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Chiral px + i py superconducting nanowire coupled to two metallic rings pierced by a flux
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We consider a p-wave superconducting nanowire weakly coupled to two metallic rings. At the two interfaces
between the nanowire and the metallic rings the pairing order parameter vanishes, as a result two zero-mode
Majorana fermions appear. The two metallic rings are pierced by external magnetic fluxes. By determining the
correlation between the persistent currents in the two rings, we identify the special features of Majorana fermions,
such as nonlocality, which can be experimentally observed in this setup.
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I. INTRODUCTION

Topological superconductors are characterized by invari-
ance under charge conjugation symmetry. As a result of
this invariance zero-mode neutral fermions called Majorana
fermions appear at the interfaces between a superconductor
and a metal. Majorana fermions have been proposed to exist
in a variety of semiconductor devices based on the proximity
effect of a superconductor and metals.1 Due to the robustness
against noise the Majorana fermions can be used as qubits for
quantum computing.2 However, the quest to observe Majorana
fermions in a physical system continues although they may
have been observed in a recent tunneling experiment3 and
possibly other experiments.4,5 One of the materials where
Majorana fermions might be observed is Sr2RuO4 where
the pairing order parameter has p-wave symmetry6 and the
excitations are given by half vortices, which are neutral zero
mode fermions.2,7–14

Here we propose a specific setup where Majorana fermions
can be observed by measuring persistent current correlations.
We consider a geometry of two metallic nanorings coupled to
a p-wave superconducting nanowire (Fig. 1). For the p-wave
wire zero-mode Majorana fermions appear at the edges of the
wire. The metallic rings are pierced by two magnetic fluxes ϕ1

and ϕ2. The coupling between the electrons in the rings occurs
through the p-wave Majorana zero modes. For independent
rings the current in each ring will depend only on the flux
in the same ring. When the two rings are coupled through
the p-wave wire we expect that the current will be affected
by the flux in the other ring. The two rings are attached to a
charging voltage15 such that the Fermi momentum will be the
same in the rings and in the wire. Therefore resonant tunneling
current can be observed under this situation. When the energy
corresponding to the flux difference of the rings is comparable
to the zero-mode excitation energy in the wire a tunneling
current between the rings will be observed. The current in
each ring is nonlocal and depends on the two fluxes.

The explicit model consists of the p-wave wire coupled
to two metallic rings.16 Using the left and right movers
(fermions), we obtain a continuum representation of the wire.
At the two edges of the wire we obtain two neutral zero
modes. The coupling between the wire and the metallic rings
is dominated by the zero modes and given by ε ≈ |�0|e−L|�0|,
L|�0| � 1 where �0 is the p-wave pairing field and L is
the length of the wire. We compute the current in each ring

as a function of the external flux and find that when the flux
difference (energy) is comparable to the zero-mode excitation
energy the tunneling current gives rise to a nonlocal flux
dependence. When L → ∞ the quasiparticle energy scales
to zero and the spectrum of the quasiparticles overlaps with
the zero modes resulting in a more elaborate picture. In the
next section we present the explicit model. Our results on
persistent currents and nonlocality are given in Sec. III. The
main conclusions are summarized in Sec. IV.

II. MODEL

The p-wave wire of length L is given by the Hamiltonian
Hpw,

Hpw = −
∑

x

[tC+(x)C(x + a) + �̂C(x)C(x + a) + H.c.]

−μF

∑
x

C+(x)C(x). (1)

The pairing gap is given by �̂ and the polarized fermion
operator is given by C(x) ≡ Cσ=↑(x). The pairing gap obeys
the vanishing pairing boundary conditions �̂(x = 0) = �̂(x =
L) = 0 and �̂(x) = �̂0 for 0 < x < L.

