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Plasmonic-type acoustic cloak made of a bilaminate shell
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Alternating isotropic layers have been widely used in the design of acoustic cloaks to achieve the necessary
anisotropy required by coordinate-transformation techniques. In this paper, this concept is expanded to plasmonic-
type acoustic cloaking using a bilaminate shell consisting of two isotropic layers with uniform thickness. Explicit
analytic expressions based on thin-shell approximations for the necessary cloaking layer properties are developed,
facilitating an examination of the fundamental physical behavior and dominant design parameters for a bilaminate
plasmonic-type acoustic cloak. Based on this analysis, the performance of a bilaminate plasmonic-type acoustic
cloak is examined, and practical means of achieving the desired cloaking layer properties are discussed.
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I. INTRODUCTION

An exciting technique to achieve cloaking can be accom-
plished using a plasmonic cloak, which is a nonresonant
means of canceling the scattered field from an object, thereby
hiding it from detection. This was originally applied and
demonstrated for electromagnetic waves,1,2 using plasmonic
materials to achieve the necessary cloaking layer properties,
and has recently been shown to also be an effective means of
cloaking acoustic waves.3,4 Unlike cloaks developed using a
coordinate-transformation approach,5,6 only the scattered field
in the surrounding medium is eliminated, and therefore this
solution does not limit the incident wave from interacting
with the object. As a result, there is no restriction on the
use of isotropic materials to create a plasmonic cloak, and the
cloak may be used to suppress the scattering from sensors and
receiving devices.7,8

In realistic implementations, transformation-based cloaks
invariably allow a small amount of energy enter the object.
Recent work has examined amplification of these waves
inside an acoustic cloak to realize invisible sensors based
on transformation cloaks.9,10 Realization for this has been
proposed using an acoustic anticloak,10 although this requires
the use of anisotropic double-negative acoustic metamaterials,
which are difficult to achieve and are inherently narrow band.
Also, superlensing has been investigated as an effective means
of cloaking an acoustic sensor.11,12 Cloaks of this type, unlike
plasmonic cloaks, utilize amplification of the evanescent
waves, or anomalous resonances, which require the use of
single-negative material properties.13

Previous work has shown that the use of a single fluid or
isotropic elastic solid could be used to significantly reduce
the scattering strength of acoustic waves from a submerged
sphere at low frequencies, analogous to plasmonic cloaking
for acoustic waves.3,4 Compared to the electromagnetic case,
the cancellation of scattered acoustic waves using a single
isotropic layer provided much larger bandwidth. This arises
from the inherent frequency dispersion of plasmonic materials
for electromagnetic waves and the associated limitations due
to causality, which reduce the effective bandwidth.4,14 Even
if plasmonic effects are not available for acoustic waves, the
same plasmoniclike properties can be achieved using ordinary

fluids or isotropic elastic solids, with material properties either
much smaller or much larger than those of the the surrounding
medium as needed. Furthermore, causality restrictions are re-
laxed since in this scenario the acoustic wave generally travels
at velocities much smaller than that of light in free space.

One of the limitations of the single-layer cloaks analyzed
previously was the small size of the objects to be cloaked
compared to the wavelength of excitation.3,4 To create a robust
plasmonic-type acoustic cloak for larger objects, a multi-
layered structure must be considered. Furthermore, different
core materials require different cloaking layer properties, so
a multilayer design allows for more degrees of freedom.
The focus of this work is on a bilaminate shell made up of
two isotropic layers of uniform thickness. Although relatively
simple in design, this structure enables a much wider range
of dynamic behavior than a single layer, including anisotropic
inertial effects.15 In fact, the use of alternating fluid layers
has been widely proposed as a practical method for realizing
transformation-based acoustic cloaks.16,17

To facilitate the design of a bilaminate plasmonic-type
acoustic cloak for an arbitrary spherical scatterer, analytic
expressions are developed for two thin fluid shells. The
functional dependence of the cloaking layer properties on the
input design parameters are examined. Based on the results
of this analysis, the design of a bilaminate plasmonic-type
acoustic cloak for a steel sphere in water is illustrated. Finally,
practical considerations are addressed, including feasibility of
achieving the required material properties and the effects of
elasticity on the cloak performance.

II. BACKGROUND

In order to investigate the nature of plasmonic-type acoustic
cloaking, consider the classical formulation for the scattering
of a time-harmonic plane wave impinging upon an isotropic
elastic sphere coated by two fluid layers of uniform thickness
as illustrated in Fig. 1. The solution for the scattered pressure
in the surrounding fluid can be written as a summation of
spherical harmonics

psc = p0e
−iωt

∞∑
n=0

in(2n + 1) Anh
(1)
n (kd,0r)Pn(cos θ ), (1)
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FIG. 1. A time-harmonic incident plane wave in a fluid medium
impinging on an isotropic elastic core of radius a coated in two
concentric shells of uniform thickness with outer radius b. The
surrounding medium has density ρ0 and bulk modulus κ0, and the
elastic core has density ρ, bulk modulus κ , and shear modulus μ.

where p0 is the amplitude of the incident wave, h(1)
n is

the spherical Hankel function of the first kind, kd,0 is the
wave number in the surrounding fluid, Pn is the Legrendre
polynomial, and θ is the polar angle. An is the scattering
coefficient for the nth mode, and is determined by the specific
configuration of the coated sphere, including the material
properties, the number of layers, and the thickness of each.

In a similar manner, the stress and displacement field within
the elastic sphere and shells can be found through an expansion
using spherical harmonics, the coefficients of which are the
scattering coefficients for the wave field in each layer. Use of
the same form as Eq. (1) for the fields present in each layer
leads to

pc1 = p0e
−iωt

∞∑
n=0

in(2n + 1)Pn(cos θ )

× [Bnjn(kd,c1r) + Cnnn(kd,c1r)], (2)

pc2 = p0e
−iωt

∞∑
n=0

in(2n + 1)Pn(cos θ )

× [Dnjn(kd,c2r) + Ennn(kd,c2r)], (3)

where Bn and Cn are the scattering coefficients in the outer
cloaking layer, Dn and En are the scattering coefficients in the
inner cloaking layer, and jn and nn are the spherical Bessel
functions of the first and second kinds, respectively.

A linear system of equations for the nth mode are obtained
by applying the boundary conditions at the interfaces of each
surface,

D(n) · �A(n) = �r(n), (4)

where D(n) is the system matrix with coefficients containing
the material properties and shell geometry, �r(n) is the input
vector describing the incident wave, and �A(n) is a vector
containing the unknown scattering coefficients in the central
sphere, in each layer, and in the surrounding medium. To
determine the scattered field in the surrounding fluid, Cramer’s
rule can be used to solve Eq. (4) for the scattering coefficient

of the nth in the surrounding fluid,

An = det R(n)

det D(n)
, (5)

where D(n) is the system matrix and R(n) is D(n) with the first
column replaced by �r(n).

This implementation is a well-established approach which
has been used to calculate acoustic scattering from an
elastically coated elastic sphere and can be found in scientific
literature on the subject dating back to the 1950s,18−22 includ-
ing detailed work accounting for viscous and thermal effects.23

In all these previous works, the scattering coefficients and the
resulting scattered field have been determined for specific shell
and core properties. For such cases, the coefficients of R(n)

and D(n) are specified and the unknown scattering coefficient
in the surrounding fluid can be solved explicitly using Eq. (5).

