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Topological indices, defects, and Majorana fermions in chiral superconductors
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We study theoretically the role of topological invariants to protect the Majorana fermions in a model of
two-dimensional (2D) chiral superconductors which belong to class D of the topological periodic table. A rich
phase diagram is revealed. Each phase is characterized by the topological invariants for 2D (Z) and 1D (Z2),
which lead to the Majorana fermion at the edge dislocation and the core of the vortex. Interference of the Majorana
fermions originating from the different topological invariants is studied. The stability of the Majorana fermion
with respect to the interlayer coupling, i.e., in 3D, is also examined.
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Topological classification of the electronic states in solids
has shed light on the band structure of solids and also
the superconductivity.1 Initiated by the proposal of the Z2

topological invariant and the quantum spin Hall effect in a two-
dimensional (2D) spin-orbit coupled system2 and its extension
to three dimensions (3D),3 the more generic topological
classification scheme, i.e., the topological periodic table, is
now available based on three symmetries, i.e., time-reversal
(�), particle-hole (�), and chiral (�) symmetries.4,5 Here
� symmetry is due to the superconductivity in the usual
situation. There are ten classes, and the topological invariant
is specified depending on the dimensionality d of the system
to characterize the nontrivial topological states. Later, this
“tenfold way” has been extended to classification including
textures such as domain walls and dislocations.6 In this case,
the dimensionality D of the real space manifold surrounding
the texture plays a key role, and δ = d − D replaces d for the
topological classification.6 In the topological periodic table,
one can recognize the periodicity called the Bott periodicity,
which relates the different classes in the “diagonal” direction.
This periodicity can be understood by the continuous mapping
of the Hamiltonian connecting the different classes and
different δ by one. On the other hand, one can also consider
the connection in the “horizontal” direction, i.e., dimensional
reduction.7 As an example, class AII has been characterized by
Z2 both for δ = 3 and δ = 2. The former corresponds to the Z2

invariant corresponding to a strong topological insulator (TI)
in 3D, while the latter corresponds to the quantum spin Hall
system in a 2D (D = 0) or a weak TI in 3D (D = 1). Namely,
a 3D system is characterized by four Z2 topological invariants
ν0; ν1ν2ν3, where ν0 = 1 indicates a strong TI, while ν0 = 0
with at least one nonzero ν1,2,3 means a weak TI. These ν1,2,3

are the topological invariants for δ = 3 − 1 = 2, and guarantee
the existence of a gapless one-dimensional mode along the
dislocation.8 A recent study has shown that dislocations can
host Kramers pairs of zero modes in 2D TIs.9

This topological periodic table provides a powerful guiding
principle also for topological superconductors (TSs). Espe-
cially, the Majorana fermions expected to appear at the edge
or the core of the vortex in TSs attract intensive interests
from the viewpoint of quantum information technology.10–15

Therefore, it is an important theoretical issue to design the
Majorana fermions in realistic systems. Proximity-induced
superconductivity in 3D TIs,16–21 the superconductivity in a

doped TI CuxBi2Se3,22–26 the possible TSs in noncentrosym-
metric systems with Rashba spin splitting,27–37 and p-wave
superconductivity in Sr2RuO4 (Refs. 38 and 39) are promising
candidates as hosts of the Majorana fermions. Recently,
signatures of Majorana fermions have been observed by
electrical measurements on InSb nanowires contacted with a
superconducting electrode.40 As pointed out in Ref. 41, most of
the theoretical proposals for the Majorana fermions are based
on two models, i.e., p-wave pairing in the one-dimensional
spinless fermions (Kitaev model10) and the p + ip pairing
superconductor.

In this Rapid Communication, we study theoretically the
topological invariants and their relation to the protected Majo-
rana bound states in a model of class D chiral superconductors
containing both the Kitaev model and a p + ip superconductor
in the limiting cases. The topological invariant for class D is 0
for δ = 3, Z for δ = 2, and Z2 for δ = 1. Therefore, there is no
“strong TS” in 3D, while the 2D system is characterized by a Z

topological invariant and the one-dimensional (1D) system by
a Z2 topological invariant. The purpose of the present Rapid
Communication is to reveal the topological phase diagram
characterized by these invariants, and the associated Majorana
fermions at textures such as dislocations and vortices.