We restrict ourselves to the weak pairing phase |μF | < t and
introduce the right and left fermions for the wire, C(x = na) =
CR(x) + CL(x) → C(x) = eikF xĈR(x) + e−ikF xĈL(x), where
kF is the Fermi momentum. Then Eq. (1) is replaced by the
Hamiltonian

Hpw =
∫

dx[�†(x)vF σ z(−i∂x)�(x) + �(x)�†(x)σy�(x)]

≡
∫

dx[�†(x)h(x)�(x)], (2)

where �†(x) is the two-component spinor operator given by
�†(x) = [C†

R(x),CL(x)]. The Hamiltonian h(x) in the first
quantized form obeys the eigenvalue equation h(x)�E(x) =
E�E(x). The eigenspinor �E(x) is constrained by the Majo-
rana pseudoreality condition of charge conjugation symmetry
[�E(x)]c ≡ C�∗

E(x) ≡ �−E(−x) where C = σ z represents
the charge conjugation operator. As a result the Hamiltonian
h(x) possesses the conjugation C[h(x)]∗C−1 = h(−x). The
one-dimensional Majorana chain possesses a Z2 invariant,
which counts the number of electrons (modulo-two) in the
ground state.
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FIG. 1. Two metallic nanorings connected by a p-wave super-
conducting nanowire pierced by fluxes ϕ1 and ϕ2. The length of the
wire is L whereas the circumference of each nanoring is lring.

The Hamiltonian in Eq. (1) breaks time-reversal symmetry.
The time-reversal operator for our problem is given by
T̂ �(x,t) where T̂ = σxK and K is the anti-unitary conjugation
operator. The Hamiltonian in the momentum space reveals that
the time-reversal symmetry is broken T̂ −1h(	k)T̂ = −h(−	k)
[time-reversal invariance demands that the Hamiltonian trans-
form according to T̂ −1h(	k)T̂ = h(−	k)]. Since time-reversal
symmetry is broken the topological invariant is an integer Z17

although the even-odd effect might be important.
The pairing field �(x) ≡ 4�̂(x) sin(kF a) can be written as

�(x) = ML(x) + MR(x − L) where ML(x) = �(0)
2 sgn(x) and

MR(x − L) = �(0)
2 sgn(x − L) obey the domain wall property:

ML(−x) = −ML(x) (at x = 0), MR[−(x − L)] = −MR(x −
L) (at x = L). The zero-mode eigenfunctions are given by
ηλ(x) = [η1(x),η2(x)]T and are eigenstates of the operator
σxηλ(x) = ληλ(x) with λ = ±1. The left zero-mode spinor,
localized around x = 0, is identified with λ = −1, and the
right one, localized around x = L, is identified with λ = 1,

ηLeft(x) ≡ ηλ=−1(x) = e
−1
vF

∫ x

0 �(x ′) dx ′ 1√
2

[1, − 1]T ,

(3)

ηRight(x) ≡ ηλ=1(x) = e
1

vF

∫ x

L
�(x ′) dx ′ 1√

2
[1,1]T .

The spinor operator �(x) with the two zero-mode Majorana
operators αl (at the left edge) and αr (at the right edge), (αr )2 =
(αl)2 = 1

2 , takes the form

�(x) → �(x) + αrηλ=1(x) + αlηλ=−1(x). (4)

As a result the low-energy Hamiltonian of the p-wave wire is
given by

Hpw =
∫

dx[vF �†(x)σ z(−i∂x)�(x) + �(x)�†(x)σy�(x)]

≈ i

2
εαlαr , (5)

where ε ≈ |�0|e−L|�0| and L|�0| � 1. In Eq. (5) we have
ignored the non-zero-mode excitations, which have energies
larger than ε.

In the experimental situation we may think of a nanowire,
which is placed on top of a p-wave superconductor. Due to
the proximity effect the nanowire can be treated as a p-wave
nanowire.2,3 For N conducting channels we will have N

zero Majorana modes at each boundary. Since time-reversal
symmetry is broken, the topological invariant is an integer Z
(for d > 1)17 although the physics of a paired versus unpaired
Majorana mode might be crucial.

