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Triplet supercurrent in ferromagnetic Josephson junctions by spin injection
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We show that injecting nonequilibrium spins into the superconducting leads strongly enhances the stationary
Josephson current through a superconductor-ferromagnet-superconductor junction. The resulting long-range
supercurrent through a ferromagnet is carried by triplet Cooper pairs that are formed in s-wave superconductors
by the combined effects of spin injection and exchange interaction. We quantify the exchange interaction in
terms of Landau Fermi-liquid factors. The magnitude and direction of the long-range Josephson current can
be manipulated by varying the angles of the injected polarizations with respect to the magnetization in the
ferromagnet.
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I. INTRODUCTION

Studies of hybrid structures combining superconducting
and ferromagnetic components attract much attention due
to their unique, rich, and complex physical properties that
are promising in a number of potential applications.1 The
interface of an s-wave superconductor with a ferromagnet is
characterized by an unusual proximity effect that is spatially
oscillating and can lead to a sign reversal of the critical
current through superconductor-ferromagnet-superconductor
(SFS) Josephson junctions. Such a reversal is equivalent to a
π shift in the current-phase relation for the Josephson current.
This interesting property is a motivation for using the so-called
π junctions as elements of superconducting quantum circuits
for potential application in quantum computing.2 However,
the proximity effect in ferromagnets does not reach far. Two
critical tasks are to extend its range and to find a way to
manipulate the π junction in order to switch the device between
its various phase states. In contrast, Cooper pairs can be
transferred over relatively long distances even in ferromagnets,
if they are in a triplet state with ±1 projections of their
total spin onto the spin-quantization axis. Various mechanisms
have been proposed that convert a singlet pair into a triplet
pair, such as a spatially dependent magnetization,3 spin-flip
scattering at ferromagnetic-superconductor (FS) interfaces,4

and precessing magnetization.5 A number of works in this
direction have been reviewed in Ref. 1.

In this work, we will show that these tasks can be
fulfilled via the production and manipulation of a long-range
proximity effect by injecting spins into superconducting
leads. The novelty of our idea is based on the important,
and so far unaddressed, role played by the electron-electron
interaction in SFS. Our insight is that the combined effects
of spin-injection and electron-electron interaction generate
a long-range proximity effect despite the strong exchange
field in the ferromagnet. The conventional wisdom is that
spin-polarized electrons can only exist as excitations in s-wave
superconductors because the Cooper pairs do not carry a spin.
However, we will demonstrate that this simple picture, which
is based on the neglect of electron-electron interactions beyond
superconducting pairing correlations, misses qualitatively

important effects. Quantitatively, in simple metals, the ex-
change interaction of itinerant carriers is noticeable and can be
described in terms of Landau Fermi-liquid factors. Although
the exchange interaction does not cause ferromagnetism in
s-wave superconductors, it causes a transfer of spin polariza-
tion from the quasiparticle excitations to the condensate, in
the form of polarized triplet Cooper pairs. When such a triplet
pairing is generated by the combined effects of spin injection
and exchange interaction, these pairs subsequently tunnel
through the ferromagnetic layer via the long-range proximity
effect, if the spin polarizations in the leads and the layer are
not collinear. Only at this stage, which includes the so far
unaddressed important electron-electron interaction, does the
situation become similar to proposals of Refs. 1 and 3, where
an inhomogeneous magnetization gives rise to the long-range
effect provided by ±1 triplets. The relative angles between
the spin polarizations in the superconducting leads and in the
ferromagnet can be varied by controlling the injected spin
polarizations, making it possible to vary the magnitude and
sign of the Josephson current. This enables manipulations of
π junctions. In addition to the Josephson supercurrent, which
is driven by the difference in the condensate phases, there
is also a dissipative dc current. The latter is induced by the
spin-polarization flow through the ferromagnetic layer with
spin-dependent conductivity. This dissipative current also can
be manipulated by varying the injected polarization angles.
As it will be shown, at some angles it vanishes, so that the
dissipative and supercurrents can be measured independently.

Various effects of an injected spin polarization and spin
current on the electric transport in SFS junctions6,7 and other
superconducting systems8–11 have recently been considered.
Despite this interest, the fact that the exchange interaction
transfers the spin polarization from the quasiparticles to the
condensate has not been addressed so far.

