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We demonstrate an efficient numerical method for obtaining unique solutions to the Eilenberger equation for a
mesoscopic or nanoscale superconductor. In particular, we calculate the local density of states of a circular d-wave
island containing a single vortex. The “vortex shadow” effect is found to depend strongly on the quasiparticle
energy in such small systems. We show how to construct by geometry quasiparticle trajectories confined in
a finite-size system with specular reflections at the boundary, and we discuss the stability of the numerical
solutions even in the case of vanishing order parameter as for nodal quasiparticles in a d-wave superconductor
or for quasiparticles passing through the vortex center with zero energy.
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I. INTRODUCTION

Recently developed experimental techniques have made
it possible to fabricate mesoscopic superconductors and
to observe their electronic structure by scanning tunneling
spectroscopy (STS).1,2 Due to finite-size effects, mesoscopic
superconductors can exhibit properties that are significantly
different from those of their analogous bulk materials. For
example, vortex physics presents various intriguing phenom-
ena in a mesoscopic system whose size is of the order of
the coherence length or the penetration depth. In particular,
competition between the repulsive interaction among vortices,
which tends towards the formation of an Abrikosov vortex
lattice, and quantum confinement effects results in a variety of
vortex states that are unique to small systems. The signature
of giant vortices carrying multiple flux quanta3 and that of
“shell effects” of multiple vortices, where vortices arrange
themselves conforming to the shape of the sample, have been
detected in submicron Al disks.4,5 Depending on the size and
shape of the system, a pair of vortex and antivortex can also
be formed.6 STS can directly probe the local density of states
(LDOS) in such novel vortex states.

It is important to determine the phase of the superconduct-
ing order parameter in unconventional superconductors such as
cuprates, heavy electron superconductors, and iron-based ma-
terials. One of the important characteristics of unconventional
superconductivity is the possibility of the existence of Andreev
bound states.7–9 When there is a sign change in the order
parameter in momentum space as in d-wave superconductors,
Andreev bound states can be formed if the quasiparticle feels
the sign change by specular reflection at a surface. Andreev
bound states can also exist where the order parameter changes
its sign in real space, e.g., around a vortex. The formation of
Andreev bound states is thus a key phenomenon that can reveal
the fundamental nature of superconductivity.

In unconventional superconductors, phase-sensitive phe-
nomena can be manifest in systems where interference effects
can occur between a vortex and a surface. In dx2−y2 -wave

superconductors, the “vortex shadow” effect, which suppresses
the zero-energy density of states, has been found near a
vortex in front of a reflecting 110 boundary.10 In chiral
p-wave superconductors, low-energy Andreev bound states
can be either suppressed or enhanced by a vortex, depending
on its orientation with respect to the chirality of p-wave
superconductivity.11 Such phase-sensitive phenomena are ex-
pected to appear in mesoscopic superconductors, where the
effects of surfaces can be dominant.

The electronic structure of the vortex state has been studied
in terms of microscopic mean-field theory, with which one can
calculate the LDOS observable by STS. Such a microscopic
calculation was performed by Gygi and Schlüter,12 who
evaluated the LDOS around a vortex by numerically solving
the Bogoliubov–de Gennes (BdG) equations. With the use
of the quasiclassical theory of superconductivity,13,14 Hayashi
et al.15 have reproduced the LDOS in the vortex state
observed in NbSe2 by STS.16 The electronic structure around
a vortex in a d-wave superconductor has been calculated by
Schopohl and Maki,17 using the Riccati parametrization18 of
the Eilenberger equation in the quasiclassical theory. The
Riccati formalism has also been developed by Ashida et al. in
the context of a boundary problem for superconductor–normal-
metal interfaces.19 Moreover, the Riccati formulation of the
quasiclassical theory has been generalized for nonequilibrium
superconductivity20,21 and diffusive systems.22–24

Recent STS measurements have shown direct evidence of
giant vortices and multivortex configurations in nanoscale Pb
islands.1,2 Theoretically, the LDOS in the giant vortex state
in s-wave mesoscopic disks has been calculated by solving
the BdG equations directly and self-consistently.25 Rigorously
solving the BdG equations, however, has a high computational
demand, and most of the studies of mesoscopic vortex
matter so far26–29 have been made within the semiclassical
approximation to the BdG equations30 or the quasiclassical
theory.