When the material properties and geometry are known,
the scattering coefficients for each mode can be calculated
using Eq. (5), and determination of the scattered field is
straightforward. To quantify the scattering strength of an
object, the total scattering cross section can be expressed as

σtotal(r) = 4π

|kd,0|2
∞∑

n=0

(2n + 1)|An|2, (6)

which represents a measure of the acoustic power scattered
relative to the incident wave over all angles.

For the case of acoustic cloaking, a solution is sought where
the incident compressional wave passes unimpeded around
the target. Mathematically, this means that the total acoustic
field is equal to the incident wave throughout the surrounding
fluid, which requires that the scattered field throughout the
surrounding fluid approaches zero. Written in terms of the
scattering coefficient, this corresponds to the condition where
An = 0 for each relevant mode n of the expansion. Thus,
under this condition, the total scattering cross section can be
made very small and the scattered acoustic energy may be
suppressed, thereby achieving scattering cancellation.

Letting R(n) = −U(n) and D(n) = U(n) + iV(n), Eq. (5) can
be expressed as4

An = −U(n)

U(n) + iV(n)
, (7)

where U(n) = det U(n) and V(n) = det V(n). This expression
indicates that the scattering cancellation of a given mode is
achieved by finding cloak properties that lead to U(n) = 0,
provided that V(n) �= 0. Conversely, when V(n) = 0, An has a
magnitude of unity for any nonzero value of U(n) corresponding
to a modal scattering resonance.

To obtain the cloaking layer properties, U(n) = 0 must
be solved for each scattering mode. Given a finite number
of layers, only a finite number of the leading-order modes
can simultaneously be canceled. To obtain these properties,
the system of equations must be solved implicitly. Although
there are various ways to solve such a system, the method
implemented here utilizes a quasi-Newton minimization algo-
rithm employing sequential quadratic programming (SQP).3,4

We apply this numerical technique to optimize the cloaking
layer properties in the multidimensional parameter space and
determine the optimal design parameters that satisfy this
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condition at the frequency of interest. To determine the solution
for U(n) = 0 using such an algorithm, the user specifies the
design frequency and shell thicknesses, and provides an initial
guess of the material properties of the cloak. To perform
this operation, a code was implemented in MATLAB using the
fminsearch function.24

Although the implementation of a numerical solver is
relatively straightforward, it is important to note that the output
of such an algorithm is a function of the initial guess given to
the system. For the case of a single cloaking layer, previous
work by the authors has shown that an estimate for the initial
guess can be obtained either using parametric studies of the
cloaking layer properties and relevant geometric properties,3

or quasistatic expressions for the cloaking layer density and
bulk modulus.4

In addition to determining estimates for the initial guesses,
parametric studies for the case of a single cloaking layer
have revealed the existence of two distinct types of modal
cancellation, the nonresonant plasmonic type of interest in this
work, and those arising from modal antiresonances.4 Although
both satisfy the condition An = 0, antiresonance modes occur
beyond the first resonance of the cloaking layer, leading to
a significantly different internal field distribution and smaller
bandwidths.

An important question when solving for the cloaking layer
properties of a bilaminate shell, therefore, is whether or not
the minimized solution represents a local minimum or a global
minimum, and if it represents plasmonic or antiresonance
scattering cancellation. To ensure that optimal solutions are
found, it is crucial to understand the nature of the design space,
and what type of cloaking layers are necessary to achieve
scattering cancellation.

Through the use of only a single fluid layer, significant
reductions in the total scattering cross section of up to 40 dB
were achieved at the design frequency. However, with two
design parameters, the density and bulk modulus of the fluid
cloaking layer, only the first two scattering modes could be
simultaneously canceled, limiting the functionality of the cloak
to rather small objects. The most practical means to achieve
the cancellation of multiple modes is to consider a design
consisting of multiple layers, which offers more degrees of
freedom. Even for the relatively simple case of two fluid
cloaking layers, however, this results in three additional pa-
rameters (density, bulk modulus, and shell thickness), making
the already complex parameter space impractical to analyze
using parametric studies only. To investigate the necessary
layer properties for our initial guess, therefore, a thin-shell
analytic solution is developed for a plasmonic-type bilaminate
shell consisting of two fluid layers at moderate frequencies, as
discussed in the next section.

III. ANALYTIC FORMULATION OF THE CLOAKING
LAYER PROPERTIES

The simplest case of a multilayered plasmonic-type acous-
tic cloak will be considered here, consisting of two thin
fluid shells. Although at first glance this may only appear to
represent a modest increase in complexity over the single-layer
solutions developed previously,4 there are several important
novel features of the two-layer plasmonic cloak. First, the

properties of each of the two fluid layers may be significantly
different from each other, and from those of a single layer.
Understanding these differences is important for the develop-
ment of more complicated multilayered acoustic plasmonic-
type cloaks. Second, due to the increased complexity of the
expressions and the presence of additional cloaking layer
parameters, the analytic formulation developed for two fluid
layers does not reduce to compact, explicit expressions, as
was achieved for a single layer. Instead, a system of coupled
equations is developed that can be solved implicitly, and can
be generalized to multilayered configurations. Finally, and
probably most importantly, the two-layer acoustic plasmonic-
type cloak demonstrates one of the key benefits of using
a plasmonic cloak consisting of multiple isotropic layers,
that the addition of more layers allows for the simultaneous
cancellation of more modes.

For the case of an isotropic elastic core coated with two
fluid layers, consistent with Fig. 1, Eq. (7) becomes∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u
(n)
11 u

(n)
12 u

(n)
13 0 0 0 0

u
(n)
21 u

(n)
22 u

(n)
23 0 0 0 0

0 u
(n)
32 u

(n)
33 u

(n)
34 u

(n)
35 0 0

0 u
(n)
42 u

(n)
43 u

(n)
44 u

(n)
45 0 0

0 0 0 u
(n)
54 u

(n)
55 u

(n)
56 u

(n)
57

0 0 0 u
(n)
64 u

(n)
65 u

(n)
66 u

(n)
67

0 0 0 0 0 u
(n)
76 u

(n)
77

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (8)

where the nonzero terms are given in Appendix A.
Examining Eqs. (8) and (A1)–(A24), one notes that the

elements in different columns in Eq. (8) are functions of only a
single material property: column 1 depends on the surrounding
fluid properties, columns 2 and 3 on the outer cloaking layer,
columns 4 and 5 on the inner cloaking layer, and columns 6 and
7 on the elastic core material. Evaluation of the determinant
given by Eq. (8) yields[

η
(n)
11 − η

(n)
12

][
u

(n)
44

(
u

(n)
55 − ϒnu

(n)
65

) − u
(n)
45

(
u

(n)
54 − ϒnu

(n)
64

)]
− [

η
(n)
21 − η

(n)
22

][
u

(n)
34

(
u

(n)
55 − ϒnu

(n)
65

)
−u

(n)
35

(
u

(n)
54 − ϒnu

(n)
64

)] = 0, (9)

where

η
(n)
11 = u

(n)
11

[
u

(n)
22 u

(n)
33 − u

(n)
23 u

(n)
32

]
, (10)

η
(n)
12 = u

(n)
21

[
u

(n)
12 u

(n)
33 − u

(n)
13 u

(n)
32

]
, (11)

η
(n)
21 = u

(n)
11

[
u

(n)
22 u

(n)
43 − u

(n)
23 u

(n)
42

]
, (12)

η
(n)
22 = u

(n)
21

[
u

(n)
12 u

(n)
43 − u

(n)
13 u

(n)
42

]
, (13)

and

ϒn =

⎧⎪⎨
⎪⎩

u
(n)
56 u

(n)
77 −u

(n)
57 u

(n)
76

u
(n)
66 u

(n)
77 −u

(n)
67 u

(n)
76

for an elastic core,

u
(n)
56

u
(n)
66

for a fluid core.
(14)

Examining Eqs. (10)–(13) shows that these terms are only
dependent on the material properties of the outer fluid cloaking
layer and the surrounding fluid medium. Likewise, the terms
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u
(n)
i4 and u

(n)
i5 (with i = 3, 4, 5, or 6) appearing in Eq. (9) are

only dependent on the material properties of the inner fluid
cloaking layer. Through the definition of ϒn given by Eq. (14),
the core material properties can be written in terms of a single
parameter. Therefore, it can be seen that the bracketed items
in Eq. (9) contain terms which depend on either the inner
cloaking layer properties (and the core material properties), or
the outer cloaking layer properties (and the surrounding fluid
properties).