The article is organized by the following way: In Sec. II,
an expression is derived connecting the triplet components
of the anomalous Green function to the nonequilibrium
spin polarization in superconducting leads. In Sec. III, the
Josephson and dissipative currents are calculated. Finally, our
results are discussed in Sec. IV.
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FIG. 1. (Color online) A sketch of the system. The electric current
flows in normal leads N through contacts with ferromagnetic leads
FL and FR . Spin density is injected from FL and FR into N and
further penetrates across tunneling barriers into superconductors SL

and SR . The Josephson current flows between these leads through a
ferromagnetic layer F. Arrows show possible magnetizations of the
ferromagnets.

II. TRIPLET ELECTRON PAIRING FUNCTION
INDUCED BY SPIN INJECTION

How to efficiently inject a spin polarization into para-
magnetic metals is well known.12 A nonequilibrium spin
accumulation is induced by the electric current through a
paramagnetic-ferromagnetic interface. We consider the sce-
nario in which the spin polarization further diffuses from a
paramagnet through a resistive barrier into a superconducting
lead, so that the electric circuit where the spin injection
takes place is effectively separated from the superconducting
circuit. We assume that the steady-state spin polarizations are
generated in both superconducting leads, in the vicinity of the F
layer. The sketch of the system is shown in Fig. 1. For clarity,
we simplify the problem by assuming that the FS contacts
contain a barrier, so that the proximity effect is weak. We also
assume that the spin-relaxation time τspin in the leads is long,
so that the spin diffusion length lspin is large compared to the
SN contact sizes and the coherence length. Consequently, the
spin densities sL(R) and the order parameters �L(R) only vary
slowly in space near the left (L) and right (R) contacts.

The electronic transport through an SFS system, whose
characteristic dimensions are larger than the elastic mean
free path, can be described in terms of Usadel equations for
angular averaged Green functions g (for a review see Ref. 13).
These functions are matrices in the Keldysh, spin, and Nambu
spaces. We choose the spin and Nambu spaces so that the
one-particle destruction operators are c1k↑ = ck↑, c1k↓ = ck↓,
c2k↑ = c

†
−k↓, and c2k↓ = −c

†
−k↑, where the labels 1 and 2

denote the Nambu spinor components, while ↑ and ↓ are the
spin indices. The Keldysh component gK of the Green function
can be represented as13

gK = grh − hga , (1)

where gr and ga are the retarded and advanced functions,
respectively, and the distribution function h is a diagonal
matrix in the Nambu space.

In order to determine the distribution h in the supercon-
ducting leads, the interfaces between these leads and the spin-
polarized normal metals must be considered. We use standard
boundary conditions relating fluxes through S-N (S-F) inter-

faces to Green functions in superconductors and normal metals
(ferromagnets). It is assumed that the spin-relaxation rates in
the superconducting leads are slow enough (lspin � rsnσs) and
the leakage of the spin polarization through the SF boundary
is sufficiently slow rsn/Asn � rsf /Asf , where 1/rsn and 1/rsf

are the interface conductances (per unit square) of SN and SF
interfaces, Asn and Asf are the SN and SF contact areas, and
σs is the normal-state conductivity of the superconductor’s
lead. With these assumptions, the distribution functions in
the superconductor h(s) and normal metal h(n) are equal to
each other, h(s) = h(n). We further assume that nonequilibrium
spins in N leads are thermalized with chemical potentials μ↑
and μ↓ for the two spin directions. Therefore, denoting by
the subscripts 11 and 22 the corresponding matrix elements
in the Nambu space, we get for h↑(↓) ≡ h

(s)
11↑(↓) = h

(n)
11↑(↓) and

h̄↑(↓) ≡ h
(s)
22↑(↓) = h

(n)
22↑(↓),

h↑(↓) = h̄↑(↓) = tanh
ω − μ↑(↓)

2kBT
. (2)

At the same time, the retarded (gr ) and advanced (ga)
Green functions have the same forms as in an equilibrium
superconductor.

