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Possible pairing symmetries in SrPtAs with a local lack of inversion center
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We discuss possible pairing symmetries in the hexagonal pnictide superconductor SrPtAs. The local lack of
inversion symmetry of the two distinct conducting layers in the unit cell results in a special spin-orbit coupling
with a staggered structure. We classify the pairing symmetry by the global crystal point group D3d , and suggest
some candidates for the stable state using a tight-binding model with an in-plane, density-density type pairing
interaction. We may have some unconventional states such as s + f wave and a mixture of chiral d wave and
chiral p wave. The spin-orbit coupling is larger than the interlayer hopping, and the mixing between spin-singlet
and spin-triplet states can be seen in spite of the fact that the system has a global inversion center.
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The relation between crystal structure and pairing
symmetry plays an important role in unconventional
superconductivity.1 Pairing states can be categorized with
respect to the irreducible representations of the point group
of the crystal lattice and do not mix unless they belong to
the same representation. Since the Pauli principle requires
that the momentum part of singlet and triplet states possess
even and odd parity, respectively, their mixing is prohibited
in a system with inversion symmetry. Superconductivity in
noncentrosymmetric systems, i.e., CePt3Si, opens however
the possibility of singlet-triplet mixing.2–4 It plays a key
role in explaining the puzzling behavior of the observed
nuclear spin-lattice relaxation rate T −1

1 .5 Microscopically, this
mixing is caused by an antisymmetric spin-orbit coupling
(SOC).

Recently, possible singlet-triplet mixing in centrosymmet-
ric systems with a local lack of inversion symmetry, such as
special crystal lattices or heterostructures, was discussed.6,7

The recently discovered hexagonal pnictide superconductor
SrPtAs8 (Tc = 2.4 K) belongs to the former case of a special
crystal structure. The unit cell possesses a global inversion
center and its point group is D3d . There are two distinct
honeycomb Pt-As layers within the unit cell each of which has
no inversion center. LDA calculations revealed that these two
layers are conducting with only a small interlayer hopping; i.e.,
the system is quasi-two-dimensional (quasi-2D). In addition,
a large splitting of the bands due to antisymmetric spin-orbit
coupling (SOC) was seen. The consequences of this local
lack of inversion symmetry on magnetic properties of the
superconducting phase9 as well as on electronic phenomena10

has previously been studied. In this work, we aim at clarifying
its role for the pairing symmetry.

Table I shows the classification of the pairing states based
on the global symmetry of the crystal D3d . We assume
intralayer pairing due to the quasi-2D nature of the system,
and focus on on-site and nearest-neighbor-site (nn-site) pairing
interactions. It is intriguing that in this table both even-parity
spin-triplet and odd-parity spin-singlet pairing appear. The
reason is that we have two distinct layers in the unit cell
indicated by l = 1,2, and we can introduce an odd-parity
factor (−1)l under the global inversion operation. Multiplying
this factor to a certain pair wave function results in even-

parity spin-triplet or odd-parity spin-singlet states. Moreover,
spin-singlet and spin-triplet states coexist in some irreducible
representations, namely A1g , Eg , A2u, and Eu. Therefore,
mixing of spin-singlet and spin-triplet states becomes possible
in these representations despite the parity conservation.

Since there is no experimental information on the pairing
symmetry at present, we discuss some potential candidates
for the stable symmetry within a simple model. We use a
tight-binding description for electrons on the Pt sites with a
Hamiltonian consisting of two parts: H = H0 + Hsc. The first
part, H0, is the one-body Hamiltonian introduced by Refs. 9
and 10 in order to reproduce the LDA band structure of SrPtAs,