At this stage we include the Hamiltonians of the two
rings pierced by the fluxes ϕ̂i , i = 1,2 and length (i.e.,
circumference) lring � L. The left ring is restricted to the

region −lring � x � 0, and the right ring is restricted to
L � x � L + lring. Since only the wire fields at x = 0 and
x = L are involved, we fold the space of the right ring i = 2
such that both rings are restricted to the region −lring � x � 0.
Consequently, the external fluxes obey ϕ̂1 → ϕ̂1 and ϕ̂2 →
−ϕ̂2. In addition, we replace the fermion operator for each ring
ψi(x) ≡ ψiσ=↑(x), i = 1,2 (because of the Zeeman splitting
in each ring we restrict ourselves to a one-component fermion)
by the right Ri(x) and left Li(x) fermions

ψi(x) = Ri(x)eikF x + Li(x)e−ikF x . (6)

The presence of a magnetic field on the wire and rings removes
the spin degeneracy. For a magnetic field H in the z direction
perpendicular to a vector 	d, which characterizes the p-wave
order parameter � given by � ∝ 	σ · 	d, we have two sets
of solutions for the two spin states. For this case the Fermi
momentum in the wire and rings will depend on the magnetic
field H .18 We thus have kwire

F,σ↑ ≡ kwire
F + μBH/vF equal to the

Fermi momentum for each ring. We observe that the coupling
between the wire and the rings depends on the matching
condition between the Fermi momentum in the rings and in
the wire. Therefore for N channels the matching condition
between the Fermi momentum will allow us to select the strong
coupling zero mode. For the remaining part we will consider
only a single polarization for the wire and rings. For each
ring we replace the right and left movers by four Majorana
operators,

ri ≡ −i[Ri(0) − R
†
i (0)], li ≡ Li(0) + L

†
i (0). (7)

The matrix element between the wire and rings is denoted by
−g. Therefore, the low-energy Hamiltonian is given by

HT = −ig√
2

[αl(r1 + l1) + αr (r2 − l2)]. (8)

Given the fact that we have two Majorana zero modes αl

and αr , we can replace them by a single fermion, which has
a definite parity.19 Thus q = αl + iαr , q† = αl − iαr , which
obey [q,q†]+ = 1, q†|0〉 = |1〉 and q|1〉 = |0〉. Here |0〉 is
the ground state of wire and rings: Ri,p(x)|0〉 = Li,p(x)|0〉 =
R

†
i,h(x)|0〉 = L

†
i,h(x)|0〉 = q|0〉 = 0, where Ri,p(x), Li,p(x)

are the particle operators and R
†
i,h(x), L

†
i,h(x) are the hole

operators. The right and left movers are given as a linear
combination of particle and hole operators. Further, Ri,p(x)
Li,p(x) represent the annihilation operators of particles and
R

†
i,h(x), L

†
i,h(x) are the creation operators for holes

Ri(x) = Ri,p(x) + R
†
i,h(x); Li(x) = Li,p(x) + L

†
i,h(x). (9)

Using the fermionic representation, we replace Hpw given in
Eq. (5) and HT given in Eq. (8) by

Hpw + HT ≡ εq†q − ig

2
√

2
[(q + q†)(r1 + l1)

− i(q − q†)(r2 − l2)]. (10)

The value of the wire energy ε in Eqs. (5) and (10) is based
on the projection of the spinor [in Eq. (4)] on the zero modes
ηλ=1(x) and ηλ=−1(x). Since the modes in the rings couple to
the zero modes as well as excitations in the wire, we expect the
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modes in the rings to attain a finite width 
. The Hamiltonian in
Eqs. (8) and (10) indicates that when an electron is injected into
the wire from one lead a hole excitation occurs at the second
lead. Therefore instead of the Andreev reflection1 where the
electron and hole are excited at the same lead, here we have a
crossed Andreev reflection, which splits the Cooper pair over
the two leads. The Hamiltonian in Eq. (10) shows that the
two Majorana fermions combine into a single fermion, which
couples to the two leads, prohibiting the Andreev reflection in
favor of the crossed Andreev reflection.