Our calculation so far reiterates the conventional wisdom
of spin injection in superconductors: The effects are limited
to a spin-dependent statistical distribution function, while the
retarded and advanced Green functions do not change. In this
picture, spin injection does not lead to the appearance of triplet
correlations in the condensate wave function, which would
cause long-range Josephson tunneling through a ferromagnetic
layer. Fortunately, there is a mechanism to generate triplet
correlations in spin-polarized superconducting leads, which
others have so far overlooked. The electron-electron exchange
interaction provides a coupling between a spin accumulation
and the spectral properties of superconductors, in that spin-
polarized quasiparticles produce an effective Zeeman field.
The latter, in its turn, gives rise to triplet correlations that
are described via the corresponding spin components of the
anomalous functions gr

12 and ga
12. In Fermi-liquid theory, the

effective Zeeman energy is εxc(σN), where N is a unit vector
parallel to the injected spin polarization S = NS and

εxc = GS/2NF . (3)

The spin-accumulation magnitude is

S = − NF

4(1 + G)

∫
dωTr

(
(1 + τ3)

2
σzg

K

)
, (4)

where τ3 and σz are the Pauli matrices acting in the Nambu
and spin spaces, respectively, and NF is the density of states at
the Fermi level. The renormalization factor 1/(1 + G), where
G is the exchange Landau-Fermi liquid parameter, appears
when the spin density of Eq. (4) is expressed in terms of a
semiclassical Green function integrated over energy.14 This
factor is not qualitatively important in our case, since G is
not too close to the paramagnet instability G = −1.15 The
exchange Coulomb interaction in metals gives rise to a negative
G. For example, the calculated value is −0.17 in Al.16 The
spin density (4) strongly depends on temperature, mostly via
the temperature dependence of the superconducting gap in
the energy spectrum. In order to determine S and � in both
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leads, Eq. (4) has to be solved together with the S-dependent
self-consistency equation for �.9

Via the effective Zeeman energy of Eq. (3), the retarded and
advanced Green functions become spin-dependent.1 Indeed,
choosing the quantization axis along N, the anomalous
functions f r

↑↓ = gr
12↑↑ and f r

↓↑ = −gr
12↓↓ become

f r
↑↓(↓↑) = ± |�| exp(iφ)√

(ω ∓ εxc + iδ)2 − |�|2
, (5)

where the phase φ of the order parameter � equals φL and φR at
the left and right contacts, respectively. The triplet component
of this function with 0 spin projection onto the z axis is
f r

0 = (f r
↑↓ + f r

↓↑)/
√

2, while the triplet components with ±1
projections vanish, f r

±1 = f r
↑↑(↓↓) = 0. The advanced function,

as well as the conjugated functions f †, are determined from
symmetry relations.

It is more transparent to discuss the Green functions in
a basis where the spin-quantization axis is parallel to the
magnetization in the ferromagnetic layer, which is along z,
as shown in Fig. 1. We assume that the spin polarizations in
the left and right leads are rotated with respect to this axis by
the angles θL and θR , respectively. We follow the convention
that the three components of the triplet f0,f1,f−1 are related to
a 3D vector a = (ax,ay,az) with az = f0, ax = (f−1 − f1)/

√
2

and ay = i(f−1 + f1)/
√

2.17 Hence, in the geometry shown in
Fig. 1, after a rotation of a around the y axis, we get in the
new basis f ′

0 = f0 cos θ and f ′
1 = −f ′

−1 = −f0 sin θ/
√

2. So,
by using Eq. (5) the triplet components in the left and right
superconducting leads are

f±1R(L) = − sin θR(L)

2
(f↑↓ + f↓↑) , (6)

where the labels r and a have been omitted from here and the
same magnitudes of εxc are assumed in both leads. In the new
basis, the distribution function (2) is

hL(R) = h↑
(1 + σz cos θL(R))

2
+ h↓

(1 − σz cos θL(R))

2

+ σy sin(θL(R))
h↑ − h↓

2
. (7)

III. THE JOSEPHSON AND DISSIPATIVE CURRENTS

What we have established is that the superconducting leads
acquire triplet pairing correlations determined by nonequilib-
rium spin polarizations whose directions are tilted with respect
to the ferromagnet’s magnetization in the SFS junction. We
will show that the current through such a triplet pairing–
ferromagnet–triplet pairing system consists of two parts:
a dissipative contribution controlled by the nonequilibrium
distribution of spins in the device, and a supercurrent driven
by the phase difference between superconductors and provided
by the triplet components of the superconducting condensates
in the left and right leads.