Compared to the BdG equations, the Eilenberger equation
is relatively easy to solve, especially by means of the Riccati
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parametrization. However, in order to integrate the Riccati
equations one needs to know the initial values of the Riccati
amplitudes, namely, the boundary values in the case of a
finite-size system. Determining boundary conditions in the
quasiclassical theory has indeed been a long-standing issue
(see Ref. 31 and references therein). The relatively short
“memory” of the Riccati amplitudes of initial conditions has
been exploited for integrating the Riccati equations for a
finite-size system32 and for a vortex lattice.33 The Riccati
amplitudes, however, do not converge effectively for energy
with a vanishing imaginary part, or they may have to satisfy
specific boundary conditions such as certain phase variation
in a complex system. One way to deal with such a system
with no bulk solution is to solve for the boundary values self-
consistently.24 Most generally, Eschrig31 has developed an ef-
ficient and stable numerical method for obtaining initial-value-
independent solutions to the Eilenberger equation, including
the spin degree of freedom and time dependence in general.

In this paper, we demonstrate how to efficiently obtain
initial-value-independent solutions to the Riccati equations for
a mesoscopic or nanoscale superconductor. In particular, we
explicitly show, in terms of the linearized BdG equations,
the numerical stability of the Riccati equation that allows
different initial values to converge to one and the same solution.
This stability that leads to a unique solution holds even for a
vanishing order parameter such as for nodal quasiparticles
in a d-wave superconductor or for quasiparticles passing
through the vortex center with zero energy. We also present a
geometrical method for constructing quasiparticle trajectories
confined in a finite-size system with specular reflections at the
boundary. As an application of our technique, we calculate the
LDOS in a circular d-wave island sustaining a single vortex. It
is found that the “vortex shadow” effect strongly depends on
the quasiparticle energy in such small systems.

The paper is organized as follows. In Sec. II, we summarize
the Riccati formalism of the quasiclassical theory for spin-
singlet, equilibrium superconductivity and discuss initial-
value-independent solutions and the stability of the Riccati
equations. We introduce our model of a circular dx2−y2 -wave
island containing a single vortex in Sec. III and present
results for this system and main conclusions in Secs. IV
and V, respectively. The general solution of a Riccati-type
equation is presented in Appendix A. In Appendix B, we
discuss the stability of the Riccati equations in terms of
analytical solutions of the bulk and in the vicinity of a single
vortex. How to generate a path of integration with specular
reflections at the boundary is illustrated for a circular disk in
Appendix C. Throughout the paper h̄ is taken to be unity.

II. FORMULATION

A. Quasiclassical theory of superconductivity

We introduce the quasiclassical Green function ǧ for a spin-
singlet superconductor in equilibrium defined by

ǧ(iωn,r,kF) =
(

g f

−f̃ −g

)
, (1)

which is a function of the Matsubara frequency ωn, the Fermi
wave vector kF, and the spatial coordinate r . Ǎ signifies the

2 × 2 matrix structure in the Nambu-Gor’kov particle-hole
space. The Eilenberger equation is the equation of motion for
ǧ(iωn,r,kF),

−ivF(kF) · ∇ǧ = [iω̃nτ̌3 − �̌(r,kF), ǧ], (2)

supplemented by the normalization condition,

ǧ2 = 1̌, (3)

where iω̃n = iωn + vF · e
c

A, with A a vector potential and τ̌3

the Pauli matrix. �̌(r,kF) is given by

�̌(r,kF) =
[

0 �(r,kF)

−�∗(r,kF) 0

]
(4)

in the Nambu-Gor’kov space. Setting iωn = ε + iη, where η

is real and positive, we have the retarded quasiclassical Green
function.

B. Riccati formalism

While several numerical methods have been developed for
solving the Eilenberger equation,34–38 the Riccati parametriza-
tion is one of the most efficient and numerically stable
techniques. It can incorporate the normalization condition for
the Green function automatically, and it is arguably the most
versatile method and has a wide variety of applications. For ex-
ample, the Riccati formalism has been applied for calculation
of the ac electromagnetic response of the vortex core20,39 and
for a fully self-consistent study of diffusive superconductor–
normal-metal–superconductor junctions, which involve the
proximity effect, multiple Andreev reflections, and nonequilib-
rium distribution functions.22,40 For both of these examples, no
study exists to date using any other technique. We elaborate
further on the numerical stability of integrating the Riccati
equations in Sec. II E. The Riccati amplitudes a and b are
introduced by writing ǧ as

