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Giant elastocaloric effect in ferroelectric Ba0.5Sr0.5TiO3 alloys from first-principles
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As the need for efficient energy converting devices has been rapidly increasing, the materials that exhibit large
or even giant caloric responses have emerged as promising candidates for solid-state refrigeration, which is an
energy-efficient and environmentally friendly alternative to the conventional refrigeration technology. However,
despite recent ground breaking discoveries of giant caloric responses in some materials, they appear to remain
one of nature’s rarities. Here we predict the existence of giant elastocaloric effect in ferroelectric Ba0.5Sr0.5TiO3

alloys, which adds one more member to this exclusive collection. Moreover, this computational finding reveals
the multicaloric nature of such alloys, which could lead to new paradigms for cooling devices.
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Caloric effects are associated with a reversible change
in the temperature under adiabatic application of external
fields.1–12 Alternatively, they can be described as an isothermal
change in entropy achieved by the application of the fields.
A number of caloric effects can be deduced from inspection
of thermodynamical relations with the most famous being
magnetocaloric, electrocaloric, elastocaloric, and barocaloric
effects. The caloric effects are particularly attractive for
solid state refrigeration which is considered to be an energy
efficient and environmentally friendly alternative to the current
technology based on the vapor compression of hazardous
gases.13 Interestingly, while a wide variety of materials can
exhibit caloric effects, these effects are minuscule for most of
them.

Among the different caloric effects, the magnetocaloric
effect in which the application of the magnetic field leads
to a change in temperature is by far the most studied one.
One of the reasons for that is that some magnetic materials
were found to exhibit a giant magnetocaloric effect.1,3,4 For
example, a giant magnetocaloric effect in excess of 10 K
was reported in Gd5(Si2Ge2) alloy.1 It is believed that the
ability of a material to exhibit a giant magnetocaloric effect
is correlated with the existence of large magnetostructural
transitions in the same material. In a giant magnetocaloric
material the magnetic field induces a simultaneous change in
magnetic as well as lattice entropies.4 On the other hand, the
ability of a material to undergo a large structural transition can
give rise to another type of caloric effect—elastocaloric and
barocaloric effects. In the elastocaloric (barocaloric) effect the
adiabatic application of mechanical stress (pressure) leads to
a change in the temperature. Recently a giant elastocaloric
effect was found in shape-memory alloys.7 Giant barocaloric
effect was reported for the magnetic shape-memory alloys.5

In fact, it was shown that the magnitude of such barocaloric
effect can be comparable to the giant magnetocaloric effect in
such materials. Moreover, the giant inverse barocaloric effect
was discovered in magnetocaloric La-Fe-Si-Co compound.6 It
was proposed that such an effect may even exceed the giant
magnetocaloric effect in the same compound.

The electric analogy of magnetocaloric effect is the elec-
trocaloric effect where the adiabatic application of an electric
field to a dielectric material results in a reversible change
in the temperature. Similar to magnetocaloric effect, which
derives its origin in the coupling of magnetic dipoles with

magnetic field, the electrocaloric effect derives its origin
from the coupling of electric dipoles with electric field.
Interestingly, the analogy between the magnetocaloric and
electrocaloric effects seems to suggest that the materials that
exhibit strong coupling between structural distortions and
electric dipoles may exhibit giant electrocaloric effect. One
example of such materials is ferroelectrics. Indeed, for most
ferroelectric phase transitions the onset of a ferroelectric
phase is associated with fairly large structural distortions
which gives rise to first-order character of such transitions.14

Recently the giant electrocaloric effect was indeed found in
ferroelectric alloys and polymers,8,9,15,16 further expanding
the family of giant caloric materials. However, one question
still remains: does there exist an “electric” analogy of giant
elastocaloric or barocaloric effect similar to the one found in
giant magnetocaloric materials?5,6 Such a giant effect(s) could
be the “lost” member for the family of giant caloric responses
and a new path to multicaloric materials.