Although Eq. (9) represents a relatively compact expression
for the cloaking condition of the nth mode, its expansion by the
substitution of the exact expressions in Eqs. (A1)–(A24) yields
a complicated and virtually intractable equation. To reduce
this expression to a manageable form while still retaining its
practical applicability for finding layer properties leading to
plasmonic-type acoustic cloaking, a thin-shell approximation
can be made. For the components of the determinant U(n)

which describe the cloaking layers, expansion of the Taylor
series about the interface between the two layers r = b1 yields

jn(kd,c1b) ≈ jn(kd,c1b1) + (kd,c1b1δ1) j ′
n(kd,c1b1)

+ (kd,c1b1δ1)2j ′′
n (kd,c1b1), (15)

jn(kd,c2a) ≈ jn(kd,c2b1) − (kd,c2b1δ2) j ′
n(kd,c2b1)

+ (kd,c2b1δ2)2j ′′
n (kd,c2b1), (16)

where δ1 = (b − b1)/a and δ2 = (b1 − a)/a are the shell
thicknesses of the outer and inner cloaking layers, respectively,
normalized by the core radius a. Expressions similar to
Eqs. (15) and (16) may be written for any other spherical
Bessel function. In these equations, terms of order (kd,cb1δ)2

have been retained to ensure sufficient accuracy in the resulting
expressions for the cloaking layer properties. Even though
it will be assumed that the shells are geometrically small
(δ � 1), large values of the outer layer density are required
in some cases, so that the wave number within the layer
does not satisfy the condition kd,ca δ � 1. However, by
retaining the second-order terms, the less restrictive condition
of (kd,ca δ)2 � 1 can be applied.

To evaluate the cloaking condition using two fluid layers,
a thin-shell approximation is obtained by substituting Eqs.
(A1)–(A24) and (15) and (16) into Eqs. (9)–(14). After some
algebraic manipulation and neglecting terms of order δ3, and
making use of the relationships between the products of
spherical Bessel functions and their derivatives,

jn(z)n′
n(z) − j ′

n(z)nn(z) = z−2, (17)

jn(z)n′′
n(z) − j ′′

n (z)nn(z) = −2z−3, (18)

j ′
n(z)n′′

n(z) − j ′′
n (z)n′

n(z) = z−2[1 − lnz
−2], (19)

jn(z)n′′′
n (z) − j ′′′

n (z)nn(z) = −z−2[1 − (ln + 6)z−2], (20)

j ′
n(z)n′′′

n (z) − j ′′′
n (z)n′

n(z) = −2z−3[1 − 2 lnz
−2] (21)

yields

γ n + ϒnF
′
n[ρc1δ1 + ρc2δ2] − ln

{
Fn

[
δ1

ρc1
+ δ2

ρc2

]

− ρc1

ρc2
δ1δ2kd,0b1j

′
n(kd,0b1) + ρc2

ρc1
δ1δ2ϒnjn(kd,0b1)

}

+ (kd,0b1)2

{
[Fn − ρc1δ1Gn + ρc2δ2ϒnjn(kd,0b1)]

δ1

κc1

+ [Fn − ρc1δ1kd,0b1j
′
n(kd,0b1) − ρc2δ2Gn]

δ2

κc2

}
= 0,

(22)

where ln = n(n + 1) and

Fn = jn(kd,0b1) + kd,0b1 δ1 j ′
n(kd,0b1), (23)

F ′
n = kd,0b1[(1 + δ1) j ′

n(kd,0b1) + kd,0a δ1 j ′′
n (kd,0b1)], (24)

Gn = kd,0b1 j ′
n(kd,0b1) − ϒnjn(kd,0b1), (25)

γ n = (1 + δ2)F ′
n − ϒnFn

+ kd,0b1j
′
n(kd,0b1)

[
δ2

2[2 ln + 6] + δ2
1 ln

]
+ϒnjn(kd,0b1)

[
δ1 + δ2

2 ln + δ2
1[2 ln + 6]

]
. (26)

It is important to note that Equations (17)–(21) are not based
on any approximations, but are exact expressions derived using
the relationship between derivatives based on the recursion
relations of spherical Bessel functions.25 Through the use of
these identities, the transcendental relation among the cloaking
layer properties may be replaced by the much simpler algebraic
relation (22).

Based on previous investigations of multilayered fluids15

and the use of these structures for acoustic metamaterials and
cloaking applications,16,26 one would expect the benefits of
increasing the number of fluid layers to be dominated by the
inertial effects of each layer. To illustrate this, consider first
the case in which the densities of each layer are the same, so
that ρc1 = ρc2 ≡ ρc0. In this case, to leading order (neglecting
δ2 terms), Eq. (22) reduces to

γ n + ϒnF
′
nρc0δ0 + (kd,0b1)2Fn

δ0

κc0
− lnFn

δ0

ρc0
= 0, (27)

where δ0 = δ1 + δ2 and

1

κc0
=

[
δ1

δ0

1

κc1
+ δ1

δ0

1

κc2

]
. (28)

From this relationship, it is clear that the bulk moduli
κc1 and κc2 independently have very little effect (appearing
only in terms of order δ2), being dominated instead by the
harmonic mean κc0. Even though the bulk moduli of each
layer can be independently varied, the effective bulk modulus
dominates the scattering cancellation effect for the first two
scattering modes. Therefore, having two fluid layers with the
same density does not allow for additional scattering modes
to be canceled compared to a single layer. For this reason, we
focus on cases in which the densities in the two layers are very
different: (1) ρc1 	 ρc2 and (2) ρc1 � ρc2. Within each one of
these limits, Eq. (22) reduces to a simpler form, allowing for
explicit expressions to be obtained for the cloaking conditions
of the bilaminate layer.
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A. Region 1: ρc1 � ρc2

For the special case in which ρc1 	 ρc2, Eq. (22) simplifies
to

γ n + ϒnF
′
nρc1δ1 + (kd,0b1)2

{
[Fn − ρc1δ1Gn]

δ1

κc1

+ [Fn − ρc1δ1kd,0b1j
′
n(kd,0b1) + ρc2δ2ϒnjn(kd,0b1)]

δ2

κc2

}

− ln

{
Fn

δ2

ρc2
− ρc1

ρc2
δ1δ2kd,0b1j

′
n(kd,0b1)

}
= 0. (29)

To determine expressions for the cloaking layer properties,
a system of equations can be obtained by writing Eq. (29)
for the modes n = 0 through n = 3, in a similar manner
to the approach taken for the single fluid layer.3,4 However,
cancellation of all four modes would require at least one

negative parameter. In order to make the realization of the cloak
simpler, the analysis is restricted instead to the range where
ρc1, κc1, ρc2, and κc2 are all positive. Under this condition, a
cloak will be sought which cancels the first three modes: n = 0
(monopole), n = 1 (dipole), and n = 2 (quadrupole).