ǧ = −1

1 + ab

(
1 − ab 2ia

−2ib −(1 − ab)

)
. (5)

The Eilenberger equation, (2), then reduces to a set of two
decoupled differential equations of the Riccati type,

vF · ∇a = −2ω̃na − �∗a2 + �, (6)

vF · ∇b = +2ω̃nb + �b2 − �∗. (7)

Since these equations contain ∇ only through vF · ∇, they can
be reduced to a one-dimensional problem on a straight line in
the direction of the Fermi velocity vF:

vF
∂a

∂s
= −2ω̃na − �∗a2 + �, (8)

vF
∂b

∂s
= +2ω̃nb + �b2 − �∗. (9)

The LDOS for an isotropic Fermi surface as a function of the
quasiparticle energy ε (with respect to the Fermi level) is given
by

ν(r,ε) = ν(0)
∫

d	k

4π
Re

[
1 − ab

1 + ab

]
iωn→ε+iη

, (10)
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where ν(0) is the Fermi-surface density of states, d	k is the
solid angle, and η is a smearing factor such as due to impurity
scattering.

C. Initial-value-independent solution

We now describe how initial-value-independent solutions
to the Riccati equations can be obtained without specifying
the initial values. This corresponds to the case of spin-
singlet, equilibrium superconductivity in the general discus-
sion in Appendix E of Ref. 31. Let us consider the Riccati
equation, (8), with complex frequency z = iωn,

vF
∂a

∂s
= 2iza − �∗a2 + �. (11)

If we can find a particular solution a = aP(s), the general
solution can be given by (see Appendix A)

a(s) = aP(s) + 1

−( ∫ s

s0
ds ′A(s ′)e−K(s ′)

)
eK(s) + u(s0)

, (12)

with

A(s) = −�∗(s)

vF
, (13)

K(s) = 2

vF

∫ s

s0

ds ′�∗(s ′)aP(s ′) − 2i
z

vF
(s − s0). (14)

The u(s0) satisfies the initial condition at s = s0,

a(s0) = aP(s0) + 1

u(s0)
. (15)

If the condition

lim
s→∞ K(s) = +∞ (16)

is satisfied in the upper half-plane of z, the solution a(s) does
not depend on u(s0) in the limit s → ∞:

lim
s→∞ a(s) = aP(s). (17)

Now suppose that we have obtained a numerical solution
aN(s) with the initial value at s = s0,

aN(s0) = a0. (18)

Then another solution, a′
N(s), with a different initial value, a′

0,
at s = s0 can be found by

a′
N(s) = aN(s) + 1

−( ∫ s

s0
ds ′A(s ′)e−K(s ′)

)
eK(s) + u(s0)

, (19)

where

1

u(s0)
= a′

0 − a0. (20)

From Eq. (14), if 2
vF

∫ s

s0
ds ′Re[�∗(s ′)aN(s ′)] is an increasing

function of s in the upper half-plane of z, eK(s) increases with
increasing s, since the second term in Eq. (14) is always a
monotonically increasing function in the upper half-plane of
z. The length is characterized by the kF-dependent coherence
length ξ (kF) ≡ vF(kF)/�(kF). In the region s − s0 � ξ (kF),
we have

aN(s) = a′
N(s), (21)

since the second term in Eq. (19) vanishes. Thus one can
always find a numerically stable solution aN(s) which is
independent of the initial value if far away enough from
the initial point. This stems from the fact that the numerical
solution aN(s) can be regarded as a particular solution to
the differential equation, (8).31 We find that the relation
Re[�∗(s)aN(s)] > 0 is satisfied for a wide range of s in various
systems (see Appendix B). The similar argument can be made
when integrating the Riccati equation for b in Eq. (9).

The above discussion clearly shows the reason why one has
to integrate Eq. (8) in the direction of increasing s and Eq. (9) in
the opposite direction of decreasing s. In the upper half-plane
of z, the second term in Eq. (14) increases monotonically with
increasing s. On the other hand, one has to integrate Eq. (9)
in the direction of decreasing s, when considering the lower
half-plane of z.