We perform an exact integration over the fermion operators
q, q† and find the time-dependent effective interaction Heff(t),

Heff(t) = −ig2

2

∫ ∞

−∞
dt ′μ[t − t ′]e−i ε

h̄
(t−t ′)[r2(t) − l2(t)

+ i(r1(t) + l1(t))][r2(t ′) − l2(t ′) − i(r1(t ′) + l1(t ′))],
(11)

where μ[t − t ′] is the step function, which is one for t > t ′ and
zero otherwise. When ε → 0 the term e−i ε

h̄
(t−t ′) in Eq. (11) is

replaced by one.
Using the scaling analysis given in Ref. 20, we observe

that the effective interaction flows to the strong coupling limit.
The coupling g is replaced by g(b) where b > 1 represents the
scaling parameter. We find g2(b) = g2b2−α , α ≈ 1 flows to the
strong coupling g (b � 1) → ∞. The only way a solution will
exist is if the effective interaction annihilates the ground state,

Heff(t)|0〉 = 0; [r2(t) − l2(t) − i(r1(t) + l1(t))]|0〉 = 0.

(12)

Therefore, the physical solution is given by the constraint
condition.21 Since Ri,p(x)|0〉 = Li,p(x)|0〉 = R

†
i,h(x)|0〉 =

L
†
i,h(x)|0〉 = 0 the constraint condition implies for particles

the equation [i(R†
2,p − L

†
1,p) − (L†

2,p − R
†
1,p)]|0〉 = 0, and for

holes [i(R2,h − L1,h) − (L2,h − R1,h)]|0〉 = 0. We obtain the
constraint equation ψ1(x = 0) = e−i π

2 ψ2(x = 0) ≡ ψ̃2(x =
0) = 0. In Ref. 21 we have constructed the many particles
wave function, which is sensitive to the even/odd number of
electrons in the two rings. We find that for an odd number of
electrons the current is drastically reduced. This result implies
that only the even parity is relevant, an even parity in the
p-wave wire and an even parity in the metallic rings. It is
consistent with the fact that contrary to a single Majorana
fermion, two Majorana fermions have a definite parity.19

Therefore in our problem the even/odd degeneracy is removed
by the rings which favor an even number of electrons.

Next we consider the weak coupling case, which corre-
sponds to the finite energy limit ε �= 0. This limit will be
studied perturbatively. We observe that in addition to the

current produced by the flux in each ring, the effect of the
Majorana fermions is to induce a correlation current. This
current is revealed through the appearance of a tunneling
current when the flux difference is equal to ε of the zero-mode
excitations.

We will use the zero-mode Bosonization method.20,22 The
right Ri(x) and left Li(x) fermions for each ring i = 1,2 are
given by

Ri(x) =
√

�

2π
Zie

iαR,i e
i 2π

lring
(NR,i− 1

2 )x
ei

√
4πϑR,i (x),

(13)

Li(x) =
√

�

2π
Zie

iαL,i e
i 2π

lring
(NL,i− 1

2 )x
ei

√
4πϑL,i (x).

Here Z1Z2 = −Z2Z1 are the new Majorana fields, which
ensure the anticommutation between the two rings in the
Bosonic representation, ϑR,i(x) and ϑL,i(x) are the Bosonic
fields which describe the particle-hole excitations, αR,i αL,i

are the Bosonic zero modes, and NR,j , NL,j are the conjugate
variables. The Bosonic zero modes obey the commutation rules
[−αL,i,NL,j ] = iδi,j and [αR,i,NR,j ] = iδi,j . As a result we
obtain the zero-mode representation for the uncoupled rings
in terms of the number operators NL,i , NR,i and fluxes ϕ̂i in
each ring

H0 = πvFh̄

2lring
[(NL,1 − NR,1 + 2ϕ̂1)2 + (NL,1 + NR,1)2]

+ πvFh̄

2lring
[(NL,2 − NR,2 + 2ϕ̂2)2 + (NL,2 + NR,2)2].