With three equations prescribing the cancellation of each
mode, only three of the cloaking layer properties will be
explicitly determined, with the remaining property acting as a
parameter. Thus, unlike the case of a single-fluid cloaking
layer which has just one optimal solution, in this case a
family of solutions is obtained. For the case of ρc1 	 ρc2,
the three independent variables will be ρc1, κc1, and ρc2, with
κc2 kept as a free parameter. To obtain solutions for each
of the independent variables, each modal equation will be
used to solve for one of the variables in terms of the others,
systematically eliminating each of the variables. With n = 0,
Eq. (29) reduces to

κc1 = δ1(kd,0b1)2[ρc1δ1G0 − F0]

γ 0 + ρc1δ1ϒ0F
′
0 + (kd,0b1)2[F0 − ρc1δ1kd,0b1j

′
0(kd,0b1) + ρc2δ2ϒ0j0(kd,0b1)] δ2

κc2

. (30)

Substitution of Eq. (30) into (29) yields an expression relating
the two remaining independent variables ρc1 and ρc2 and the
parameter κc2:

[
δ2ζ

(n)
3 χ c2

]
ρ2

c2 + [
ζ

(n)
2 + ζ

(n)
1 χ c2

]
ρc2 − lnδ2ζ

(n)
0 = 0, (31)

where χ c2 = (kd,0b1)2δ2/κc2 and

ζ (n)
m = a(n)

m (ρc1δ1)2 + b(n)
m ρc1δ1 + c(n)

m , (32)

with m = 0,1,2,and 3, and the coefficients a(n)
m , b(n)

m , and c(n)
m

given by Eqs. (B1)–(B12).
Through the use of Eq. (31) with n = 1, an expression for

ρc2 can be obtained which yields two roots, given by

ρ
(1)
c2 = 2δ2ζ

(1)
0

ζ
(1)
2 +ζ

(1)
1 (kd,0b1)2 δ2

κc2

, (33)

ρ
(2)
c2 = −ζ

(1)
2 + ζ

(1)
1 (kd,0b1)2 δ2

κc2

δ2ζ
(1)
3 (kd,0b1)2 δ2

κc2

, (34)

where the superscripts (1) and (2) denote the different roots
of Eq. (31). From Eqs. (33) and (34), it is noted that ρ

(1)
c2 is

proportional to δ2 and ρ
(2)
c2 is proportional to δ−1

2 . Since δ2 � 1,
this indicates that the magnitude of ρ

(1)
c2 will be significantly

smaller than ρ
(2)
c2 . Furthermore, comparing these roots to

Eq. (31), it is observed that Eqs. (33) and (34) correspond to
the solution for the limiting cases when ρc2 � 1 and ρc2 	 1,
respectively. Therefore, to ensure validity of the assumption
that ρc1 	 ρc2, the only valid root is the one given by Eq. (33).
Although it is not apparent from Eq. (31), it will be seen later in
this section that this root is positive within the range considered
here.

To determine ρc1, Eq. (33) is substituted into Eq. (31) with
n = 2. A solution is sought such that (ρc1δ1)2 � 1 to ensure

that (kd,c1b1)2 � 1, which gives

q2(ρc1δ1)2 + q1ρc1δ1 + q0 = 0, (35)

where the coefficients q0, q1, and q2 are defined by Eqs. (B13)–
(B15). From Eq. (35), a solution for ρc1 can be obtained:

ρc1 =
−q1 ±

√
q2

1 − 4q0q2

2δ1q2
. (36)

Although this approximation is limited to relatively small
values of (ρc1δ1)2, this solution can still result in a cloaking
layer, the density of which is much larger than the surrounding
fluid, given the requirement that δ1 � 1.

The results developed in this section permit direct cal-
culation of the cloaking layer properties of a two-layer
cloak with (ρc1δ1)2. Given a design frequency kd,0a, and
shell thicknesses δ1 and δ2, the properties κc1, ρc2, and
ρc1 can be determined using Eqs. (30), (33), and (36),
respectively. The fourth cloaking layer property κc2 is a
free parameter, which leads to an entire family of possible
designs.

B. Region 2: ρc1 � ρc2

For the case in which ρc1 � ρc2, Eq. (22) simplifies to

γ n + ϒnF
′
nρc2δ2 + (kd,0b1)2

{
[Fn − ρc2δ2Gn]

δ2

κc2

+ [Fn − ρc1δ1kd,0b1j
′
n(kd,0b1) + ρc2δ2ϒnjn(kd,0b1)]

δ1

κc1

}

− ln

{
Fn

δ1

ρc1
+ ρc2

ρc1
δ1δ2ϒnjn(kd,0b1)

}
= 0. (37)

Comparing this expression to Eq. (29), one can see that
both have the same basic form. Specifically, Eq. (37) can be
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obtained from Eq. (29) by swapping ρc1 ↔ ρc2, κc2 ↔ κc1,
and δ2 ↔ δ1. However, after performing this substitution, the
two equations are not identical. In particular, terms containing
−kd,0b1j

′
n(kd,0b1) and ϒnjn(kd,0b1) in Eq. (29) correspond to

terms containing ϒnjn(kd,0b1) and −kd,0b1j
′
n(kd,0b1), respec-

tively. Therefore, swapping ϒnjn(kd,0b1) ↔ −kd,0b1j
′
n(kd,0b1)

in Eq. (37), in addition to swapping the inner and outer cloaking
layer properties, yields an expression identical to Eq. (29).

Given the identical forms of Eqs. (29) and (37), an expres-
sion for κc2 for the case when ρc1 � ρc2 can be written as

κc2 = δ2(kd,0b1)2[ρc2δ2G0 − F0]

γ 0 + ρc2δ2ϒ0F
′
0 + (kd,0b1)2[F0 − ρc1δ1kd,0b1j

′
0(kd,0b1) + ρc2δ2ϒ0j0(kd,0b1)] δ1

κc1

. (38)

In this case, the only differences in the coefficients given in
Eqs. (B1)–(B9) are

ā
(n)
0 = ϒnjn(kd,0b1)G0, (39)

b̄
(n)
0 = FnG0 − ϒnjn(kd,0b1)F0, (40)

ā
(n)
1 = −kd,0b1[ϒ0j0(kd,0b1)j ′

n(kd,0b1)

−ϒnjn(kd,0b1)j ′
0(kd,0b1)], (41)

b̄
(n)
1 = kd,0b1[jn(kd,0b1)j ′

0(kd,0b1) − j ′
n(kd,0b1)j0(kd,0b1)].

(42)

Therefore, Eqs. (39)–(42) are used in place of Eqs. (B1), (B2),
(B4), and (B5) when ρc1 � ρc2. Through the use of these
terms, the cloaking layer densities are determined by

ρc1 = 2δ1ζ
(1)
0

ζ
(1)
2 + ζ

(1)
1 (kd,0b1)2 δ1

κc1

, (43)

ρc2 =
−q̄1 ±

√
q̄2

1 − 4q̄0q̄2

2δ2q̄2
, (44)

where the coefficients ζ
(n)
m and q̄(n)

m (for m = 0,1, and 2)
are obtained from Eqs. (32) and (B13)–(B15), respectively,
evaluated using Eqs. (39)–(42).