D. Choice of initial values

In actual calculation, one has to choose an initial value in
order to numerically integrate the Riccati equation. We now
show that a0(s0) = 0 is the best choice for the initial value
for integrating Eq. (8) regardless of the magnitude of �(s).
As the most extreme case, let us consider the quasiparticle
motion for vanishing order parameter �(s) = 0, e.g., for
nodal quasiparticles in a d-wave superconductor. The Riccati
equation, (11), reduces to

vF
∂a

∂s
= 2iza. (22)

The solution of this linear differential equation can be
expressed as

a(s) = exp

[
2iz

vF
(s − s0)

]
a0, (23)

with the initial value a0 at s = s0. This solution implies that
the healing or relaxation length of the solution for �(s) ∼ 0 is
roughly vF/Imz. In the upper half-plane of z in Eq. (23),

lim
s→∞ a(s) = 0. (24)

This is the solution for the normal state, in which case the
quasiclassical Green function ǧ is diagonal [see Eq. (5)]. The
healing length is relatively long when �(s) ∼ 0 and Imz is
small, i.e., for nodal quasiparticles. Thus, if the initial value
is much different from 0, one would need a large integration
range to reach a solution a(s) ∼ 0. In other words, the smaller
the a0(s0), the shorter the integration range required. For
antinodal quasiparticles, the healing length is short and the
initial value hardly affects the solution, so that one can simply
take a0(s0) to be 0. Hence a0(s0) = 0 is the most efficient initial
value for integrating the Riccati equation for the whole Fermi
surface—regardless of the pairing symmetry.

E. Numerical stability of the Riccati equations

In this section, we show, in terms of the linearized BdG
equations, that integrating the Riccati equations is more
numerically stable and effective than directly integrating
the Eilenberger equation. In general, the Riccati-type first-
order nonlinear differential equation can be rewritten as a
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two-component first-order linear differential equation. For a
superconducting system, these components are known as the
linearized BdG equations or the Andreev equations.18,30,41 The
linearized BdG equations can be expressed as18

vF
∂

∂s

[
u(s)

v(s)

]
= K̂

[
u(s)

v(s)

]
, (25)

where

K̂ ≡
[

−ω̃n −i�(s)

i�†(s) ω̃n

]
. (26)

The Riccati equation, (6), can be derived by defining

a(s) = i
u(s)

v(s)
(27)

in the linearized BdG equations, (25).
To obtain a formal solution, we assume �(s) to be a

piecewise-constant function. In the interval si < s < si+1,
where K̂ is constant, one can solve Eq. (25) as[

u(s)

v(s)

]
= exp[K̂ ′]

[
u0

v0

]
, (28)

with

K̂ ′ ≡ 1

vF
K̂(s − si) = Û

[
E(s) 0

0 −E(s)

]
Û †. (29)

The eigenvalues are given by

E(s) =
√

A2 + |B|2(s − si), (30)

A ≡ 1

vF
ω̃n, (31)

B ≡ − i

vF
�, (32)

and the unitary matrix Û can be written as

Û =
[

α −β∗

β α∗

]
. (33)

Starting from the initial values (u0,v0) at s = s0, one can
construct a solution (u,v) for the entire space by connecting
the solutions at each boundary between two adjacent piece-
wise regions. We note that E(s) is positive and increases
monotonically with s even when � = 0, if one considers the
upper half-plane of complex frequency. Thus the healing or
relaxation length of the solution is determined by whichever,
A or B, has the shortest characteristic length scale. This in fact
guarantees that the healing length does not diverge even for
a quasiparticle moving along the nodal direction of the order
parameter, where � = 0, because of the A term in Eq. (30).

The general solution can be written as

u(s) = α(s)eE(s)u′(s) − β∗(s)e−E(s)v′(s), (34)

v(s) = β(s)eE(s)u′(s) + α∗(s)e−E(s)v′(s), (35)

where [
u′(s)

v′(s)

]
= Û †(s)

[
u0

v0

]
. (36)

If one wants to integrate the linearized BdG equations in the
direction of increasing s, one has to carefully choose the initial
condition (u0,v0) to avoid divergence in the limit s → ∞.

On the contrary, the solutions a(s) and b(s) of the Riccati
equations are numerically stable and one need not worry about
divergence. This can be seen by substituting Eqs. (34) and (35)
into Eq. (27):

a(s) = i
α(s)eE(s)u′(s) − β∗(s)e−E(s)v′(s)

β(s)eE(s)u′(s) + α∗(s)e−E(s)v′(s)
. (37)

In the limit s → ∞, a(s) → iα(s)/β(s) and thus a(s) never
diverges in this limit. Furthermore, it is evident from the lin-
earized BdG equations that initial-value-independent solutions
can be obtained for α(s) and β(s), which contain neither u0

nor v0 in the limit s → ∞. It should be noted, however, that
α(s) and β(s) depend on the initial coordinate s0, as do A(s)
and B(s).