H0 =
∑

k,l,l′,s,b

ε
(b)
kll′c

(b)†
kls c

(b)
kl′s +

∑
k,l,s,b

αbλkl · σ ss ′c
(b)†
kls c

(b)
kls ′ , (1)

with

ε
(b)
kll′ = (

ε
(b)
1k − μb

)
τ 0
ll′ + Re

[
ε

(b)
ck

]
τ 1
ll′ + Im

[
ε

(b)∗
ck

]
τ 2
ll′ ,

(2)
λkl = (−1)lλk = τ 3

llλk,

where c
(b)
kls (c(b)†

kls ) is the annihilation (creation) operator
of an electron in the bth band (b = 1,2,3) with crystal
momentum k and spin s in the lth layer (l = 1,2). In
the above equation, we introduced σ̂ 0 (τ̂ 0) and σ̂ i (τ̂ i),
the unit and Pauli matrices acting on the spin (layer)
space. Including Pt nearest-neighbor hopping within the
plane, as well as nearest- and next-nearest-neighbor hopping
between the planes, one finds ε

(b)
1k = t

(b)
1

∑
n cos k · Tn +

t
(b)
c2 cos(ckz), and ε

(b)
ck = t (b)

c cos(kzc/2)[1 + exp(−ik · T 3) +
exp(ik · T 2)] with T 1 = (0,a,0), T 2 = (

√
3a/2, − a/2,0),

and T 3 = (−√
3a/2, − a/2,0) the in-plane nearest-neighbor

bond vectors used in the tight-binding approach (a and c are in-
plane and interlayer lattice constants). An important ingredient
is the locally antisymmetric SOC λkl , which reads λk =
ẑ
∑

n sin k · Tn for each band. This term is symmetric under
global inversion, but antisymmetric under the local inversion
operation in each layer. Due to the Kramers degeneracy,
there are only two branches in the energy spectrum of the
Hamiltonian (1) for each band

ξ
(b)
k± = ε

(b)
1k − μb ±

√∣∣ε(b)
ck

∣∣2 + |αbλk|2. (3)
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TABLE I. (a) Spin-singlet and (b) spin-triplet basis gap functions.
This classification is based on D3d symmetry. The index l = 1,2
denotes two distinct layers. The definitions for functions of crystal
momentum k are ek ≡ ∑

n cos k · T n, e+
k ≡ ∑

n ωn cos k · T n, ok ≡∑
n sin k · T n, o+

k ≡ ∑
n ωn sin k · T n, e−

k = e+∗
k ,o−

k = o+∗
k , where

T n=1,2,3 is the bond vector between nearest-neighbor sites, and
ωn = exp[2nπi/3]. Note that we have even-parity spin-triplet part
and odd-parity spin-singlet part due to the odd-parity factor (−1)l .

(a) spin-singlet (b) spin-triplet
	 Parity 
̂

	,m

kl = iσ̂yψ
	,m

kl 
̂
	,m

kl = i
[
σ̂ · d	,m

kl

]
σ̂y

A1g ψ
A1g

l = 1, ψ
A1g

kl = ek d
A1g

kl = (−1)lok ẑ

A2g Even d
A2g

kl = (−1)lok x̂±

Eg ψ
Eg,1
kl = e+

k d
Eg,1
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k ẑ

ψ
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kl = e−

k d
Eg,2
kl = (−1)lo−

k ẑ

A1u dA1u

kl = ok x̂±

A2u Odd ψ
A2u

l = (−1)l , ψ
A2u

kl = (−1)lek dA2u

kl = ok ẑ

Eu ψ
Eu,1
kl = (−1)le+

k dEu,1
kl = o+

k ẑ

ψ
Eu,2
kl = (−1)le−

k dEu,2
kl = o−

k ẑ

We use tight-binding parameters from Ref. 9 which lead to
Fermi surfaces as shown in Fig. 1. With this parameters, the
outermost band, labeled band 3, is the dominant band with
74% of the total density of states (DOS) due to its proximity to
the van Hove singularity (vHS) at the M points in the Brillouin
zone (BZ). Note that the ratio αb/t (b)

c , which parametrizes the
effect of the local lack of inversion symmetry, is comparable
to or larger than 1. This large ratio plays an essential role for
the mixing between spin-singlet and spin-triplet state, as we
will see below.