In this paper we report the prediction of a giant electrically-
mediated elastocaloric effect in ferroelectric alloys. This
computational finding reveals that, in ferroelectrics, the two
giant effects—electrocaloric and elastocaloric—may coexist
and even couple, thus demonstrating the multicaloric nature of
these materials. The intrinsic multicaloric materials in which
one or more large caloric effects coexist are very rare. To
the best of our knowledge, the only other example known
to date is the giant magnetocaloric shape-memory alloys.5,6

The finding of the “electric” counterpart of this intrinsic
multicaloric material may become a critical step towards
achieving solid-state cooling.13

Here we investigate the elastocaloric effect in ferroelectric
alloy made of Ba0.5Sr0.5TiO3 solid solution. Among the
different ferroelectric alloys, the BaxSr1−xTiO3 family shows
an unmatched tunability associated with the varying of alloy
composition x. In fact, the Curie temperature depends strongly
on the concentration x and ranges from 0 K in SrTiO3 to up to
405 K in BaTiO3. Such tunability is very attractive for caloric
applications since most of the caloric effects are maximized
in the vicinity of the Curie point. Being in the middle of the
compositional range, Ba0.5Sr0.5TiO3 is a good representative
for the whole family of BaxSr1−xTiO3 alloys. Moreover, a
giant electrocaloric effect was previously reported for this
particular alloy.16,17 Ba0.5Sr0.5TiO3 undergoes three ferroelec-
tric transitions: paraelectric cubic to ferroelectric tetragonal at
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TC = 250 K, ferroelectric tetragonal to ferroelectric or-
thorhombic at T = 180 K, and ferroelectric orthorhombic to
ferroelectric rhombohedral at T = 140 K.18

The Ba0.5Sr0.5TiO3 sample was modeled by a 16 × 16 ×
16 simulation supercell (20 480 particles) periodic along
three Cartesian directions and with Ba, Sr atoms distributed
randomly among the individual unit cells. The x, y, and z axis
were chosen along [100], [010], and [001] crystallographic di-
rections, respectively. The potential energy of the sample U pot

is given by the first-principles-based effective Hamiltonian of
Ref. 19 which is defined in terms of the following degrees
of freedom: local mode vectors (proportional to the local
dipole moments in the sample’s unit cells); inhomogeneous
and homogeneous strain variables (that describe the local
deformations of the unit cells). The Hamiltonian includes
(i) the local mode self-energy, i.e., the energy of isolated local
mode relative to that of a perfect cubic structure which con-
tains both harmonic and unharmonic terms; (ii) short-range;
(iii) long-range (dipole-dipole) interaction energy between the
local modes belonging to different unit cells; (iv) the elastic
energy (harmonic in strain); and (v) the energy associated
with the on-site coupling between the local mode and local
distortion (responsible for electrostriction). The latter energy
is linear in strain and quadratic in local mode. This Hamil-
tonian reproduces accurately the experimental composition-
temperature phase diagram of disordered BaxSr1−xTiO3 solid
solution19 and dynamical properties of BaTiO3,20 provides
accurate predictions for BaTiO3/SrTiO3 superlattices,21 and
has been used recently to study a variety of properties of
BaxSr1−xTiO3 alloys.17,22,23

To model the elastocaloric response we use our direct
approach similar to the one reported in Ref. 16 for elec-
trocaloric effect. This approach computes adiabatic temper-
ature evolution under external field directly and without
having to resort to the use of Maxwell equations. Technically,
the computations are achieved by simulating isoenthalpic
ensemble H = const . According to the enthalpic form of
the first law of thermodynamics: dH = dQ − εidσi − DidEi ,
whereH = U − σiεi − EiDi is the enthalpy density. Here dQ

is an infinitesimal quantity of heat received by a unit volume,
and εi and σi are the components of the strain and stress
tensors, respectively, written in Voigt notation. Di and Ei are
the ith Cartesian component of the electric displacement field
and the electric field, respectively, and U is the internal energy
density. Since the elastocaloric effect of interest is an adiabatic
process (dQ = 0) that occurs under slowly varying stress fields
(σi ≈ const) and zero electric field, it can be considered as an
isoenthalpic process H = const . To simulate the isoenthalpic
ensemble we follow the spirit of microcanonical Monte
Carlo simulations24 and introduce extra degrees of freedom,
called “demons” (analogous to the conjugate momenta in the
microcanonical formulations), that absorb/carry/redistribute
energy to achieve H = const simulations. In our simulations
the enthalpy of the supercell is H = (U pot + ∑ndem