For the case ρc1 � ρc2, the three independent variables are
κc2, ρc1, and ρc2, with κc1 remaining a free parameter. Given
a design frequency kd,0a, and shell thicknesses δ1 and δ2, the
cloaking layer properties κc2, ρc1, and ρc2 can be determined
using Eqs. (38), (43), and (44) for a given value of κc1.

IV. NUMERICAL RESULTS

The analysis in the previous section provides explicit
solutions for the cloaking layer properties within a thin-shell
approximation. Although evaluation of these expressions can
enable significant insight into understanding the behavior of
a two-layer plasmonic-type acoustic cloak, the solutions do
not provide a simple interpretation or physical insight into
the cloaking behavior, and the dependence on each input
parameter is not obvious. Specifically, the value of the cloaking
layer properties depends on the design frequency, shell
thicknesses, and properties of the core material in nontrivial
ways. In order to provide more insight into these general
solutions, an investigation of how these input parameters affect

the required cloaking layer properties for the limiting case of a
rigid, immovable sphere is considered in the following section.

A. Cloaking of a rigid sphere using two fluid layers

The analytic expressions for the cloaking layer properties
developed above are best understood by investigating a
limiting case that is representative of practical conditions of
interest. The specific limiting case of a rigid, immovable core
has been selected for this purpose. This limit is obtained with
a two-step process, first by applying the condition κ → ∞ for
a rigid scatterer, followed by taking the limit ρ → ∞ for an
immovable scatterer.19 Note that for an isotropic elastic core
material, the shear modulus can be written in terms of the bulk
modulus κ and Poisson’s ratio ν as μ = 3

2κ(1 − 2ν)/(1 + ν).
With the physical bounds on Poisson’s ratio for an elastic
solid limited to −1 � ν < 1

2 , taking κ → ∞ corresponds to
μ → ∞.27

These limits must be taken for the function ϒn in Eq. (14),
which contains all the terms involving the properties of the core
material. In the quasistatic limit, ϒn for an isotropic elastic
sphere becomes

ϒ0 = − 1

3 κ
(kd,0a)2, (45)

ϒ1 = 1

ρ
, (46)

ϒ2 = − 1

2 μ

(
1 − 4

7ν
)

(
1 + 5

7ν
) (kd,0a)2, (47)

where ν is the Poisson’s ratio. From Eqs. (45)–(47), it is clear
that in the limits of κ , μ, and ρ approaching infinity, ϒn → 0
for all the modes of interest.

In a similar manner to Eq. (1), the scattered pressure for an
uncloaked rigid, immovable sphere of radius a can be written
as28

psc = p0e
−iωt

∞∑
n=0

in(2n + 1) A(R)
n h(1)

n (kd,0r)Pn(cos θ ), (48)

where p0 is the amplitude of the incident pressure and

A(R)
n = j ′

n(kd,0a)

h
′(1)
n (kd,0a)

. (49)

1. Region 1: ρc1 � ρc2

To analyze the design of a bilaminate plasmonic-type
acoustic cloak for a rigid, immovable sphere, we will first
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consider the analytic expressions developed in Sec. III A for
the case when ρc1 	 ρc2. Taking ϒn → 0, Eq. (30) for κc1

becomes

κc1 = δ1(kd,0b1)2[ρc1δ1kd,0b1j
′
0(kd,0b1) − F0]

γ 0 − (kd,0b1)2[ρc1δ1kd,0b1j
′
0(kd,0b1) − F0] δ2

κc2

. (50)

By examining the coefficients given by Eqs. (B1)–(B9) in the
limit of ϒn → 0, it is observed that a

(n)
1 = b

(n)
1 = a

(n)
2 = 0.

Therefore, Eq. (33) reduces to

ρc2 = 2δ2
a

(1)
0 (ρc1δ1)2 + b

(1)
0 ρc1δ1 + c

(1)
0

b
(1)
2 ρc1δ1 + c

(1)
2

. (51)

Maintaining the restriction (ρc1δ1)2 � 1, Eq. (36) represents
the solution for ρc1. The sign of the square root is then selected
to ensure a positive density, which corresponds to the root
obtained using the “plus” sign in Eq. (36).

The expressions for q0, q1, and q2 given by Eqs. (B13)–
(B15) simplify considerably, no longer depending on κc2, im-
plying that the required values of ρc1 and ρc2 are independent
of the bulk moduli of the cloaking layers. Furthermore, the
expressions for the cloaking layer densities in Eqs. (36) and
(51) show that the shell thickness δ2 appears in the numerator
of ρc2, while the shell thickness δ1 appears in the denominator
of ρc1. Since it has been assumed that the shell thicknesses
are small, these relations dictate that cloaking of a rigid,
immovable sphere occurs when ρc1 is much larger than ρc2.
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Thin shell model
Exact
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ρ c2
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FIG. 2. Variation of cloaking layer density as a function of the
shell thickness for the (a) outer cloaking layer and (b) inner cloaking
layer. The two-layer-fluid cloak is enclosing a rigid, immovable
sphere at kd,0a = 1.0, with (a) δ2 = 0.01, (b) δ1 = 0.01. The cloaking
layer densities are normalized by the density of the fluid in the
surrounding medium, and the shell thickness is normalized by the
radius of the inner sphere. Thin-shell results are calculated using
Eqs. (36) and (51).

Figures 2(a) and 2(b) illustrate the variation of ρc1
with δ1 and ρc2 with δ2, respectively. In these figures,
the approximate analytic results obtained using Eqs. (36)
and (51) are shown with a dashed line, and the exact numerical
solution is represented by the solid line and black stars. The
numerical solutions were obtained by the minimization of the
scattered fields associated with the first three modes, obtained
using the thin-shell results as initial guesses for each value
of κc2, denoted by the black circles. Very good agreement
is observed between the approximate analytic results and the
exact numerical solutions. Both highlight the dominant effects
of ρc2 increasing linearly with δ2, and of ρc1 varying as δ−1

1 .
Even though the thin-shell results predict the correct functional
dependence with respect to δ1, the deviation from the exact
solution increases for larger δ1. This is due to the fact that as
the shell thickness becomes thicker, the thin-shell assumptions
are less accurate, as expected.

Equation (50) allows the determination of κc1, based on
the shell thickness δ1 and the value of ρc1 and κc2. Although
ρc1 varies significantly with δ1, it appears only as the product
ρc1δ1 in Eq. (50). As a function of the shell thickness, κc2 is
primarily dependent on the presence of δ1 in the numerator, as
illustrated in Fig. 3(a).

Although the shell thickness affects the magnitude of κc1

required for cloaking, the most significant variable influencing
κc1 is κc2. The presence of the difference between a term
containing κc2 and the coefficient γ 0 in the denominator of
Eq. (50) suggests the possibility of a pole occurring in the
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FIG. 3. Variation of the bulk modulus of the outer cloaking layer
κc1 as a function of the (a) shell thickness δ1 and (b) inner cloaking
layer bulk modulus κc2, enclosing a rigid, immovable sphere at kd,0a =
1.0. In (a) δ2 = 0.01 with κc1 = 1, and in (b) δ1 = δ2 = 0.01. The
cloaking layer bulk modulus is normalized by the bulk modulus of the
fluid in the surrounding medium, and the shell thickness is normalized
by the radius of the inner sphere. Thin-shell results are calculated
using Eq. (50).
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parameter space. This trend is observed in Fig. 3(b) in both
the analytic results and exact numerical solution. For values of
κc2 below a critical point, the resulting κc1 becomes negative.
Since only positive layer properties are considered in this work,
this asymptote corresponds to the minimum allowable κc2 and
sets a lower bound on the range of the parameter space. Due to
the rapid rate of change as κc2 approaches this minimum value,
it can be seen that the differences in the required value of κc1

given by the analytic model and exact solutions can become
more significant. However, the analytic solution for κc1 is still
sufficient to converge to an exact solution, while capturing the
underlying nature of the relationship between κc1 and κc2.