The solutions to the linearized BdG equations in Eqs. (34)
and (35) are a linear superposition of two unbounded solutions
with the factors eE(s) and e−E(s). The Eilenberger equation also
has diverging or “exploding” solutions.34 The so-called explo-
sion method is based on the fact that a bounded solution to the
Eilenberger equation can be constructed using the commutator
of two unbounded solutions.35 Since unbounded solutions are
numerically unstable and the method relies on cancellation of
large numbers, a careful computational treatment is required
for integrating the linearized BdG equations or the Eilenberger
equation using the explosion method.

In contrast, physical, bounded solutions can be constructed
for the Riccati equations without any difficulty owing to
unphysical, unbounded solutions.35 The a(s), which consists
of exploding solutions u(s) and v(s) with the factor eE(s), can
be obtained by simply integrating Eq. (8) in the direction of
increasing s. Similarly, Eq. (9) can be integrated in the opposite
direction to find b(s), which consists of other exploding
solutions u(s) and v(s) with the factor e−E(s). One can then
construct a physical, bounded quasiclassical Green function ǧ

from Eq. (5). Hence, the Riccati parametrization makes solving
the Eilenberger equation for the quasiclassical Green function
more numerically stable and effective.

The stability of the Riccati equations as demonstrated above
can also be shown for the more general case of spin- and
time-dependent superconductivity.42

III. NUMERICAL METHOD

We illustrate how initial-value-independent solutions can
be obtained for a circular d-wave island containing a single
vortex. The method of generating paths described in this
section can be generalized for a finite-size system of any shape
with specular reflections at the boundary.

A. Model

We consider a two-dimensional system of circular shape of
radius rc, which has a specular surface and a circular Fermi
surface. The boundary condition can then be expressed as10

a(|r| = rc,kin) = a(|r| = rc,kout), (38)

b(|r| = rc,kin) = b(|r| = rc,kout). (39)
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Here kin is connected to kout by specular reflection. We
introduce a pairing potential of the form

�(r,kF) = �0f (r)d(kF)eiα, (40)

where r = r(cos α, sin α) in polar coordinates. Here f (r)
gives the spatial (radial) variation of the pairing potential
with f (0) = 0 at the vortex center, and d(kF) describes the
gap anisotropy in momentum space. The direction of the
quasiparticle motion is characterized by the angle θ in two-
dimensional momentum space. We consider a dx2−y2 -wave
superconductor with

d(kF) = cos 2θ. (41)

Considering the strongly type II limit, we neglect the vector
potential: iω̃n → iωn. Setting iωn → ε + iη, we integrate the
Riccati equations by means of the fourth-order Runge-Kutta
method. For the sake of illustrating the numerical technique,
we present results for a given pairing potential with f (r) =
r/

√
r2 + ξ 2

0 and use the length unit ξ0 ≡ vF/�0 and the
smearing factor η = 0.01�0. To obtain a(x,y,θ ) and b(x,y,θ ),
we must integrate the Riccati equations along paths that are
specularly reflected at the boundary and thus confined within
the circle.

B. Numerical recipe

Let us now describe how to obtain the Riccati amplitudes
a and b at point (x0,y0) for a given momentum direction θ .
Starting from the point of interest (x0,y0), we first generate
path I for a as indicated in Fig. 1 by drawing the path in
the opposite direction (i.e., in the direction of θ + π ) to the
point of the nth specular reflection (xn,yn) at the boundary
(see Appendix C). Similarly, we generate path II for b in the
opposite direction from (x0,y0) to (x ′

n,y
′
n) with n reflections.

The length of the paths after n reflections should be much
longer than the coherence length; i.e., the smaller the system
size, the larger the n should be.

Next we integrate the Riccati equations for a and b from
(xn,yn) and (x ′

n,y
′
n), respectively, to (x0,y0) for momentum

direction θ . With the use of Eq. (10) we can obtain the LDOS
of a circular d-wave island. One must make sure that the results
do not depend on the initial value or the length of the path.

FIG. 1. (Color online) Schematic of quasiparticle paths with
multiple specular reflections.