(14)

We will use the interaction picture for αI
R,i(t) and αI

L,i(t) in
order to evaluate Heff(t) in Eq. (11). We find that Heff(t) is
given in terms of the zero-mode functions F (t) and G(t + τ )

Heff(t) = −ig2

2

∫ ∞

−∞
dτμ[τ ]F (t)e−i ε

h̄
τG(t + τ ), (15)

where ĝ2 = g2 kF

2π
. The functions F (t) ≡ [r2(t) − l2(t) +

i(r1(t) + l1(t))] and G(t + τ ) ≡ (r2(t + τ ) − l2(t + τ ) −
i(r1(t + τ ) + l1(t + τ )) are given in terms of the zero-mode
fields αI

R,i(t) and αI
L,i(t).

We perform the integration with respect to τ and find from
Eq. (15)

Heff ≈ H real
eff + iH Im

eff , (16)

where H real
eff is the real part and H Im

eff is the imaginary part of
the effective action. The real part H real

eff is given in terms of
the dimensionless width 
̂ = 


h̄
( 2πvF

lring
)−1, which is the width

of the levels in the rings, and dimensionless zero-mode energy
ν0 ≡ ε

h̄
( 2πvF

lring
)−1

H real
eff = h̄ĝ2ν0

ν2
0 + 
̂2

[cos(2αR,2) − cos(2αL,2) − cos(2αL,1) + cos(2αR,1) + 2( sin(αR,2 + αL,2) − sin(αR,1 + αL,1))]

− 2h̄ĝ2

(
ν0 − ϕ̂1

(ν0 − ϕ̂1)2 + 
̂2
+ ν0 + ϕ̂1

(ν0 + ϕ̂1)2 + 
̂2

)
[1 + sin(αR,1 − αL,1)]

− 2h̄ĝ2

(
ν0 − ϕ̂2

(ν0 − ϕ̂2)2 + 
̂2
+ ν0 + ϕ̂2

(ν0 + ϕ̂2)2 + 
̂2

)
[1 + sin(αR,2 − αL,2)]. (17)
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III. PERSISTENT CURRENTS

The imaginary part H Im
eff of Eq. (16) causes the current

to vanish. Finite current solutions will be obtained for
the ground states |0〉, which obey H Im

eff |0〉 = 0. In particu-
lar when ν0 ≈ | ϕ̂2−ϕ̂1

2 | the imaginary part of the effective
Hamiltonian H Im

eff is maximal and the existence of a finite
current demands the condition H Im

eff |0〉 = 0. This condition

is equivalent to the relation between the zero-mode fields
αR,2 = αR,1 + u; αL,2 = αL,1 − u for an arbitrary field u,
which is integrated out. The equation ν0 ≈ | ϕ̂2−ϕ̂1

2 | represents
the new constraint condition, which replaces the constraint
ϕ̂2−ϕ̂1

2 = 0 obtained from Eq. (12) for the strong coupling case,
ε → 0.

We enforce the condition ν0 ≈ | ϕ̂2−ϕ̂1

2 | and obtain

H

h̄
≈ πvF

2lring

[(
−i

d

dα
+ 2ϕ̂1

)2

+
(

−i
d

dβ

)2
]

+ πvF

2lring

[(
−i

d

dα
+ 2ϕ̂2

)2

+
(

−i
d

dβ

)2
]

+
{

2ĝ2ν0

ν2
0 + 
̂2

sin(α) sin(β) − 2ĝ2

[
ν0 − ϕ̂1

(ν0 − ϕ̂1)2 + 
̂2
+ ν0 + ϕ̂1

(ν0 + ϕ̂1)2 + 
̂2

]
sin(β)

− 2ĝ2

[
ν0 − ϕ̂1

(ν0 − ϕ̂1)2 + 
̂2
+ ν0 + ϕ̂1

(ν0 + ϕ̂1)2 + 
̂2
+ ν0 − ϕ̂2

(ν0 − ϕ̂2)2 + 
̂2
+ ν0 + ϕ̂2

(ν0 + ϕ̂2)2 + 
̂2

] }
δ| ϕ̂1−ϕ̂2

2 |,ν0
. (18)

The first line of Eq. (18) represents the Hamiltonian for the two metallic rings pierced by the external fluxes expressed
in terms of the zero modes of the metallic rings. The second part of Eq. (18) represents the coupling between the wire and the
two rings. We observe that this part is restricted by the constraint condition | ϕ̂1−ϕ̂2

2 | = ν0. This constraint represents the effect
of Majorana fermions on the p-wave wire.