We consider a generalized model of the p + ip wave
superconductor on a square lattice in 2D. The Hamiltonian
can be written as H = ∑

k C
†
kH (k)Ck, with

H (k)

=
(

2tx cos kx + 2ty cos ky − μ dx sin kx − idy sin ky

dx sin kx + idy sin ky μ− 2tx cos kx − 2ty cos ky

)
,

(1)

and C
†
k = (c†k,c−k). This 2 × 2 Hamiltonian matrix can

be expressed as H (k) = H (kx,ky) = h(k) · σ , where σ =
(σx,σ y,σ z) is the vector of Pauli matrices. Since (C†

−k)T =
σxCk, H (k) should satisfy

H (k) = −σxH (−k)T σ x, (2)

where T means the transpose. This condition leads to the
relation41

hx,y(k) = −hx,y(−k), hz(k) = hz(−k). (3)
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Therefore, for time-reversal invariant momenta (TRIM), which
satisfy k ≡ −k, only hz(k) cannot be nonzero, i.e., h(k) points
either in the +z or −z directions as long as the gap opens,
i.e., |h(k)| > 0. There are four TRIM in this 2D model, i.e.,
kα = (0,0),(π,0),(0,π ), and (π,π ), and the sign sα = ±1 of
the corresponding hz. As will be discussed, sα determines the
Z2 topological invariants and the parity of the Z invariant.

Now let us start with the Z2 invariant. For this purpose, let
us consider the 1D Hamiltonian with fixed kx = π in Eq. (1),
i.e.,

H (kx = π,ky)

=
(

−2tx + 2ty cos(ky) − μ −idy sin(ky)

idy sin(ky) μ + 2tx − 2ty cos(ky)

)
,

(4)

which is nothing but the Kitaev model for a one-dimensional
topological superconductor.10 The Z2 topological invariant νx

is related to the “polarization”7

νx

2
= P (kx) =

∫ π

−π

dky

2π
ay(kx,ky) mod 1 (5)

given by the Berry phase vector potential aj (kx,ky) =
(−i)

∑
n:occupied〈nk|∂/∂kj |nk〉, and is given by (−1)νx =

s(π,0)s(π,π).41–44 Therefore, we can easily obtain the Z2 topo-
logical invariant νx as

νx =
{

1 for |tx + μ

2 | < |ty |,
0 for |tx + μ

2 | > |ty |.
(6)

The topological invariant ν ′
x for kx = 0 can be calculated also

in a similar way. From these equations, it is clear that the
strengths of dx and dy are not related to the topological numbers
if they have finite values. The Z2 invariants νy,ν

′
y are obtained

in a similar way.
On the other hand, the Z topological invariant ν is nothing

but the Chern number, i.e., the wrapping number of the
mapping from the first Brillouin zone (BZ) of k to the unit
sphere h(k)/|h(k)| and is given by

ν =
∫∫

BZ

dkxdky

2π
{∂kx

ay(kx,ky) − ∂ky
ax(kx,ky)}. (7)

Equations (5) and (7) lead to the relation7,30,41–44

νx + ν
′
x = νy + ν ′

y = ν mod 2. (8)

In summary, our model is characterized by the Z topological
invariant ν and two Z2 topological invariants νx and νy . This
is the general result, and superconductors in class D in 2D
are characterized by ν : νxνy . From the above consideration,
these topological invariants depend on the hopping integrals
tx ,ty and the chemical potential μ, while they do not depend
on the pairing amplitudes dx ,dy as long as they are finite.
Therefore, we show in Fig. 1 the phase diagram of the present
model in the plane of (tx,ty) for fixed μ. The lines where the
energy gap closes divide the (tx,ty) plane into nine domains.
Electronic states are characterized by topological invariants in
each domain. When |μ|

2 is larger than |tx | + |ty |, i.e., domain
V, the pairing state is topologically trivial since it corresponds
to the strong coupling limit. In domains II, III, VII, and VIII,
electronic states have both Z and Z2 topological invariants.

FIG. 1. (Color online) The topological phase diagram of a model
in Eq. (1) for chiral superconductors in 2D characterized by ν : νxνy .
The lines where the energy gap closes divide the (tx ,ty) plane into nine
domains. The system is a strong topological superconductor (ν = 1)
in domains II, III, VII, and IX, with ν = 0 but some of Z2 invariants
being nonzero. In domain V, the system is the trivial strong coupling
superconductor.

Note that the sign of the chemical potential μ matters for the Z2

invariants. In domains I, IV, VI, and IX, the anisotropy between
tx and ty is large and hence the system behaves basically
as the weakly coupled chains of 1D Kitaev models, and the
system has only 1D Z2 topological invariants but Z topological
invariant ν = 0, so they are weak topological states.