j=1 Edem
j −

V σiεi) = H + ∑ndem

j=1 Edem
j , where U pot is the potential energy

of the supercell given by the effective Hamiltonian, Edem
j

is the energy carried by the j th demon, while ndem is the
total number of demons in the supercell. V is the supercell
volume. H is the enthalpy less the energy of all demons.
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FIG. 1. (Color online) (a) The dependence of the sample temper-
ature on the applied stress. Red and blue circles indicate data from
heating and cooling simulations, respectively. The solid line is for
use as a guide to the eye. Vertical dashed line indicates the point
of stress-induced ferroelectric structural phase transition. (b) The
dependence of the elastocaloric change in temperature on the initial
temperature of the sample when the stress was slowly increased from
0 to 1 GPa. Dash-dotted line indicates the Curie point of the material
in the absence of applied fields.

We include ndem
j = integer[(CP − 1

V
∂U pot

∂T
)/kB] = 8 demons

per unit cell to correctly reproduce the computational heat
capacity CP = 2.58 MJ/K m3. At each isoenthalpic Monte
Carlo step, an update for a degree of freedom is attempted
and compared with the energy of a randomly or sequentially
picked demon Edem

j . If Edem
j − �H > 0 the move is accepted

and H → H + �H and Edem
j → Edem

j − �H . One Monte
Carlo sweep attempts to update all the degrees of freedom
sequentially. The temperature is calculated after each sweep as
T = ∑ndem

j=1 Edem
j /kBndem and is typically averaged over 20 000

sweeps.
In our direct approach we first equilibrate the sample at the

desired temperature T0 using 3 × 105 Monte Carlo sweeps
of Metropolis algorithm.25 We next switch to H = const

simulations and apply normal tensile stress σ3 acting on the
plane perpendicular to the z axis. Specifically, σ3 is slowly
increased from 0 to 1 GPa at a rate of 1 kPa per one Monte
Carlo sweep. Note that such stress range is comparable to the
experimental stresses.5,7 The temperature T at a given stress
field σ3 is calculated from the average demon energy obtained
at the same stress.

Figure 1(a) shows the dependence of the temperature on
the applied stress from both elastocaloric heating and cooling
simulations. The initial temperature in the heating simulations
is T0 = 260 K which is 10 K above the Curie point. As the
tensile stress increases the temperature increases as well thus
establishing the existence of an elastocaloric effect in this
material. Furthermore, we obtained very similar temperatures
from both heating and cooling simulations which indicates
that such processes are completely reversible and exhibit no
or very little hysteresis. The most striking feature of the data,
though, is the existence of giant elastocaloric effect in such
material. Indeed the overall temperature change �T upon
stress application is 9 K, which is in the range of temperature
changes for other giant caloric effects.1,3–9,16 Moreover, such
�T is nearly identical to the electrocaloric temperature change
in the same alloy under application of 600 kV/cm electric
field.16 Therefore, two giant caloric effects can coexist in
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FIG. 2. (Color online) The dependence of the relative strains (a)
and the ferroelectric order parameter (b) on the applied stress. Brown
and black circles indicate data from heating and cooling simulations,
respectively. The solid lines should be considered as guides to the eye.
Vertical dashed lines indicate the point of stress-induced ferroelectric
structural phase transition.

some ferroelectrics which reveals the multicaloric nature of
these materials. Such intrinsic multicaloric ferroics are of
particular value for emerging (near) room temperature cooling
devices.13

Interestingly the T (σ3) curve in Fig. 1(a) is nonlinear.
For the stresses below 0.2 GPa the temperature remains
almost constant indicating that the elastocaloric effect is nearly
negligible in this stress range. In the region 0.2–0.3 GPa
the temperature increases sharply so that almost half of its
total �T concentrates in this narrow region of stresses. As
the stress further increases the temperature continues to rise,
while beginning to show a saturation trend. We conducted
simulations for other temperatures T0 from tetragonal and
paraelectric regions of Ba0.5Sr0.5TiO3. The elastocaloric tem-
perature change �T as a function of T0 is presented in
Fig. 1(b). Our data indicate that the giant elastocaloric effect
exists in a wide range of temperatures near the Curie point of
Ba0.5Sr0.5TiO3 and peaks right at the Curie temperature TC .
In fact, �T in excess of 4 K was found for the temperatures
50 K below and above the Curie point, suggesting an extremely
wide window of operational temperatures. In addition, given
the strong dependence of BaxSr1−xTiO3 Curie temperatures
on the alloy composition, it might be possible to stabilize
large caloric responses in an even wider temperature range by
heterostructuring BaxSr1−xTiO3 alloys.