2. Region 2: ρc1 � ρc2

In Sec. III B, analytic expressions were developed for the
case when ρc1 � ρc2. These expressions are simplified in the
case of a rigid, immovable sphere, by taking the limit ϒn → 0
in Eq. (38), which yields

κc2 = δ2(kd,0b1)2[ρc2δ2kd,0b1j
′
0(kd,0b1) − F0]

γ 0 − (kd,0b1)2[ρc1δ1kd,0b1j
′
0(kd,0b1) − F0] δ1

κc1

. (52)

In the limit ϒn → 0, Eqs. (B7)–(B9) and (39)–(42) yield ā
(n)
0 =

ā
(n)
1 = a

(n)
2 = 0. In this case, Eq. (43) reduces to

ρc1 = 2δ1
b̄

(1)
0 ρc2δ2 + c

(1)
0

b
(1)
2 ρc2δ2 + c

(1)
2 + b̄

(1)
1 (kd,0b1)2 δ1

κc1

. (53)

Although Eq. (43) is very similar in form to Eq. (33),
an important difference is noticed in that Eq. (43) retains a
dependence on κc1, which is present in both q̄1 and q̄2 arising
from b

(n)
1 �= 0. The dependence of κc2, ρc2, and ρc1 on κc1 is

shown Figs. 4(a)–4(c), respectively.
From Figs. 4(a) and 4(b), both κc2 and ρc2 asymptotically

become infinite as κc1 decreases towards a critical point,
beyond which the required cloaking layer properties are
negative. This asymptotic behavior is also observed in the
required value of ρc1 in Fig. 4(c), except that it asymptotes
to −∞.

Another important characteristic for this case is the pres-
ence of a lower limit for the positive values of ρc2 and κc2,
which occur as κc1 → ∞. For ρc2, this leads to values which
are quite large; for δ1 = 0.01 illustrated in Fig. 4, the lower
limit is ρc2 = 1879. Aside from the practical problems of
achieving such a high density for certain surrounding fluids,
this leads to kd,c2b1δ2 ≈ 1, which suggests that the layer is not
small enough compared to the wavelength to be considered
thin, and would require retaining higher-order terms to achieve
sufficient accuracy.

B. Effects of elasticity

In this section, the effects of elasticity in the core and in
the cloaking layers will be investigated. First, the case of a
penetrable isotropic elastic sphere will be considered. After
exploring the behavior of various common elastic solids, the
details of the resulting reduction in the scattering strength will
be examined for a specific case of a steel sphere in water.
Using this example, the broad applicability of the equations
developed in Sec. III A will be illustrated for both a two-fluid
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FIG. 4. Variation as a function of outer cloaking layer bulk
modulus κc1 for (a) the inner cloaking layer bulk modulus κc2,
(b) the outer cloaking layer density ρc2, and (c) the inner cloaking layer
density ρc1, enclosing a rigid, immovable sphere for δ1 = δ2 = 0.01 at
kd,0a = 2.0. The cloaking layer properties are normalized by those of
the fluid in the surrounding medium. Thin-shell results are calculated
using Eqs. (44), (52), and (53).

cloaking layer configuration and when elastic (shear) effects
are considered in the outer cloaking layer.

1. Cloaking of a penetrable elastic core

To examine the cloaking layer properties when the core
material is an isotropic elastic solid, Fig. 5 shows ρc1, ρc2,
and κc1 as a function of κc2 for δ1 = δ2 = 0.04 and kd,0a =
2.0. The results for three different isotropic elastic solids
commonly used in engineering applications are presented:
steel, aluminum, and glass. The surrounding fluid in each case
is water. For comparison, the results for a rigid, immovable
sphere are also shown.

Comparing the results for the three elastic solids to that of
the rigid sphere, the same general trends can be found for each
cloaking layer property. In Fig. 5(a), κc1 exhibits the same
asymptotic behavior for all cases, although the point where
κc1 → ∞ occurs at a slightly lower value of κc2 for the elastic
core materials.

In Fig. 5(b), the variation in ρc1 with κc2 is illustrated. It can
be observed that elastic core materials exhibit a slight decrease
in the relative value of ρc1 for smaller values of κc2. This is
in contrast with the case of a rigid, immovable core, which
was seen in the previous section to be independent of κc2.
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FIG. 5. (Color online) Variation as a function of inner cloaking
layer bulk modulus κc2 of (a) the outer cloaking layer bulk modulus
κc1, (b) the inner cloaking layer density ρc1, and (c) the outer cloaking
layer density ρc2 for δ1 = δ2 = 0.04 at kd,0a = 2.0. Curves are shown
for four different core materials: steel (solid red line), aluminum
(solid blue line), glass (solid green line), and a rigid, immovable
sphere (dashed black line). Material properties are obtained from
Kinsler et al.29 The cloaking layer properties are normalized by those
of the fluid in the surrounding medium, which is water. Thin-shell
results are calculated using Eqs. (36), (50), and (51).

However, the most significant variation occurs in the overall
magnitude of ρc1, which decreases with the density and bulk
modulus of the elastic material. Specifically, it can be observed
that the value of ρc1 required in this configuration for a glass
or aluminum sphere is about one-third that of a rigid sphere.
Even for a steel sphere, with a density and bulk modulus much
larger than water, the cloak properties are still about 10% less
than if the sphere were perfectly rigid.

Figure 5(c) illustrates the variation of ρc2, which shows that
this parameter is much less sensitive to the core material prop-
erties, compared to ρc1. The small change in the magnitude
which arises when considering elastic core materials leads to
slightly larger value of ρc2. In addition, there is negligible
change as κc2 is varied over several orders of magnitude.

In the analysis of the bilaminate plasmonic-type acoustic
cloak up to this point, the focus has been on determining the
necessary cloaking layer properties and understanding their
relationship to achieve an optimal design. To explore the
functionality of the cloak, consider now a steel sphere in water,
covered by two fluid cloaking layers with thicknesses δ1 =

TABLE I. Cloaking layer properties for a bilaminate plasmonic-
type acoustic cloak for a steel sphere in water, consisting of two
layers with shell thicknesses δ1 = δ2 = 0.04 and a design frequency
of kd,0a = 2.0. Solutions are given based on analytic thin-shell
expressions, exact solutions for the case of two fluid layers, and
exact solutions for the case of a fluid inner layer and isotropic elastic
outer layer with νc1 = 0.3.

Solution type ρc1 κc1 ρc2 κc2

Analytic (thin-shell approx.) 7.738 0.361 0.063 0.175
Exact (fluid/fluid) 7.700 0.213 0.049 0.175
Exact (elastic/fluid) 8.081 0.262 0.056 0.175

δ2 = 0.04, κc2 = 0.175 and a design frequency of kd,0a = 2.0.
The cloaking layer properties used for this case are given in
Table I.

To examine the effectiveness of the cloak at kd,0a = 2.0,
Figs. 6(a) and 6(b) show the real part of the total pressure field
for an uncloaked and cloaked steel sphere in water subjected to
a time-harmonic incident pressure wave traveling from bottom
to top. For the uncloaked sphere shown in Fig. 6(a), there is
significant perturbation of the pressure field around the object
and of the stress field within the sphere.