Now we turn to the consequences of the topological invari-
ants. The Z2 invariant νx (νy) ensures that the propagating
Majorana fermion channels appear at the edge along the
x direction (y direction). They have zero-energy states at
kx = π (ky = π ). Also the edge dislocation offers the stage
for the zero-energy Majorana bound state when the following
equation is satisfied (see Fig. 2):

B · G = 1mod 2. (9)

FIG. 2. (Color online) The edge dislocations (indicated by yellow
points) in two- and three-dimensional systems. The 3D system is
made by stacking 2D systems and adding a hopping integral along
the z direction with the edge dislocation isolated on a layer.
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FIG. 3. (Color online) The energy levels and the probability
distribution of zero-energy states at each site in the presence of edge
dislocations: The left panel indicates the energy levels. The right
panel indicates the probability distribution for the zero-energy states.
The zero-energy Majorana bound states appear at each of the edge
dislocations.

In this equation, we define G = 1
2π

(νxbx + νyby). bx and by

are the reciprocal lattice vectors of the x and y directions,
respectively, and B is the Burgers vector characterizing the
dislocation. We numerically calculate these zero-energy states
as follows. To introduce a periodic boundary condition, we
introduce two edge dislocations with the Burgers vector B =
±ex . We represent two edge dislocations by adding lattice
sites between them. Edge dislocations are separated by a half
system size. Calculations were done on a 40 × 40 unit cell
system with a periodic boundary condition along the x and
y directions. The parameters are tx = 0.5, ty = 0.5, dx = 0.6,
dy = 0.6, and μ = −0.2. In these parameters, the topological
invariants are 1 : 11. In this case, G = 1

2π
(bx + by) and B =

±ex , B · G = 1 is satisfied, so zero-energy states appear at the
edge dislocations.

The results of our numerical calculations are shown in
Fig. 3. The left panel of Fig. 3 indicates the energy levels
of our model in the presence of edge dislocations. It is clear
that zero-energy states exist, which are twofold degenerate
because the two edge dislocations are present in the system.
The right panel of Fig. 3 indicates the probability distribution
of the zero-energy states. Zero-energy states are localized at
each edge dislocation.

In the presence of edge dislocations with the Burgers vector
B = ±ex , zero-energy states appear in domains I, II, VII, and
IX in Fig. 1 in the case of μ > 0 and zero-energy states
appear in domains I, III, VIII, and IX in Fig. 1 in the case
of μ < 0. In particular, zero-energy states in domains I and IX
can be intuitively interpreted as follows. The weak topological
superconductors in these domains are adiabatically connected
to a stack of the Kitaev models10 for a 1D topological
superconductor along the y direction. In the presence of edge
dislocations, the edges of the 1D topological superconductor
appear at edge dislocations as shown in Fig. 2, so zero-energy
states appear there. In general, the existence of zero-energy
states is proved by the same method as in Ref. 8.

Next we consider the interference of the Z and Z2

topological invariants, which is realized in the present model.
When Z is nonzero, the zero-energy Majorana bound state is
realized at the core of the vortex.13,14 It is expected that, if the
dislocations are in the crystal, they act as the pinning centers
of the vortex, and hence there are two reasons for the existence
of the Majorana bound states when the Z2 invariant is 1. This
situation occurs in domains II, III, VII, and VIII in Fig. 1,
and the interference of these two mechanisms is an issue.
Figure 4 summarizes the calculated results, in which there are
dislocations and vortex cores at same positions. The probabil-
ity distributions are plotted for the zero-energy states, if any.
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FIG. 4. (Color online) The interaction between zero-energy states localized at edge dislocations and zero-energy states localized at vortex
cores: This figure shows the probability distribution of zero-energy states at each lattice site in each case. The interaction between zero-energy
states at edge dislocations and zero-energy states at vortex cores eliminates zero-energy states when dislocations and vortex cores exist at the
same positions.
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To introduce a periodic boundary condition, we introduce two
vortices with the winding number 1 and two vortices with the
winding number −1. We consider the two cases of topological
invariants 1 : 00 (upper panels) and 1 : 11 (lower panels).
The parameters are tx = 0.5, ty = 0.5, dx = 0.6, dy = 0.6,
μ = 0.2 for the former, while they are tx = 0.5, ty = 0.5,
dx = 0.6, dy = 0.6, μ = −0.2 for the latter. Calculations were
done on a 40 × 40 unit cell system with a periodic boundary
condition along the x and y directions. There are dislocations
and vortex cores at the same positions in the right panels while
only dislocations are there in the left panels. They are separated
from each other by a half system size. In the case of the
topological invariants 1 : 00, zero-energy states do not appear
at the edge dislocations. Zero-energy states appear when the
dislocations and vortices exist at the same time because of the
Z invariant ν = 1 and vortices. We have also confirmed that
the zero-energy states appear with only the vortices. In the
case of the topological invariants 1 : 11, zero-energy states
appear when dislocations exist but vortices do not exist. The
interaction between zero-energy states at edge dislocations
and at vortex cores eliminates the zero-energy states when
they coexist at the same position. This can be naturally
understood that the two Majorana bound states due to the Z

and Z2 invariants interact with each other as they approach
each other, and lift the degeneracy to have finite energies.