To understand the origin of the giant elastocaloric effect in
ferroelectric alloys we will focus on the changes in the material
that occur under application of the stress. Figure 2(a) shows
the dependence of the normal strain components εi = ai−a0

a0
on

the tensile stress σ3. Here ai is the lattice constant along the ith
Cartesian direction, while a0 is the equilibrium lattice constant
of cubic Ba0.5Sr0.5TiO3 at T = 260 K. It can be seen that ε3

(ε1,2) increases (decreases) smoothly with the applied stress
and exhibits an inflection point at σ tr

3 = 0.23 GPa. This seems
to point to a second-order-like stress-induced structural phase
transition at σ tr

3 . Interestingly, second order phase transitions
are usually associated with small or moderate caloric effects.
Moreover, the change in the strain due to the stress is relatively
small as compared to the strains developed in materials with
giant elastocaloric effect.7 These findings seem to suggest

that the structural transition itself cannot fully account for
the observed giant elastocaloric effect.

To gain further insight we will look into the evolution of
ferroelectric order parameter under the application of stress.
Here we define the ferroelectric order parameter as the average
dipole moment of the sample p = ∑

j dj /N projected onto the
zth Cartesian direction. Here dj is the zth component of the
dipole moment of the particle j , and N is the total number
of the dipoles. For convenience, we will use a reduced value
for the order parameter defined as p∗ = p/p0, where p0 is
the average order parameter associated with the ferroelectric
tetragonal phase of Ba0.5Sr0.5TiO3. Note that we only report
the ferroelectric order parameter along the direction conjugate
to the direction of the applied stress. The order parameters
along other directions are not affected by the applied stress and
remain equal to zero. Figure 2(b) shows the evolution of the fer-
roelectric order parameter p∗ under applied stress. The p∗(σ3)
curve reveals that the material undergoes a stress-induced
first-order-like ferroelectric phase transition that is associated
with the condensation of ferroelectric order parameter along
the direction of the applied stress. Furthermore, the inflection
point in the p∗(σ3) curve identifies the transition stress which
coincides with σ tr

3 for the structural transition. Therefore, we
conclude that at σ tr

3 = 0.23 GPa, the material undergoes a first-
order-like stress-induced ferroelectric structural phase transi-
tion from paraelectric cubic phase to ferroelectric tetragonal
phase.

Below the transition stress σ tr
3 the dipoles are disordered

and populate the states in the phase space almost uniformly.
This ensemble is associated with large entropy and zero fer-
roelectric order parameter. Upon the stress induced transition
the electric dipoles are forced to “order” by condensing near
their preferred tetragonal state d0 (or equivalently −d0). From
the microscopic point of view this transition greatly reduces
the number of allowable states to be occupied by the dipoles,
“squeezing” them into a smaller portion of configurational
phase space. This reduces the “uncertainty” of the macroscopic
state26 giving rise to a large decrease in the isothermal entropy
which is the signature of giant caloric effects. If adiabatic
conditions are imposed dictating conservation of the total
entropy, the stress-induced transition will produce a large
change in temperature, which is another signature of giant
caloric effects. This is consistent with our data in Fig. 1(a)
where we observe a sharp increase of �T in post transition
region.

We believe that the computational discovery of giant
elastocaloric effect in ferroelectric alloys is an important step
toward understanding the general phenomenon of giant caloric
responses. It is particularly valuable in light of the fact that this
effect coexists with another giant caloric effect in the same
material, namely the electrocaloric effect. Such multicaloric
nature of some ferroics could lead to new ways for achieving
room temperature solid-state refrigeration.
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7E. Bonnot, R. Romero, L. Mañosa, E. Vives, and A. Planes, Phys.
Rev. Lett. 100, 125901 (2008).

8A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D.
Mathur, Science 311, 1270 (2006).

9B. Neese, B. Chu, S.-G. Lu, Y. Wang, E. Furman, and Q. Zhang,
Science 321, 821 (2008).

10K. A. GschneidnerJr, V. K. Pecharsky, and A. O. Tsokol, Rep. Prog.
Phys. 68, 1479 (2005).

