

ĥψ (x) = 1

2

∑
lκ

{(1 + ψ (x) )� (x − Rlκ ) Ĥlκ + H.c.}.

(A12)

Similar to the derivation in Appendix A1, we have

∇ · Ĵψ

E (x) = i

h̄
[ĥψ (x) ,Ĥ ψ ] (A13)

and

i

h̄
[ĥψ (x) ,Ĥ ψ ] = i

4

∫
dx′[1 + ψ(x)][1 + ψ(x′)]�(x,x′) (A14)

≈ i

4

∫
dx′

[
[1 + ψ (x)]2 �(x,x′) + [1 + ψ (x)] (x′ − x) · ∂ψ (x)

∂x
�(x,x′)

+ 1

2
[1 + ψ (x)]

∑
μν

(x ′
μ − xμ)(x ′

ν − xν)
∂2ψ (x)

∂xμ∂xν

�(x,x′) + O(∇(3)ψ(x))
]

(A15)

with

�(x,x′) = 1

h̄

∑
lκ,l′κ ′

� (x − Rlκ ) {�(x′ − Rl′κ ′),[Ĥlκ ,Ĥl′κ ′]} + H.c. + · · · . (A16)

In Eq. (A16), we also ignore the terms which will lead to the cubic products of ûlκ and P̂ l′κ ′ in the energy current operator. For
the first term in Eq. (A15), after the integration over x′ and repeating the derivation from Eq. (A3) to Eq. (A7), we can show

i

4

∫
dx′ [1 + ψ (x)]2 �(x,x′) = [1 + ψ (x)]2 ∇ · ĴE (x) . (A17)
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For the second term in Eq. (A15):

i

4

∫
dx′ [1 + ψ (x)] (x′ − x) · ∂ψ (x)

∂x
�(x,x′) = i

4h̄
[1 + ψ (x)]

∂ψ (x)

∂x
·

∑
lκ,l′κ ′

� (x − Rlκ )
{

R0
l′κ ′ − R0

lκ ,[Ĥlκ ,Ĥl′κ ′]
}

= 2 [1 + ψ (x)]
∂ψ (x)

∂x
· ĴE (x) . (A18)

For the third term in Eq. (A15), we have

i

4

∫
dx′ [1 + ψ (x)]

∑
μν

(x ′
μ − xμ)(x ′

ν − xν)
∂2ψ (x)

∂xμ∂xν

�(x,x′)

= i

2h̄
[1 + ψ (x)]

∑
lκ,l′κ ′,μν

∂2ψ (x)

∂xμ∂xν

� (x − Rlκ )
(
R0

l′κ ′μ − R0
lκμ

) (
R0

l′κ ′ν − R0
lκν

)
[Ĥlκ ,Ĥl′κ ′ ] + H.c., (A19)

= i

4h̄
[1 + ψ (x)]

∑
lκ,l′κ ′,μν

∂2ψ (x)

∂xμ∂xν

[� (x − Rlκ ) − � (x − Rl′κ ′)]
(
R0

l′κ ′μ − R0
lκμ

) (
R0

l′κ ′ν − R0
lκν

)
[Ĥlκ ,Ĥl′κ ′] + H.c. . (A20)

Noting the expansion in Eq. (A6), Eq. (A20) does not have a
contribution to the current in the long-wave limit.

Combining Eqs. (A17) and (A18), we obtain Eq. (A11).

APPENDIX B: DERIVATION DETAILS FOR κKubo
x y IN Eq. (15)

Direct calculation of the Kubo formula leads to

κKubo
xy = h̄

32V T

6r∑
k;i,j=1

Im
(
Vx

kijV
y

kji − Vy

kijVx
kji

)
ωkiωkj nki

(ωki − ωkj )2
,

(B1)

where V kij ≡ 2(ψ̄ki
∂H̃k
∂k ψkj + ψ

†
ki

∂H̃
†
k

∂k ψ̄
†
kj ). It is easy to verify

that

ψ̄ki

∂H̃k

∂kx

ψkj = (ωkj − ωki)ψ̄ki

∂ψkj

∂kx

+ ∂ωki

∂kx

δij , (B2)

so

Vx
kij = 4

∂ωki

∂kx

δij + 2(ωkj − ωki)

(
ψ̄ki

∂ψkj

∂kx

+ ψ
†
ki

∂ψ̄
†
kj

∂kx

)
.