For the pairing term Hsc in the total Hamiltonian we assume
intralayer interactions including density-density type attractive
interaction, as well as interband pair scatterings allowed by
the kinematics. Using the basis functions from Table I, Hsc is
written in Fourier form as

Hsc =
∑

V bl;l′b′
s1s2;s3s4

(k,k′)c(b)†
−kls1

c
(b)†
−kls2

c
(b′)
−k′l′s3

c
(b′)
k′l′s4

(4)

FIG. 1. (Color online) Fermi surfaces at (a) kz = 0 and (b) kz =
π/c. Inner blue, middle red, and outer green lines show the Fermi
surfaces for band 1, band 2, and band 3, respectively. Note that there
are two branches in each band as suggested in Eq. (3), but one of the
branches in band 3 does not cross the Fermi level at kz = 0.

with

V bl;l′b′
s1s2;s3s4
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∑
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(5)

where gbb′
on and gbb′

nn are the coupling constants for on-site
and nearest-neighbor channels. The pairing instability in this
model occurs in band 3 with its dominant contribution to the
DOS. Smaller gaps then open on the other two bands due to
pair scattering.

We solve the linearized gap equation (the eigenvalue
equation for Tc)


(b)
s1s2

(k) = −Tc
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(6)

where the sum runs over repeated indices, and
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σ̂0 ⊗ (

iωnτ̂
0 + ε̂

(b)
k

) + αbλk · σ̂ ⊗ τ̂ 3
}−1

(7)

is the normal-state Matsubara Green’s function. All the
possible gap functions are listed as
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(8)

where 

(b)
	 and 


(b)
	,m=1,2 are the order parameters, and s

(b)
	 and

t
(b)
	 are the mixing ratios of subdominant spin-singlet and spin-

triplet parts, respectively. We see in 	 = A1g and A2u that there
is a mixing between on-site and nearest-neighbor-site pairings,
besides the spin-singlet and spin-triplet mixing. We neglect the
band dependence of the intraband couplings, namely, gon(nn) =
g

1,1
on(nn) = g

2,2
on(nn) = g

3,3
on(nn), and introduce repulsive interband

interactions g
1,3
on(nn) = g

2,3
on(nn) = −0.05, keeping g

1,2
on(nn) = 0.

This choice is motivated by the nesting-like structures between
band 2 and 3, and band 1 and 3, respectively.11 We can then
calculate the state with the maximum eigenvalue T max

c at a
point (gon,gnn) in the coupling constant space.

Figure 2 shows the obtained phase diagram. The A1g state
is stabilized when the on-site attraction is dominant, whereas
the A2u state becomes stable in the parameter region where
the nn-site attraction is comparable to or larger than the on-
site coupling. From Table I and Eq. (8) we see that both the
A1g and the A2u states have “s + f ”-wave pairing symmetry,
with the s-wave (f -wave) component dominant while the f -
wave (s-wave) component with an odd-parity factor (−1)l is
subdominant. Therefore, the quasiparticle excitations are fully
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FIG. 2. (Color online) The phase diagram of the stable pairing
states in the coupling constant space (gon,gnn). The tight-binding pa-
rameters suggested by LDA calculation (Refs. 9 and 10) is used. The
sequences of dots show equal Tc lines at Tc/t

(2)
1 = 10−5,10−4,10−3

from bottom to top.

gapped in the A1g state, whereas line nodes appear in the A2u

state. The A2u state invokes a full coherence factor due to
the s-wave component, and would show both a Hebel-Slichter
peak and a power-law type temperature dependence of T −1

1 like
CePt3Si.5 The gap structure involves sign changes which give
rise to zero-energy Andreev bound states at certain surfaces,
e.g., for the normal vector [010].12 Note that the relation of
the bound state and topology of the wave function has been
discussed in Refs. 13 and 14. This state belongs to the class
AIII of the topological classification.15

The locally antisymmetric SOC introduces a mixing be-
tween spin-singlet and spin-triplet parts, which is proportional
to

∑
kl

ψ	∗
kl

{
d	

kl · αbλk
}

√∣∣ε(b)
ck

∣∣2 + α2
bλ

2
k

(
1

ξ
(b)
k+

tanh
ξ

(b)
k+

2Tc

− 1

ξ
(b)
k−

tanh
ξ

(b)
k−

2Tc

)
. (9)