In order to investigate the Hamiltonian in Eq. (18), we will use the algebra of the zero modes22–24 where
the charge and the current are given by Q̂ = NR + NL ≡ −2i d

dβ
, Ĵ = NR − NL ≡ −2i d

dα
, which obey the

conditions: Ĵ |J,Q〉 = J |J,Q〉; J = 0,±1,±2, . . . , Q̂|J,Q〉 = Q|J,Q〉; Q = 0,±1, ± 2, . . .; eiα|J,Q〉 = |J + 1,Q〉;
e−iα|J,Q〉 = |J − 1,Q〉, eiβ |J,Q〉 = |J,Q + 1〉; and e−iβ |J,Q〉 = |J,Q − 1〉.

Using the algebra of the zero modes, we compute to lowest order the energy of the ground state as a function of the coupling
constant λ ≡ 2ĝ2(πvF

lring
)−1 = 2g2 kF lring

πvF
< 1, the electronic bandwidth and the external fluxes. We find for the ground-state energy

E(ϕ̂1,ϕ̂2)

E(ϕ̂1,ϕ̂2) = 2h̄πvF

lring

[(
ϕ̂1

2 + ϕ̂2
2
) − 2λ

(
ν0 − ϕ̂1

(ν0 − ϕ̂1)2 + 
̂2
+ ν0 + ϕ̂1

(ν0 + ϕ̂1)2 + 
̂2
+ ν0 − ϕ̂2

(ν0 − ϕ̂2)2 + 
̂2
+ ν0 + ϕ̂2

(ν0 + ϕ̂2)2 + 
̂2

)]
δ| ϕ̂1 − ϕ̂2

2 |,ν0
.

(19)

Using Eq. (19) we compute the currents Ii = ∂E(ϕ̂1,ϕ̂2)
∂ϕ̂i

for the two rings in units of I0 = πvF

lring
. In the absence of the constraint

condition δ| ϕ̂1−ϕ̂2
2 |,ν0

the current in each ring Ii

I0
= ii[ϕ̂i], i = 1,2 is given by

ii[ϕ̂i] = ϕ̂i − 2λ

[
3(ν0 − ϕ̂i)2 + 
̂2

((ν0 − ϕ̂i)2 + 
̂2)2 + (ν0 + ϕ̂i)2 − 
̂2

((ν0 + ϕ̂i)2 + 
̂2)2

]
. (20)

We observe that the current in each ring depends on both the external flux applied and the zero-mode excitation energy
ν0.

Next we consider the effect of the zero mode. The condition for stable solutions imposes the constraint ν0 ≈ | ϕ̂1−ϕ̂2

2 |,
which relates the flux difference to the zero-mode excitation energy ν0. As a result we find that the current in the two rings is
given by

i1[ϕ̂1,ϕ̂2] ≈ ϕ̂1 − 2λ

[
3(ν0 − ϕ̂1)2 + 
̂2

((ν0 − ϕ̂1)2 + 
̂2)2 + (ν0 + ϕ̂1)2 − 
̂2

((ν0 + ϕ̂1)2 + 
̂2)2

] (
1

π

)

̂(

ν0 − |(ϕ̂1−ϕ̂2)|
2

)2 + 
̂2
,

(21)

i2[ϕ̂1,ϕ̂2] ≈ ϕ̂2 − 2λ

[
3(ν0 − ϕ̂2)2 + 
̂2

((ν0 − ϕ̂2)2 + 
̂2)2 + (ν0 + ϕ̂2)2 − 
̂2

((ν0 + ϕ̂2)2 + 
̂2)2

] (
1

π

)

̂(

ν0 − |(ϕ̂1−ϕ̂2)|
2

)2 + 
̂2
.