FIG. 2. (Color online) Local density of states of a circular dx2−y2 -
wave island without a vortex for energy (a) ε = 0, (b) ε = 0.05�0,
and (c) ε = 0.1�0. The radius rc = 5ξ0 and the smearing factor η =
0.01�0.

IV. RESULTS

We present the LDOS with and without a vortex in a circular
d-wave island.

A. Without a vortex

First we discuss the LDOS for a system without a vortex.
Shown in Fig. 2 is the LDOS given by Eq. (10), ν(r,ε), in
units of the Fermi-surface density of states for rc = 5ξ0, for
ε = 0 [Fig. 2(a)], 0.05�0 [Fig. 2(b)], and 0.1�0 [Fig. 2(c)].
We have used 720 θ meshes in momentum space. The Andreev
bound states at the 110 boundaries7 can be seen clearly (note
that the LDOS is plotted in different scales for the different
values of ε). Due to the small size, the zero-energy LDOS is
nonzero over the entire system, while the four nodal directions
are visible for ε = 0.1�0.

FIG. 3. (Color online) Local density of states in a circular
dx2−y2 -wave island with a vortex at the center for energy (a) ε = 0,
(b) 0.05�0, and (c) 0.1�0. The radius is rc = 5ξ0 and the smearing
factor η = 0.01�0.
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FIG. 4. (Color online) Local density of states in a circular
dx2−y2 -wave island with a vortex at the center along the boundary
r = rc(cos α, sin α) as a function of polar angle α and energy ε, for
radius (a) rc = 5ξ0, (b) rc = 10ξ0, and (c) rc = 20ξ0.

B. With a single vortex

Next we consider a single vortex at the center of a circular
d-wave island with rc = 5ξ0. The LDOS is presented in
Fig. 3 for ε = 0 [Fig. 3(a)], 0.05�0 [Fig. 3(b)], and 0.1�0

[Fig. 3(c)]. The “vortex shadow” effect, which has been
discussed by Graser et al.10 for a vortex near the surface
of a d-wave superconductor, is manifest in our results. As
shown in Fig. 3(a), the vortex shadow effect causes zero-energy
bound states to disappear. The Andreev bound states at the 110
surfaces exist with nonzero energy, and their pattern changes
with increasing energy. A trajectory in the region where the
LDOS becomes larger near the vortex center can be regarded
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FIG. 5. (Color online) Initial-value dependence of |a(s)| for
momentum direction (a) θ = 0 [d(kF) = 1] and (b) θ = 7π/32
[d(kF) ∼ 0.2] as a function of integration length s (in units of ξ0) for
a circular dx2−y2 -wave island. The radius rc = 5ξ0 and the smearing
factor η = 0.01�0.

as a “ray of light” for the surface bound states. This is shown
clearly in Figs. 3(b) and 3(c).

Figure 4 illustrates the size dependence of the LDOS as a
function of energy along the circumference of the system for
rc = 5ξ0 [Fig. 4(a)], 10ξ0 [Fig. 4(b)], and 20ξ0 [Fig. 4(c)]. The
vortex shadow effect diminishes as the system size increases,
and it is indiscernible in the LDOS for rc = 20ξ0 shown in
Fig. 4(c). The rc dependence of our LDOS is consistent with
Fig. 5 in Ref. 10, where the LDOS at a 110 boundary is plotted
as a function of energy for various distances of the vortex from
the boundary.

C. Demonstration of the numerical stability

Figure 5 demonstrates how quickly different initial values
converge to the same solution for zero energy with the
smearing factor η = 0.01�0. Figures 5(a) and 5(b) show
the Riccati amplitude |a(s)| as a function of the distance s

for various initial values a0, for momentum direction θ = 0
[d(kF) = 1] and θ = 7π/32 [d(kF) ∼ 0.2], respectively. The
point of interest (x0,y0) = (−0.1,−1.3), and the initial point
of integration (xn,yn) at the boundary has been determined so
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FIG. 6. (Color online) Initial-value dependence of |a(s)| for
momentum direction θ = 0 [d(kF) = 1] as a function of integration
length s (in units of ξ0) for a circular dx2−y2 -wave island, where
the trajectories pass through the vortex center (r = 0). The radius
rc = 5ξ0 and the smearing factor η = 1 × 10−16 �0.

that the integration path is 300ξ0 or longer. In Fig. 5 |a(s)| is
shown over the length 40ξ0 from the initial point of integration
(xn,yn). Although the healing length depends on the spacial
variation of �(s) along the path, a converged solution can be
obtained regardless of a0, typically within a few to ∼10 times
the coherence length, including a0 = 0 as mentioned above.