(B3)

Note that here i 
= j , so we have

6r∑
j=1

Vx
kijV

y

kjiωkiωkj

(ωki − ωkj )2

= 4ωki

(
∂ψ̄ki

∂kx

H̃k
∂ψki

∂ky

+ ∂ψ
†
ki

∂kx

H̃
†
k

∂ψ̄
†
ki

∂ky

+ ∂ψ
†
ki

∂kx

H̃
†
kD̃k

∂ψki

∂ky

+ ∂ψ̄ki

∂kx

H̃kD̃
−1
k

∂ψ̄
†
ki

∂ky

)
, (B4)

where we have used ψ̄ki
∂ψkj

∂kx
= − ∂ψ̄ki

∂kx
ψkj , ψ

†
kj

∂ψ̄
†
ki

∂kx
=

− ∂ψ
†
kj

∂kx
ψ̄

†
ki , and H̃k = ∑

j ωkjψkj ψ̄kj and its Hermitian conju-
gate. We can further simplify the last two terms in Eq. (B4) us-

ing D̃k
∂ψki

∂ky
= ∂ψ̄

†
ki

∂ky
− ∂D̃k

∂ky
ψki and D̃−1

k
∂ψ̄

†
ki

∂ky
= ∂ψki

∂ky
− ∂D̃−1

k
∂ky

ψ̄
†
ki ,

and we obtain

∂ψ
†
ki

∂kx

H̃
†
kD̃k

∂ψki

∂ky

+ ∂ψ̄ki

∂kx

H̃kD̃
−1
k

∂ψ̄
†
ki

∂ky

(B5)

= ∂ψ
†
ki

∂kx

H̃
†
k

∂ψ̄
†
ki

∂ky

+ ∂ψ̄ki

∂kx

H̃k
∂ψki

∂ky

− ∂ψ
†
ki

∂kx

H̃
†
k

∂D̃k

∂ky

ψki − ∂ψ̄ki

∂kx

H̃k
∂D̃−1

k

∂ky

ψ̄
†
ki . (B6)

The second term in Eq. (B6), ∂ψ̄ki

∂kx
H̃k

∂D̃−1
k

∂ky
ψ̄

†
ki =

ψ
†
ki

∂Dk
∂kx

H̃k
∂D̃−1

k
∂ky

ψ̄
†
ki− ∂ψ

†
ki

∂kx
D̃kH̃kD̃

−1
k

∂D̃k
∂ky

ψki=− ∂ψ
†
ki

∂kx
H̃

†
k

∂D̃k
∂ky

ψki

and ∂D̃k
∂kx

H̃k
∂D̃−1

k
∂ky

= 0 for ∂D̃k
∂kx

= [
∂Dk
∂kx

0

0 0
], and then the two terms

in Eq. (B6) vanish. Substituting Eq. (B5) into Eq. (B4), we have

6r∑
j=1

Im
(
Vx

kijV
y

kji

)
ωkiωkj

(ωki − ωkj )2

= 8ωkiIm

(
∂ψ̄ki

∂kx

H̃k
∂ψki

∂ky

− ∂ψ̄ki

∂ky

H̃k
∂ψki

∂kx

)
. (B7)

Finally, we obtain

κKubo
xy = h̄

2V T
Im

6r∑
k,i=1

(
∂ψ̄ki

∂kx

H̃k
∂ψki

∂ky

− ∂ψ̄ki

∂ky

H̃k
∂ψki

∂kx

)

×ωkinki , (B8)

= h̄

2V T
Im

3r∑
k,i=1

(
∂ψ̄ki

∂kx

H̃k
∂ψki

∂ky

− ∂ψ̄ki

∂ky

H̃k
∂ψki

∂kx

)