In Fig. 2 we plot the current in ring one (left ring) as a function
of the flux ϕ̂1 in ring one for a fixed ϕ̂2 = 0.3 in the second
ring. For the case ν0 = 0.002 we observe that the current varies

linearly with ϕ̂1 with resonances at ϕ̂1 = 0 and when ϕ̂1 = ϕ̂2.
Figure 3 depicts the current in ring two (right ring) as a function
of flux in ring one (left ring) for a fixed flux ϕ̂2 = 0.3 in ring
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FIG. 2. (Color online) The current in ring one (left ring) as a
function of the flux ϕ̂1 in ring one for a fixed flux in ring two ϕ̂2 = 0.3
for ν0 = 0.002 and g = 0.01. The structure of resonance peaks at
ϕ̂1 = 0 and ϕ̂1 = ϕ̂2 follows from Eq. (21).

two for ν0 = 0.002. The current i2 is constant except for a
resonance when ϕ̂1 = ϕ̂2, clearly indicating the correlation
induced tunneling current.

Next we increase the value of the zero-mode energy to
ν = 0.01. In Fig. 4 we show the current in ring one (left ring)
as a function of the flux ϕ̂1 in ring one (left ring) for a fixed flux
ϕ̂2 = 0.3 (right ring). We observe two peaks, which correspond
to the condition ν0 = ± ϕ̂1−ϕ̂2

2 . In addition we observe a peak
when ν0 = ±ϕ̂1 (here we show the graph only for the positive
flux values). Finally, in Fig. 5 we depict the current in ring two
as a function of flux in ring one with fixed flux ϕ̂2 = 0.3 and
ν = 0.01. The current is constant except when the condition
ν0 = ± ϕ̂1−ϕ̂2

2 is satisfied again indicating the correlation. Due
to the fact that we considered the weak coupling limit we
observe, in addition to the correlation effects, the zero-order
result i1 = ϕ̂1 and i2 = ϕ̂2.

IV. CONCLUSION

To summarize, we have investigated the dependence of the
currents in the p-wave superconducting nanowire coupled to
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FIG. 3. (Color online) The current in ring two (right ring) as a
function of the flux in ring one ϕ̂1 for a fixed flux ϕ̂2 = 0.3 in ring
two for ν0 = 0.002 and g = 0.01.
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FIG. 4. (Color online) The current in ring one (left ring) as a
function of the flux ϕ̂1 in ring one for a fixed flux in ring two ϕ̂2 = 0.3
for ν0 = 0.01 and g = 0.01.

two metallic nanorings on the fluxes for the entire regime of
parameters.20,22 In the limit of large L and ε → 0 the current
vanishes in both rings when the two fluxes are different.
We observe that for a finite energy ε and different fluxes
the current dependence is more complex. The current in
each ring varies linearly except when the two fluxes are
equal, there is a resonance and a finite tunneling current.
We can interpret this effect as a crossed Andreev reflection,
instead of the usual Andreev reflection, which represents the
fingerprint of the Majorana fermions in this setup. Based
on this observation such a two-ring p-wave superconducting
nanowire system can be used to realize qubits for quantum
computing.2 In other words, due to the nonlocality asso-
ciated with the spatially separated Majorana zero modes
(bound to the rings), as evident by the transformation of
Eq. (8) into Eq. (10), quantum information can be encoded
in this setup for topological quantum computing.1,11,12,15

Our predictions can be verified by measuring correlation
between the two magnetizations in the rings thus provid-
ing us with a distinct possibility of observing Majorana
fermions.

0.1 0.2 0.3 0.4 0.5

−1.0
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0.5
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1

FIG. 5. (Color online) The current in ring two (right ring) as a
function of the flux in ring one ϕ̂1 for a fixed flux ϕ̂2 = 0.3 in ring
two for ν0 = 0.01 and g = 0.01.
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