We generalize this model into a model in 3D. The 3D
model is constructed as a stack of 2D models with a hopping
integral tz along the z direction as shown in Fig. 2. tz causes
the finite region where the energy gap closes in the (tx,ty)
plane. The energy gap closes in the domain, which satisfies
|tx + ty − μ

2 | < |tz|, | − tx + ty − μ

2 | < |tz|, |tx − ty − μ

2 | <

|tz|, or | − tx − ty − μ

2 | < |tz|. The domain where the energy
gap opens is connected to the domain of tz = 0, so electronic
states in the domain have the same topological invariants as
the 2D model, while the topology is trivial for class D in 3D.
We introduce a similar defect as a 2D system, as indicated
in Fig. 2. These defects are not edge dislocations. One layer
has the same defect as the 2D system and the other layers do
not have it. We ensure that zero-energy states appear at those
defects in the same manner as the 2D system by numerical
calculations. The parameters are tx = 0.5, ty = 0.5, tz = 0.1,
dx = 0.6, dy = 0.6, and μ = −0.5. In this case, the electronic
state is adiabatically connected to the state in domain III in the
case of μ < 0 in Fig. 1. If tz = 0, zero-energy states appear
in these parameters because the state in domain III in the case
of μ < 0 in Fig. 1 has topological invariants 1 : 11 and one
layer has edge dislocations with the Burgers vector B = ±ex .
Calculations were done on a 10 × 20 × 10 unit cell system
with a periodic boundary condition along the x, y, and z

directions. We found that these zero-energy states survive a
finite-value z direction hopping integral tz unless the energy
gap closes. This edge dislocation is a zero-dimensional (0D)
object, and we need a D = 2 sphere to enclose this defect
in 3D, and hence δ = 3 − 2 = 1. Therefore, the Z2 invariant
protects the existence of the Majorana zero-energy bound
state. This is an example of the “weak-weak” topological
superconductor, where the topological invariant reduced by
two dimensions is relevant. This indicates that Majorana
fermions can exist even in a 3D system.

Now we discuss the relevance of the present results to
the real materials. There are several candidates for the chiral
superconductors. The 2D Rashba system in a semiconduc-
tor with proximity to the s-wave superconductor and the
ferromagnet is a promising candidate, which shows spinless
p + ip pairing.28,29,31,32 The electron density is considered to
be small and concentrated near the � point of the first Brillouin
zone. Therefore, usually the continuum approximation is used
to describe this system. In our phase diagram (Fig. 1), this
situation corresponds to domain VII with tx = ty < 0 with a
negative chemical potential, which is characterized by ν = 1
and νx = νy = 0. Therefore, we do expect the Majorana bound
state at the core of the vortex, while there is no Majorana bound
state at the edge dislocation. To realize a more interesting
situation where both ν and νx,y are nonzero, it is required
to have the Fermi pocket near TRIM other than the � point.
This is the case for semiconductors such as PbTe and SnTe
which have the Fermi pocket at the L point in the fcc Brillouin
zone.45 So, quantum wells made by these materials have the
Fermi pocket at the (π,π ) point. 3C-SiC and 6H-SiC have the
Fermi pocket at the M point in hexagonal BZ. The thin film
can be used to realize the situation where both ν and νx,y are
nonzero.

Another interesting candidate is Sr2RuO4,38,39 which is
a layered material and believed to be a quasi-2D p + ip

superconductor with a nonzero Z invariant. In this system,
there remains the spin degeneracy of the Fermi surface,
and hence the Hamiltonian matrix is at least 4 × 4 instead
of the 2 × 2 discussed in this Rapid Communication. This
means that the Z2 invariants are zero due to this degen-
eracy, although the Z invariant can be nonzero. However,
a detailed analysis taking into account the three bands,
i.e., α, β, and γ bands,46,47 has revealed that the edge
dislocations can host two Majorana fermions at each layer.48

Unpaired Majorana fermions can appear at the two ends of
the edge dislocations, if a nonzero supercurrent is main-
tained along the edge dislocation, as in the case of vortex
lines.49

To summarize, we have studied a model of chiral super-
conductors including both the Kitaev model in 1D and p + ip

superconductor in 2D as limiting cases. This model shows
a rich phase diagram (Fig. 1) characterized by the Z and
Z2 topological invariants, which control the appearance of
Majorana bound states at the edge dislocations and vortex
cores. This offers an explicit case where the topological
periodic table can be successfully applied, including the
topological textures, and the presence of the Majorana bound
states are shown also numerically.
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