Let us first consider the dissipative current. It can be ex-
pressed in terms of the distribution function hf inside the
ferromagnet. Due to precession in the exchange field Bex,
the spins that are not parallel to it decay quickly on the
length scale

√
Df /Bex, where Df is the diffusion constant.

Therefore, only the components of hf that are parallel and
antiparallel to z, denoted as hf ↑ and hf ↓, remain finite inside
the ferromagnet, if the junction length L � √

Df /Bex. When
the spin-relaxation length is larger than L, in the linear approxi-
mation these collinear components satisfy the spin-conserving
diffusion equation Df σ∇2

xhf σ = 0, where σ =↑,↓, that takes
into account spin-dependent diffusion coefficient in a strong
ferromagnet. The solution of this equation is a linear function
of x whose slope is obtained from the boundary conditions
∓rsf σ σf σ∇xhf σ |x=xL(R) = hL(R)σ − hf σ |x=xL(R) , where hL(R)σ

are given by the first two terms of Eq. (7). Taking into account
that rsf σ and σf σ can depend on the electron spin and assuming
equal barrier transmittances at L and R contacts, we obtain

hf σ = hRσ + hLσ

2
+ hRσ − hLσ

1 + 2γσ

x

L
, (8)

where xR(L) = ±L/2 and γσ = (rsf σ σf σ /L) � 1. Using
Eqs. (8) and (7) we compute the dissipative part of the current
through the junction:

jd =
∑

σ

∫
dωσf σ∇xhf σ

= δμ

eL

(
σf ↑

1 + 2γ↑
− σf ↓

1 + 2γ↓

)
(cos θR − cos θL). (9)

This current is proportional to the difference in the spin-up
and spin-down conductances (2rsf σ + L/σf σ )−1 of the total
ferromagnetic layer, including the interfaces; this is the well-
known19 connection between spin and electric transport in
ferromagnets. The electric current attains its maximum when
cos θR = − cos θL = ±1 and vanishes at θR = θL, as well as
at θR,θL = ±π/2. Such an angular dependence has a simple
physical explanation. The electric current (9) is proportional
to the spin current through the junction. The latter attains
its maximum when the nonequilibrium spin polarizations
in the ferromagnetic layers are oppositely directed, and it
vanishes if these polarizations are collinear and have equal
magnitudes. The spin current obviously also vanishes if
these polarizations are perpendicular to the ferromagnetic
magnetization axis, since perpendicular components do not
penetrate deep into ferromagnet. The spin flow through the
junction is accompanied by energy dissipation. It is determined
by the Ohmic losses in the ferromagnet during transport
of spin-polarized electrons between the leads having spin-
dependent electrochemical potentials. The dissipative current
of Eq. (9) is independent of the superconducting phases φL and
φR . We assume that the electric potentials of both contacts are
equal. If the load is present in the circuit, the spin current will
induce a voltage difference. The latter, in its turn, can cause
periodic oscillations of the Josephson current.6

When
√

Df /Bex is much shorter than the junction length
L and the coherence length, the up- and down-spin Fermi
surfaces become decoupled. In this regime, the supercurrent
js through the junction is determined by the decoupled
tunneling of ±1 triplet Cooper pairs at their respective
ferromagnet’s Fermi surfaces. Unlike the dissipative current,
the spin dependence of the electron diffusion coefficients
and conductivities is not so important, at least in the case
when Bex � EF . Therefore, in the leading approximation
we set Df ↑ = Df ↓ = Df , and a similar relation for the
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conductivities. Furthermore, in the linear approximation, only
the first term of Eq. (8) has to be taken into account. Moreover,
since the Josephson current is determined by part of the
distribution function that is odd in frequency, from Eqs. (8), (7),
and (2) only the spin-independent part hf ↑ + hf ↓ contributes
to the current. It is given by

js = σf

16e

∑
m=±1

∫
dω

[(
f r

m∇xf
r†
m − ∇xf

r
mf r†

m

)

− (f r → f a)
] (hf↑ + hf↓)

2
, (10)

where f r
m (m = ±1) are the retarded triplet components of

the anomalous function in ferromagnet and f a
m(ω) = f r

m(−ω),
while f

r†
m (ω) = f r∗

m (−ω). When the spin-relaxation length is
much larger than L, and within the linearized approximation,
f r