×ωki (2nki + 1) . (B9)

From Eq. (B8) to Eq. (B9), we have used the symmetry
properties of ωki and ψki , so we come to Eq. (15).
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APPENDIX C: DERIVATION DETAILS FOR M̃ z
E IN Eq. (19)

After a direct calculation of the canonical correlation
function in Eq. (17), we obtain

M̃z
E = ih̄

16

∂

∂qy

6r∑
k;i,j=1

Sk+q,kji

(
Vx

k,k+qij + Vx∗
k+q,kji

)

×ωkiωk+qj

nk+qj − nki

ωki − ωk+qj

∣∣∣∣
q→0

, (C1)

where Sk+q,kji ≡ ψ̄k+qjψki and V k,k+qij ≡
ψ̄ki

∂(H̃k+H̃k+q)
∂k ψk+qj + ψ

†
ki

∂(H̃ †
k +H̃

†
k+q )

∂k ψ̄
†
k+qj .

First, we calculate the interband contribution from the terms
with i 
= j in Eq. (C1). When q → 0, we have

M̃
z,inter
E = −h̄

8

6r∑
k;i,j=1

Im
(

∂ψ̄kj

∂ky
ψkiVx

kij

)
ωkiωkj (nkj − nki)

ωki − ωkj

.

(C2)

We further have

Im

(
∂ψ̄kj

∂ky

ψkiVx
kij

)
= 1

2
Im

(
∂ψ̄kj

∂ky

ψkiVx
kij − ψ

†
ki

∂ψ̄
†
kj

∂ky

Vx∗
kij

)
,

(C3)

Noting that V∗
kij = Vkji and inserting Eq. (C3) into Eq. (C2),

we obtain

M̃
z,inter
E = − h̄

16

6r∑
k;i,j=1

Im

[(
∂ψ̄kj

∂ky

ψki − ψ
†
kj

∂ψ̄
†
ki

∂ky

)
Vx

kij

]

× ωkiωkj (nkj − nki)

ωki − ωkj

, (C4)

where we have interchanged i and j of the second term in
Eq. (C3). Using Eq. (B3), we have

M̃
z,inter
E = h̄

32

6r∑
k;i,j=1

Im
(
Vy

kjiVx
kij

)
ωkiωkj (nkj − nki)

(ωki − ωkj )2

= − h̄

32

6r∑
k;i,j=1

Im
(
Vx

kijV
y

kji − Vy

kijVx
kji

)
ωkiωkj nki

(ωki − ωkj )2
.

(C5)

Comparing Eqs. (C5) and (B1), we finally obtain

M̃
z,inter
E = −h̄

2
Im

3r∑
k;i=1

(
∂ψ̄ki

∂kx

H̃k
∂ψki

∂ky

− ∂ψ̄ki

∂ky

H̃k
∂ψki

∂kx

)

×ωki (2nki + 1) (C6)

= −h̄

2

3r∑
k;i=1

Mz
kiωki (2nki + 1) . (C7)

Second, we calculate the intraband contribution from the
term with i = j in Eq. (C1):

M̃
z,intra
E = − h̄

16

∂

∂qy

6r∑
k;i=1

Im
[
Sk+q,ki

(
Vx

k,k+qi + Vx∗
k+q,ki

)]

× ωkiωk+qi(nk+qi − nki)

ωki − ωk+qi

∣∣∣∣
q→0

. (C8)

For further simplification, note that

∂Sk+q,ki

∂qy

∣∣∣∣
q→0

= ∂ψ̄ki

∂ky

ψki ,

∂
(
Vx

k,k+qi + Vx∗
k+q,ki

)
∂qy

∣∣∣∣∣
q→0

= 2

(
2ψ̄ki

∂H̃k

∂kx

∂ψki

∂ky

+ 2ψ
†
ki

∂H̃
†
k

∂kx

∂ψ̄
†
ki

∂ky

+ ψ̄ki

∂2H̃k

∂kx∂ky

ψki

+ψ
†
ki

∂2H̃
†
k

∂kx∂ky

ψ̄
†
ki

)
, (C9)

nk+qi − nki

ωk+qi − ωki

∣∣∣∣
q→0

= n′
ki .