As discussed in Sec. II E, the numerical stability of
the Riccati equations is indifferent to the vanishing order
parameter. We have confirmed this by obtaining numerically
stable solutions in the case of nodal quasiparticles, for
θ = 255π/1024 [d(kF) ∼ 6 × 10−3]. Figure 6 shows that
different initial values converge to a single solution even if the
trajectories pass through the vortex center with zero energy and
a negligible smearing factor η = 1 × 10−16�0. As the energy
is so low and the order parameter vanishes at the vortex core,
it takes more distance for convergence to occur in such a case,
as is apparent upon comparing Figs. 5 and 6. It can be seen in
Fig. 6, however, that the solution is well converged within the
distance ∼80ξ0, and hence starting the integration 300ξ0 away
from (x0,y0) is sufficient even in this case.

It is also possible to find stable, unique solutions to the
Riccati equations for an array of randomly distributed vortices,
i.e., without any symmetry or periodicity, such as multiple
vortices in a nanoscale island of arbitrary shape—as observed
in recent experiments.1,2

V. CONCLUSION

In summary, we have demonstrated a numerical procedure
for efficiently obtaining stable, initial-value-independent so-
lutions to the Riccati equations for spin-singlet, equilibrium
superconductivity in a finite-size system. In particular, we
have shown the stability of the Riccati equations, which
allows one to find unique solutions in terms of the linearized
BdG equations, and how to construct by geometry paths of
integration confined by specular reflections at the boundary.
We have applied this technique for calculating the LDOS in a
circular d-wave island with a single vortex. We find that the

“vortex shadow” effect strongly depends on the quasiparticle
energy in mesoscopic or nanoscale superconductors. For the
purpose of illustration, we have assumed a certain spatial
variation of the order parameter. It is straightforward, however,
to incorporate self-consistency as well as to include a vector
potential in this method.
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APPENDIX A: GENERAL SOLUTION OF THE RICCATI
EQUATION

We consider the Riccati equation in the general form as a
first-order nonlinear differential equation,43

dy

dx
= A(x)y2 + B(x)y + C(x). (A1)

If we have a particular solution y = f (x), we can then obtain a
general solution as y = f (x) + 1/u. The differential equation
for u is a linear equation,

du

dx
= −(2A(x)f (x) + B(x))u − A(x). (A2)

In terms of the initial value u(x0) at x0, the solution can be
expressed as

u(x) = −
( ∫ x

x0

dx ′A(x ′)e−K(x ′)
)

eK(x) + u(x0), (A3)

with

K(x) = −
∫ x

x0

dx ′(2A(x ′)f (x ′) + B(x ′)). (A4)

Hence we have the general solution as

y = f (x) + 1

−( ∫ x

x0
dx ′A(x ′)e−K(x ′)

)
eK(x) + u(x0)

. (A5)

This solution is well known in mathematics.31

APPENDIX B: STABILITY OF THE RICCATI EQUATIONS

We now discuss the stability of integrating the Riccati
equations with the use of the analytical solutions.

1. Bulk

The solution for a homogeneous bulk system is

a = −ωn + √|�|2 + ω2
n

�∗ . (B1)

Therefore, Re(a�∗) > 0 when ε < �.
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2. Near a vortex

Near a vortex, we can use the Kramer-Pesch approximation
(KPA).44–47 The KPA can be thought of as adding a perturba-
tion to the quasiparticle energy as well as the imaginary part
of the order parameter in the Riccati formalism. Introducing
the variables,

a = āeiθ , (B2)

b = b̄e−iθ , (B3)

� = �̄eiθ , (B4)

the Riccati equations can be rewritten as

vF
∂

∂s
ā = −2ω̃nā − ā2�̄∗ + �̄, (B5)

vF
∂

∂s
b̄ = 2ω̃nb̄ + b̄2�̄ − �̄∗. (B6)

The two-dimensional polar coordinates are denoted here as

r = (s,y) = r(cos θ, sin θ ). (B7)

In these coordinates, �̄ reduces to

�̄(r,kF) = f (r)�0d(kF)
s + iy√
s2 + y2

. (B8)

By means of the KPA, we have

ā(r,kF) ∼ a0(kF) + a1(r,kF), (B9)

where

a0(kF) = −sgn [d(kF)], (B10)

a1(r,kF) = −2
eu(r)

vF

∫ s

−∞
[a0(kF)ωn − iIm�̄(r ′)]e−u(r ′)ds ′.