±1 obey1

Df ∇2
xfm + 2iωfm = 0 , (11)

with the boundary conditions18 rsf σf ∇xfm|x=xR(L) = ±fmR(L),
where fmR(L) are given by Eqs. (5) and (6). After transforming
the integral in Eq. (10) into a sum over the frequencies ωn =
πkBT (2n + 1), js can be finally represented in the form

js = sin(φL − φR)
L sin θR sin θL

eσf R2
sf

K , (12)

where

K = |�|2kBT
∑

ωn>0,ν=±1

1

kνL sinh(kνL)

×
[

1√
(ωn + iHν)2 + |�|2

− 1√
(ωn − iH−ν)2 + |�|2

]2

(13)

and kν = √
2(ωn + iνδμ)/Df , with Hν = εxc + νδμ and

2δμ = μ↑ − μ↓.

IV. DISCUSSION

As follows from Eq. (12), the Josephson current depends on
the directions of the nonequilibrium spin polarizations in the
superconducting leads. The current reaches its maximum when
the spin accumulations in the leads are perpendicular to the
magnetization in the ferromagnet, θR = θL = π/2. It reverses
its sign when the spin polarization in one of the leads flips its
direction. Therefore, in the setup shown in Fig. 1, the junction
can be switched into the π state by simply reversing the electric
current through one of the FN contacts. It should be noted
that the dissipative current given by Eq. (9) vanishes when
the relative angles are such that the supercurrent reaches its
maximum. Hence, the dissipative transport can be turned off, a
feature that can be important for practical purposes. Equations
(12) and (13) also imply that the long-range proximity effect,
described via js , vanishes when the exchange interaction εxc =
0. The dependence of js on the spin-potential δμ is shown in
Fig. 2. A finite spin potential causes variations of the order
parameter � and spin density entering in Eq. (12), which have
been found from a pair of self-consistent equations. In our

FIG. 2. (Color online) The Josephson current as a function
of the spin potential δμ measured in units of the unperturbed
superconducting gap �0, at L = ζ , where ζ = √

Df/2|�0| and
I0 = (2ζπkBT /er2

sf σf ) × 10−2.

calculation of � and S, we neglected the exchange field εxc,
assuming that εxc � δμ. This is a realistic assumption, taking
into account that S < δμNF in Eq. (3) and |G| is considerably
less than 1 in some superconducting metals (e.g., Al). In this
limit, the dependence of � on δμ is formally the same as in
a thermally equilibrium superconductor subject to a Zeeman
splitting equal to δμ. Such a scenario is well studied in the
literature (see, e.g., Ref. 20). In Fig. 2, we see that the critical
current changes sign at some values of δμ. This is caused by
injection of nonequilibrium spins into the ferromagnetic layer.
As a result, the distribution function in Eq. (10) is different
from the equilibrium distribution. There is some similarity
of this effect with a current reversal observed in Josephson
transistors.21 At the lower temperature, the supercurrent vs spin
potential is more peaked in the range of higher δμ, since the
spin density increases sharply together with εxc in this range.
At even higher δμ, the superconductivity is destroyed by spin
injection. That causes a sudden drop of the current. We believe
that this narrow range can be easily observed experimentally
in the set up shown in Fig. 1, because δμ can be fine tuned by
varying the current through the normal leads.

Figure 2 is calculated at L = √
Df/2|�0|, which is the

characteristic length of the ±1 triplet proximity effect in the
range of temperatures considered. This length is obviously
much larger than the s-wave Cooper pair penetration depth√

Df/Bex and therefore clearly demonstrates how the range of
the proximity effect becomes much longer by spin injection
into the superconducting leads.

In conclusion, spin injection into s-wave superconductors
can dramatically increase the stationary Josephson current
in a SFS system. This enhancement is provided by ±1
triplet components of the electron pairing function. They are
generated in superconducting leads by exchange fields that are
noncollinear with the ferromagnet magnetization. These fields,
in turn, are induced by an injected spin polarization. Besides a
strong effect on the Josephson current, spin injection also gives
rise to a dissipative current that at zero bias potential is induced
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due to spin dependence of the ferromagnet conductivity. Both
Josephson and dissipative currents can be manipulated by
varying the injected spin directions in the leads enabling
control of π junctions.
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