One can show that the sum of the last two terms in Eq. (C9) is
real, so it makes no contribution. So we can write

M̃
z,intra
E = h̄

4

6r∑
k;i=1

Im

[
2
∂ψ̄ki

∂ky

ψki

∂ωki

∂kx

+ ψ̄ki

∂H̃k

∂kx

∂ψki

∂ky

+ψ
†
ki

∂H̃
†
k

∂kx

∂ψ̄
†
ki

∂ky

]
ω2

kin
′
ki . (C10)

With Im[ ∂ψ̄ki

∂ky
ψki] = −Im[ψ̄ki

∂ψki

∂ky
] = Im[ ∂ψ

†
ki

∂ky
ψ̄

†
ki], we come

to

M̃
z,intra
E = h̄

4

6r∑
k;i=1

Im

[
ψ̄ki

∂(H̃k − ωki)

∂kx

∂ψki

∂ky

+ψ
†
ki

∂(H̃ †
k − ωki)

∂kx

∂ψ̄
†
ki

∂ky

]
ω2

kin
′
ki . (C11)

Using ψ̄ki
∂(H̃k−ωki)

∂kx
= − ∂ψ̄ki

∂kx
(H̃k − ωki) and ψ

†
ki

∂(H̃ †
k −ωki )
∂kx

=
− ∂ψ

†
ki

∂kx
(H̃ †

k − ωki), we obtain

M̃
z,intra
E = −h̄

4

6r∑
k;i=1

Im

[
∂ψ̄ki

∂kx

(H̃k − ωki)
∂ψki

∂ky

− ∂ψ̄ki

∂ky

(H̃k − ωki)
∂ψki

∂kx

]
ω2

kin
′
ki . (C12)
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Using the definitions for Mz
ki and �z

ki , we have

M̃
z,intra
E = −h̄

4

6r∑
k;i=1

(
Mz

ki + ωki�
z
ki

)
ω2

kin
′
ki (C13)

= −h̄

2

3r∑
k;i=1

(
Mz

ki + ωki�
z
ki

)
ω2

kin
′
ki . (C14)

Finally, combining Eqs. (C7) and (C14), we come to Eq. (19).

1C. Strohm, G. L. J. A. Rikken, and P. Wyder, Phys. Rev. Lett. 95,
155901 (2005).

2A. V. Inyushkin and A. N. Taldenkov, JETP Lett. 86, 379 (2007).
3L. Sheng, D. N. Sheng, and C. S. Ting, Phys. Rev. Lett. 96, 155901
(2006).

4Y. Kagan and L. A. Maksimov, Phys. Rev. Lett. 100, 145902 (2008).
5J.-S. Wang and L. Zhang, Phys. Rev. B 80, 012301 (2009).
6L. Zhang, J. Ren, J.-S. Wang, and B. Li, Phys. Rev. Lett. 105,
225901 (2010).

7B. K. Agarwalla, L. Zhang, J.-S. Wang, and B. Li, Eur. Phys. J. B
81, 197 (2011).

8R. de. L. Kronig, Physica (Utrecht) 5, 33 (1939).
9T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett. 88,
207208 (2002).

10L. Zhang, J. Ren, J.-S. Wang, and B. Li, J. Phys.: Condens. Matter
23, 305402 (2011).

11E. Prodan and C. Prodan, Phys. Rev. Lett. 103, 248101 (2009).
12C. A. Mead and D. G. Truhlar, J. Chem. Phys. 70, 2284 (1979).
13T. Qin, Q. Niu, and J. R. Shi, Phys. Rev. Lett. 107, 236601 (2011).
14N. R. Cooper, B. I. Halperin, and I. M. Ruzin, Phys. Rev. B 55,

2344 (1997).
15R. Jackiw, Int. J. Mod. Phys. A 3, 285 (1988).
16R. Resta, J. Phys.: Condens. Matter 12, R107 (2000).