11J. F. Scott, Annu. Rev. Mater. Sci. 41, 229 (2011).
12S.-G. Lu and Q. Zhang, Adv. Mater. 21, 1983 (2009).

13S. Fahler, U. K. Robler, O. Kastner, J. Eckert, G. Eggeler,
H. Emmerich, P. Entel, S. Muller, E. Quandt, and K. Albe, Advanced
Engineering Materials 14, 10 (2012).

14It is important to emphasize that any piezoelectric material exhibits
the coupling between electric polarization and structural distortion.

15G. Akcay, S. P. Alpay, J. V. Mantese, and G. A. Rossetti, Jr., Appl.
Phys. Lett. 90, 252909 (2007).

16I. Ponomareva and S. Lisenkov, Phys. Rev. Lett. 108, 167604
(2012).

17S. Lisenkov and I. Ponomareva, Phys. Rev. B 80, 140102 (2009).
18V. V. Lemanov, E. P. Smirnova, P. P. Syrnikov, and E. A. Tarakanov,

Phys. Rev. B 54, 3151 (1996).
19L. Walizer, S. Lisenkov, and L. Bellaiche, Phys. Rev. B 73, 144105

(2006).
20I. Ponomareva, L. Bellaiche, T. Ostapchuk, J. Hlinka, and J. Petzelt,

Phys. Rev. B 77, 012102 (2008).
21S. Lisenkov and L. Bellaiche, Phys. Rev. B 76, 020102 (2007).
22S. Lisenkov, I. Ponomareva, and L. Bellaiche, Phys. Rev. B 79,

024101 (2009).
23N. Choudhury, L. Walizer, S. Lisenkov, and L. Bellaiche, Nature

(London) 470, 513 (2011).
24M. Creutz, Phys. Rev. Lett. 50, 1411 (1983).
25N. Metropolis, A. Rosenbluth, M. Rosenbluth, and A. Teller,

J. Chem. Phys. 21, 1087 (1953).
26E. A. Jackson, Equilibrium Statistical Mechanics (Prentice-Hall,

Inc., Englewood Cliffs, New Jersey, 1968), Chap. 3.

104103-4

http://dx.doi.org/10.1103/PhysRevLett.78.4494
http://dx.doi.org/10.1103/PhysRevLett.78.4494
http://dx.doi.org/10.1038/nmat1732
http://dx.doi.org/10.1038/nmat1732
http://dx.doi.org/10.1038/415150a
http://dx.doi.org/10.1038/415150a
http://dx.doi.org/10.1038/nmat3334
http://dx.doi.org/10.1038/nmat2731
http://dx.doi.org/10.1038/ncomms1606
http://dx.doi.org/10.1103/PhysRevLett.100.125901
http://dx.doi.org/10.1103/PhysRevLett.100.125901
http://dx.doi.org/10.1126/science.1123811
http://dx.doi.org/10.1126/science.1159655
http://dx.doi.org/10.1088/0034-4885/68/6/R04
http://dx.doi.org/10.1088/0034-4885/68/6/R04
http://dx.doi.org/10.1146/annurev-matsci-062910-100341
http://dx.doi.org/10.1002/adma.200802902
http://dx.doi.org/10.1002/adem.201100178
http://dx.doi.org/10.1002/adem.201100178
http://dx.doi.org/10.1063/1.2750546
http://dx.doi.org/10.1063/1.2750546
http://dx.doi.org/10.1103/PhysRevLett.108.167604
http://dx.doi.org/10.1103/PhysRevLett.108.167604
http://dx.doi.org/10.1103/PhysRevB.80.140102
http://dx.doi.org/10.1103/PhysRevB.54.3151
http://dx.doi.org/10.1103/PhysRevB.73.144105
http://dx.doi.org/10.1103/PhysRevB.73.144105
http://dx.doi.org/10.1103/PhysRevB.77.012102
http://dx.doi.org/10.1103/PhysRevB.76.020102
http://dx.doi.org/10.1103/PhysRevB.79.024101
http://dx.doi.org/10.1103/PhysRevB.79.024101
http://dx.doi.org/10.1038/nature09752
http://dx.doi.org/10.1038/nature09752
http://dx.doi.org/10.1103/PhysRevLett.50.1411
http://dx.doi.org/10.1063/1.1699114