(B11)

Here,

u(r) = 2

vF
a0(kF)

∫ s

0
Re�̄(r ′)ds ′. (B12)

The condition Re(�∗a) > 0 then translates to

Re�̄∗ā = D(s)

[
− s + 2eu(r)

vF
(sωnC(s) − y2E(s))

]
> 0,

(B13)

with

C(s) =
∫ s

−∞
e−u(r ′)ds ′, (B14)

D(s) = f (r)�0|d(k)|√
s2 + y2

, (B15)

E(s) =
∫ s

−∞
D(s ′)e−u(r ′)ds ′. (B16)

Since eu(r) is a localized function at s = 0 and the applica-
ble range for the perturbation is |a0| > |a1|, the condition
Re(�∗a) > 0 is satisfied in the region s < 0 for ωn > 0. This
means that one can obtain numerically stable solutions in a
system containing a vortex. Furthermore, as K(s) is a function

obtained by integration of Re(�∗a), it is an increasing function
with s close to and far away from a vortex. Thus it can result
in numerically stable solutions for a system containing many
vortices, as long as the intervortex distances are sufficiently
longer than the coherence length.

APPENDIX C: A PATH WITH SPECULAR REFLECTIONS
INSIDE A DISK

We illustrate how to generate a path with specular reflec-
tions inside a circular disk, from an initial point (x0,y0) with
initial angle θ . The linear path that goes through the point
(x0,y0) with the gradient a = tan θ can be written as y =
a(x − x0) + y0. We find the point of intersection of this path
with the circular boundary, which is given by x2 + y2 = r2

c .
The solutions are

x± = a2x0 − ay0 ± D

1 + a2
, (C1)

y± = a(x± − x0) + y0, (C2)

with

D =
√

r2
c + a2r2

c − a2x2
0 + 2ax0y0 − y2

0 . (C3)

Denoting (xc,yc) = (x−,y−) as the point of intersection, we
have the path as

y = a(x − x0) + y0, xc < x < x0. (C4)

The angle of specular reflection θ ′ can be found by simple
geometry:

θ ′ = θ + 2δθ, (C5)

δθ =
{

α − θ (α > 0),

π − θ + α (α < 0),
(C6)

where (xc,yc) = rc(cos α, sin α) in polar coordinates. The
angle θ ′ becomes the new momentum direction θi−1 after i − 1
specular reflections.

We find the next segment of the path in the direction θi−1

by adopting as the initial point for the ith path (xi−1,yi−1) =
(xc,yc). The point of intersection is given by

x± = a2xi−1 − ayi−1 ± D

1 + a2
, (C7)

y± = a(x± − xi−1) + yi−1, (C8)

where

D =
√

r2
c + a2r2

c − a2x2
i−1 + 2axi−1yi−1 − y2

i−1, (C9)

with a = tan θi−1. One of the solutions is equal to xi−1 and the
other solution is the next intersection point. Then we have the
ith path as

y = a(x − xi−1) + yi−1, xi−1 < x < xi . (C10)

This method of constructing paths confined in a finite-size
system with specular reflections at the boundary by geometry
can easily be generalized to a system of arbitrary shape.
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33P. Miranović, M. Ichioka, and K. Machida, Phys. Rev. B 70, 104510

(2004).
34E. V. Thuneberg, J. Kurkijärvi, and D. Rainer, Phys. Rev. B 29,

3913 (1984).
35E. V. Thuneberg, J. Kurkijärvi, and D. Rainer, Phys. Rev. Lett. 48,

1853 (1982).
36U. Klein, J. Low Temp. Phys. 69, 1 (1987).
37N. B. Kopnin, P. I. Soininen, and M. M. Salomaa, J. Low Temp.

Phys. 85, 267 (1991).
38M. Ichioka, N. Hayashi, and K. Machida, Phys. Rev. B 55, 6565

(1997).
39M. Eschrig and J. A. Sauls, New J. Phys. 11, 075009 (2009).
40J. C. Cuevas, J. Hammer, J. Kopu, J. K. Viljas, and M. Eschrig,

Phys. Rev. B 73, 184505 (2006).
41C. Bruder, Phys. Rev. B 41, 4017 (1990).
42M. Eschrig (private communication).
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