17A. Holz, Il Nuovo Cimento B 9, 83 (1972).
18J. Callaway, Quantum Theory of the Solid State, 2nd ed. (Academic

Press, San Diego, 1991).
19G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999).
20J. M. Luttinger, Phys. Rev. 135, A1505 (1964).
21R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II

(Springer-Verlag, Berlin, 1983).
22R. J. Hardy, Phys. Rev. 132, 168 (1963).
23B. I. Halperin, Jpn. J. Appl. Phys. 26S3-3, 1913 (1987).
24L. G. C. Rego and G. Kirczenow, Phys. Rev. Lett. 81, 232 (1998);

M. P. Blencowe, Phys. Rev. B 59, 4992 (1999).
25K. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes,

Nature (London) 404, 974 (2000).
26T. Yamamoto, K. Watanabe, and K. Mii, Phys. Rev. B 70, 245402

(2004).
27L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed.

(Butterworth-Heinemann, Amsterdam, 1986).
28A. A. Kovalev, J. Sinova, and Y. Tserkovnyak, Phys. Rev. Lett. 105,

036601 (2010).
29N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong,

Rev. Mod. Phys. 82, 1539 (2010).
30A. V. Inyushkin and A. N. Taldenkov, JETP 111, 760 (2010).
31J. K. Flicker and P. L. Leath, Phys. Rev. B 7, 2296 (1973).

104305-9

http://dx.doi.org/10.1103/PhysRevLett.95.155901
http://dx.doi.org/10.1103/PhysRevLett.95.155901
http://dx.doi.org/10.1134/S0021364007180075
http://dx.doi.org/10.1103/PhysRevLett.96.155901
http://dx.doi.org/10.1103/PhysRevLett.96.155901
http://dx.doi.org/10.1103/PhysRevLett.100.145902
http://dx.doi.org/10.1103/PhysRevB.80.012301
http://dx.doi.org/10.1103/PhysRevLett.105.225901
http://dx.doi.org/10.1103/PhysRevLett.105.225901
http://dx.doi.org/10.1140/epjb/e2011-11002-x
http://dx.doi.org/10.1140/epjb/e2011-11002-x
http://dx.doi.org/10.1016/S0031-8914(39)90282-X
http://dx.doi.org/10.1103/PhysRevLett.88.207208
http://dx.doi.org/10.1103/PhysRevLett.88.207208
http://dx.doi.org/10.1088/0953-8984/23/30/305402
http://dx.doi.org/10.1088/0953-8984/23/30/305402
http://dx.doi.org/10.1103/PhysRevLett.103.248101
http://dx.doi.org/10.1063/1.437734
http://dx.doi.org/10.1103/PhysRevLett.107.236601
http://dx.doi.org/10.1103/PhysRevB.55.2344
http://dx.doi.org/10.1103/PhysRevB.55.2344
http://dx.doi.org/10.1142/S0217751X88000114
http://dx.doi.org/10.1088/0953-8984/12/9/201
http://dx.doi.org/10.1007/BF02735509
http://dx.doi.org/10.1103/PhysRevB.59.14915
http://dx.doi.org/10.1103/PhysRev.135.A1505
http://dx.doi.org/10.1103/PhysRev.132.168
http://dx.doi.org/10.1103/PhysRevLett.81.232
http://dx.doi.org/10.1103/PhysRevB.59.4992
http://dx.doi.org/10.1038/35010065
http://dx.doi.org/10.1103/PhysRevB.70.245402
http://dx.doi.org/10.1103/PhysRevB.70.245402
http://dx.doi.org/10.1103/PhysRevLett.105.036601
http://dx.doi.org/10.1103/PhysRevLett.105.036601
http://dx.doi.org/10.1103/RevModPhys.82.1539
http://dx.doi.org/10.1134/S1063776110110075
http://dx.doi.org/10.1103/PhysRevB.7.2296