Figure 6(b) indicates that the optimized cloaking layers
dramatically change the pressure field in the surrounding fluid
and within the elastic sphere, showing that the incident wave
is almost completely undisturbed by the cloaked sphere. Since
the plasmonic-type acoustic cloak was designed to cancel the
scattered field in the surrounding fluid, it is also seen that
the incident pressure field still interacts with the steel sphere,
resulting in a stress field within the sphere which is much
more uniform than when uncloaked. With the scattered field
canceled, the total pressure acting on the outer surface of the
steel sphere is equal to the incident pressure, and so the stresses
in the steel sphere are phase matched to the incoming wave.
One interesting take-away from this observation is that this
type of cloak therefore enables the design of an ideal sensor,
allowing for detection on an incident acoustic wave without
almost any disruption of the pressure field.30,31

To analyze the frequency dependence of the plasmonic-
type acoustic cloak functionality, the magnitude of the first six
scattering coefficients is plotted for the uncloaked and cloaked

FIG. 6. (Color online) Real part of the total pressure field for a
steel sphere in water at kd,0a = 2.0: (a) uncloaked, (b) cloaked using
two fluid layers. For the cloaked sphere, each layer of the cloak
has a shell thickness of δ = 0.04. The color scale for the pressure
is normalized by the amplitude for the incident wave, which is a
time-harmonic plane wave traveling from bottom to top.
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FIG. 7. (Color online) Scattering coefficients (in dB) for an
(a) uncloaked and (b) cloaked steel sphere in water. The cloak consists
of two fluid layers with δ1 = δ2 = 0.04, which cancels the first three
scattering modes at kd,0a = 2.0. The scattering gain in dB, relative
to the uncloaked scatterer, is given in (c) for the exact theoretical
solution and using finite elements (COMSOL).

configurations in Figs. 7(a) and 7(b), respectively. In Fig. 7 (a),
it is noted that each mode has modal nulls at some frequencies,
even in the absence of cloaking layers. The effect of adding
the cloaking layer is clearly seen by comparing Figs. 7(a)
and 7(b) at the design frequency of kd,0a = 2.0, where nulls in
the n = 0, 1, and 2 scattering modes are aligned. From these
plots, it is observed that the role of the cloak is to line up all
the nulls for the relevant scattering orders.

The resulting scattered field at the design frequency can
be expressed in terms of the scattering gain, which is plotted
in Fig. 7(c). From this plot, it can be seen that the scattering
strength is reduced by 35 dB at kd,0a = 2.0, where the first
three scattering modes are canceled. Interestingly, away from
the design frequency, significant scattering reduction is also
obtained. In particular, the scattering strength is reduced by
20 dB over a range of kd,0a from 0 to almost 2.5. This reduction
in scattering strength, although more modest, extends up to
kd,0a = 5 and beyond.

To verify the methods and results developed throughout this
work, the COMSOL multiphysics software package was utilized.
Unlike the spherical harmonic expansions used here, COMSOL

uses finite-element analysis to solve problems of arbitrary two-
(2D) and three-dimensional (3D) geometries. A 2D axisym-
metric model was developed using the acoustics module in
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FIG. 8. Variation as a function of the outer cloaking layer
Poisson’s ratio νc1 for (a) the outer cloaking layer bulk modulus κc1,
(b) the inner cloaking layer density ρc1, and (c) the outer cloaking layer
density ρc2, enclosing a steel sphere in water for δ1 = δ2 = 0.04 at
kd,0a = 2.0. The cloaking layer properties are normalized by those of
the fluid in the surrounding medium. Thin-shell results are calculated
using Eqs. (36), (50), and (51).

COMSOL to simulate the geometry given by Fig. 1 for the cloak
properties tabulated in Table I. A comparison of the scattering
gain calculated using the analytic expressions developed in
Sec. III and COMSOL presented in Fig. 7(c). From this plot,
excellent agreement is observed over the entire band shown.

2. Practical considerations for implementation

Given the ability of the plasmonic-type acoustic cloak
described in the previous section to significantly reduce the
scattering strength of a spherical target in water, an important
question to consider is what type of materials could be used
to create such a structure. The cloaking layer properties
presented in the previous section require two fluid layers,
with the cloaking layer properties given in Table I. For the
specific case considered here, the bulk modulus of each layer
is approximately 0.2 times that of water. The density of the
outer layer needs to be large, roughly equal to that of steel,
while the density of the inner layer is very low, about 5% of
the density of water.

Since no naturally occurring fluids exhibit such proper-
ties, alternative methods would be required to obtain the
necessary combinations of densities and bulk moduli. One
possible means would be the use of acoustic metameri-
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FIG. 9. (Color online) Scattering coefficients (in dB) for an
(a) uncloaked and (b) cloaked steel sphere in water. The cloak consists
of an inner fluid layer and outer elastic layer with δ1 = δ2 = 0.04,
which cancels the first three scattering modes at kd,0a = 2.0. The
Poisson’s ratio of the outer elastic layer is 0.3. The scattering gain in
dB, relative to the uncloaked scatterer, is given in (c) for the exact
theoretical solution and using finite elements (COMSOL) for the case
when the outer layer is an isotropic elastic solid. The scattering gain
for the case of a fluid outer layer (dashed) is given for reference.

als, which have been proposed for other acoustic cloaking
applications.6,16,26,32,33 Unlike acoustic cloaks developed using
coordinate transformation techniques, the layers for this design
are simply isotropic fluids, but require extreme values not
found in nature.

One promising method to achieve the necessary material
properties consists in creating an effective fluid using a
microstructure consisting of smooth beads. Such a structure
would allow for the density and bulk modulus of the effective
fluid to be varied based on the composition and volume fraction
of the beads. Use of a lubricated bead microstructure has also
been proposed as a means for creating an acoustic metafluid,
based on the requirements for a transformation-based acoustic
cloak.6

Although the design procedure presented in this paper has
assumed that the cloak consists of two fluid layers, in practice
this would require some sort of elastic materials to maintain
the structure of the cloak. To determine the effect of using an
isotropic elastic solid for the outer layer, Fig. 8 shows the vari-
ation of the cloaking layer properties with the Poisson’s ratio
in the outer layer νc1. Using the thin-fluid-shell model results

as an initial guess, the exact solution for each value of νc1

was determined using the numerical techniques described in
Sec. II. Since the analytic thin-shell expressions developed in
this work assume only fluid layers, these results tacitly assume
a Poisson’s ratio of 0.5 in the cloaking layers and therefore
appear constant in the plots. Although there is some deviation
in the magnitude of the cloaking layer properties required when
the outer layer is elastic compared to the fluid layer solution,
the difference is relatively modest and suggests that the use
of the analytic results developed in Sec. III can be applied to
get a good initial guess also when the outer layer is elastic.

Figures 9(a) and 9(b) show the magnitude of the first six
scattering coefficients plotted for the uncloaked and cloaked
configuration with νc1 = 0.3, respectively, using the cloaking
layer properties listed in Table I. The scattering gain is
presented in Fig. 9(c), with the elastic layer and the fluid-
only cloaking layer solution shown together for comparison.
In the vicinity of the design frequency kd,0a = 2.0 and
above, the scattering modes and scattering gain are nearly
identical to the case with two fluid layers. At low frequencies,
however, there is a large peak in the the scattering gain. This
is associated with the n = 1 (dipole) resonance within the
outer cloaking layer itself, which arises from the excitation of
axisymmetric Lamb waves, and its behavior is also captured
with remarkable precision using COMSOL. These resonances
can also be found in the higher-order modes, although the
increase in the scattering gain is dominated by the response
from the dipole mode.