This suggests that the mixing is suppressed by a large interlayer
hopping, as expected, since the system has global inversion
symmetry and the locally antisymmetric nature is smeared
out when the three dimensionality becomes strong. Such a
behavior is also seen in the magnetic susceptibility.9 In this
system, however, the interlayer hopping has been estimated
to be comparable to or smaller than the SOC9,10 and we
hence expect a finite value of mixing. Indeed, around the
boundary between the A1g and A2u phases in Fig. 2, we find
enhanced mixing ratios. Their magnitudes are almost band
independent and typical values are (s(b)

A1g
,t

(b)
A1g

) = (−0.51,0.12)

in the A1g phase, and (s̃(b)
A2u

,s
(b)
A2u

) = (0.15,−0.18) in the A2u

phase [definitions of the ratios are given in Eq. (8)].
Figure 3 shows the phase diagram for a shifted chemical

potential such that band 3 approaches the vHS. The enhanced
DOS naturally leads to reduced coupling constants for the same
Tc as compared to the previous situation. More remarkably, the
Eg state shows up in the region where the on-site coupling is re-
pulsive. One of the reasons for its stability is that the amplitude
of the singlet component |ψEg,m

k,l | has peaks at the saddle points,
which is compatible with the Fermi surface structure. This
phase involves two degenerate basis states indicated by m =

FIG. 3. (Color online) The phase diagram of the stable paring
state in the coupling constant space (gon,gnn) in the DOS enhanced
situation, where the Fermi level is located at the vHS point of
band 3. The sequences of dots show equal Tc lines at Tc/t

(2)
1 =

10−5,10−4,10−3 from bottom to top.

1,2 in Eq. (8), and they make up a Kramers pair. A fourth-order
analysis of the Ginzburg-Landau theory yields to degenerate
states (
(b)

Eg,1
,


(b)
Eg,2

) = (1,0),(0,1), which both break time-
reversal symmetry. We focus here on the first configuration and
set 


(b)
Eg,2

= 0. Expanding the spin-singlet component around

the zone-central axes kx = ky = 0 gives ψ
Eg,1
k,l = (kx + iky)2

with dx2−y2 + idxy-wave symmetry, or chiral d-wave symme-
try. Note that dx2−y2 and dxy components are degenerated in
the threefold rotational symmetry. The same expansion for the
spin-triplet part yields d

Eg,1
kl = (−1)l(kx − iky) ẑ with chiral

p-wave symmetry like Sr2RuO4.16 The chiral d-wave part
has Lz = +2, whereas the chiral p-wave part Lz = −1 (Lz:
z component of the relative angular momentum of the pair).
These states can mix with each other as indicated by Table I.21

The mixed state is classified into class A in the scheme of
the topological classification.15 Due to the chiral nature of the
pairing, this state has a nonzero value for the Chern number
defined by the vorticity of the quasiparticle wave function in
k space17,18 and supports chiral edge states topologically.19,20

Our analysis provides insight into the basic trends of
the hexagonal superconductor SrPtAs whose electrons
experience a locally noncentrosymmetric environment. The
A1g state is stable in the electron-phonon coupling limit
where on-site attraction is dominant. On the other hand, in
the strongly correlated limit with on-site repulsion or strong
nearest-neighbor attraction, the A2u state is stabilized. In this
state, line nodes coming from the spin-triplet component
cause a power-law behavior of T −1

1 , whereas a Hebel-Slichter
peak arises slightly below Tc due to the coherence factor of
the spin-singlet component, in analogy with CePt3Si.5 Such a
behavior would be a strong signal of the locally antisymmetric
SOC. As mentioned, the nodal structure results in Andreev
bound states at a certain surface,12 which is related to the
topology of the bulk state.13,14 The Eg state is possible in some
particular cases such as a DOS-enhanced situation owing to
the vHS of the saddle points in the hexagonal BZ. This state
breaks time-reversal symmetry whose signal could be detected
by μSR measurement for spontaneous magnetization around
impurities and also the Kerr rotation experiment, for example.
The state has chirality which is characterized by the Chern
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number, and leads to topologically protected chiral edge
states.19,20
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