V. CONCLUSIONS

To conclude, the behavior of a bilaminate plasmonic-type
acoustic cloak has been investigated in detail throughout this
work. We have derived an exact solution for the properties
of a plasmonic-type acoustic cloak to cancel the scattered
field from a spherical object. This solution requires implicit
numerical techniques. As a result, a reasonable estimate of the
cloaking layer properties are needed a priori to formulate an
initial guess, and to ensure that the obtained solution represents
a global minimum for the scattered field. Analytic expressions
were developed using thin-shell assumptions, which provide
explicit solutions for the cloaking layer properties. These ex-
pressions provide valuable insight into what type of properties
are needed in the cloak, and the dependence of these properties
on the various other design parameters. In addition, within all
the considered cloaking designs, these approximate formulas
match very well with the exact numerical solutions.

By examining the governing equations within the thin-shell
approximation, it is shown that inertial effects of the two layers
represent the dominant mechanism that ensure the cancellation
of a sufficient number of scattering modes. In the examination
of these inertial effects, two scenarios have been considered:
(1) when the outer layer is much denser than the inner layer, and
(2) the inner layer is much denser than the outer layer. Although
both regions satisfy the requirements for cancellation of the
scattered field, those involving the case where the outer layer is
much denser provide a far more robust solution involving more
feasible cloaking layer properties. For the case when the inner
layer is much denser, the cloaking layer properties exhibit a
strong dependence on the bulk moduli of the cloaking layers,
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and ultimately lead to solutions in which the cloaking layers
do not behave as thin shells.

Based on this analysis, the performance of a bilaminate
plasmonic-type acoustic cloak with an outer layer much
denser than the inner layer has been examined, and practical
means of achieving the desired cloaking layer properties have
been discussed. Using the explicit cloaking layer expressions
derived in this paper, a bilaminate shell consisting of two
cloaking layers has been formulated for a steel sphere in water
at kd,0a = 2. At the design frequency, a 35-dB reduction in the
scattering strength is obtained, with a more moderate reduction
in the scattering strength extending beyond kd,0a = 5. A
reduction of 20 dB or more below the design frequency is
observed using two fluid cloaking layers, although the presence
of elastic effects in the outer layer can lead to asymmetric Lamb
mode (plate wave) resonances in this low-frequency region.
This example demonstrates the effectiveness and potential
of a bilaminate plasmonic-type acoustic cloak in broadband
reduction of the scattered field, and the usefulness of the
analytic expressions for the cloaking layer properties as a
design tool.

APPENDIX A: COEFFICIENTS OF U(n) MATRIX

The coefficients of the U(n) matrix are

u
(n)
11 = kd,0b j ′

n(kd,0b), (A1)

u
(n)
12 = kd,c1b j ′

n(kd,c1b), (A2)

u
(n)
13 = kd,c1b n′

n(kd,c1b), (A3)

u
(n)
21 = jn(kd,0b), (A4)

u
(n)
22 = ρc1 jn(kd,c1b), (A5)

u
(n)
23 = ρc1 nn(kd,c1b), (A6)

u
(n)
32 = kd,c1b1 j ′

n(kd,c1b1), (A7)

u
(n)
33 = kd,c1b1 n′

n(kd,c1b1), (A8)

u
(n)
34 = −kd,c2b1 j ′

n(kd,c2b1), (A9)

u
(n)
35 = −kd,c2b1 n′

n(kd,c2b1), (A10)

u
(n)
42 = ρc1 kd,c1b1 jn(kd,c1b1), (A11)

u
(n)
43 = ρc1 kd,c1b1 nn(kd,c1b1), (A12)

u
(n)
44 = −ρc2 kd,c2b1 jn(kd,c2b1), (A13)

u
(n)
45 = −ρc2 kd,c2b1 nn(kd,c2b1), (A14)

u
(n)
54 = kd,c2a j ′

n(kd,c2a), (A15)

u
(n)
55 = kd,c2a n′

n(kd,c2a), (A16)

u
(n)
56 = −kda j ′

n(kda), (A17)

u
(n)
57 = −n(n + 1) jn(ksa), (A18)

u
(n)
64 = ρc2 jn(kd,c2a), (A19)

u
(n)
65 = ρc2 nn(kd,c2a), (A20)

u
(n)
66 = 2ρ

{[
n(n + 1)

(ksa)2
− 1

2

]
jn(kda) − 2

kda

(ksa)2
j ′
n(kda)

}
,

(A21)

u
(n)
67 = 2ρ

n(n + 1)

(ksa)2
[ksaj

′
n(ksa) − jn(ksa)], (A22)

u
(n)
76 = kda j ′

n(kda) − jn(kda), (A23)

u
(n)
77 =

[
n(n + 1) − 1 − 1

2
(ksa)2

]
jn(ksa) − ksa j ′

n(ksa),

(A24)

with ρc1 = ρc1/ρ0, ρc2 = ρc2/ρ0, and ρ = ρ/ρ0.

APPENDIX B: COEFFICIENTS FOR WHEN ρc1 � ρc2

The coefficients for Eq. (32) are

a
(n)
0 = −kd,0b1j

′
n(kd,0b1)G0, (B1)

b
(n)
0 = FnG0 + kd,0b1j

′
n(kd,0b1)F0, (B2)

c
(n)
0 = −F0Fn, (B3)

a
(n)
1 = kd,0b1[ϒ0j0(kd,0b1)j ′

n(kd,0b1)

−ϒnjn(kd,0b1)j ′
0(kd,0b1)], (B4)

b
(n)
1 = −[ϒ0j0(kd,0b1)Fn − ϒnjn(kd,0b1)F0], (B5)

c
(n)
1 = 0, (B6)

a
(n)
2 = ϒnFnG0 − ϒ0F0Gn, (B7)

b
(n)
2 = [γ nG0 − γ 0Gn] − [ϒnFnG0 − ϒ0F0Gn], (B8)

c
(n)
2 = −[γ nF0 − γ 0Fn], (B9)

a
(n)
3 = 0, (B10)

b
(n)
3 = ϒnjn(kd,0b1)G0 − ϒ0j0(kd,0b1)Gn, (B11)

c
(n)
3 = −[ϒnjn(kd,0b1)F0 − ϒ0j0(kd,0b1)Fn]. (B12)

Using Eqs. (B1)–(B9), the coefficients in Eq. (35) can be
defined as

q0 = 2c
(1)
0 c

(2)
2 − 6c

(2)
0 c

(1)
2 , (B13)

q1 = 2
[
b

(1)
0 c

(2)
2 + c

(1)
0

(
b

(2)
2 + b

(2)
1 χ c2

)]
− 6

[
b

(2)
0 c

(1)
2 + c

(2)
0

(
b

(1)
2 + b

(1)
1 χ c2

)]
, (B14)

q2 = 2
[
a

(1)
0 c

(2)
2 + b

(1)
0

(
b

(2)
2 + b

(2)
1 χ c2

) + c
(1)
0

(
a

(2)
2 + a

(2)
1 χ c2

)]
− 6

[
a

(2)
0 c

(1)
2 + b

(2)
0

(
b

(1)
2 + b

(1)
1 χ c2

)+ c
(2)
0

(
a

(1)
2 + a

(1)
1 χ c2

)]
.

(B15)
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