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In the past few years materials with protected gapless surface (edge) states have risen to the central stage of
condensed matter physics. Almost all discussions centered around topological insulators and superconductors,
which possess full quasiparticle gaps in the bulk. In this paper we argue that systems with topological stable
bulk nodes offer another class of materials with robust gapless surface states. Moreover the location of the
bulk nodes determines the Miller index of the surfaces that show (or do not show) such states. Measuring the
spectroscopic signature of these zero modes allows a phase-sensitive determination of the nodal structures of
unconventional superconductors when other phase-sensitive techniques are not applicable. We apply this idea to
gapless iron-based superconductors and show how to distinguish accidental from symmetry-dictated nodes. We
shall argue that the same idea leads to a method for detecting a class of the elusive spin liquids.

DOI: 10.1103/PhysRevB.86.094512 PACS number(s): 74.70.Xa, 74.20.Rp, 75.10.Kt

The interest in topological insulators and superconductors
lies mainly in studying their robust gapless surface states.1,2

Systems with bulk gap nodes are usually neglected, for it is
generally felt that bulk nodes render surface states ill defined.
Gap nodes in the form of band crossings are singularities in
the electronic structure. Examples include the Dirac nodes in
graphene, the d-wave superconducting gap nodes of cuprates,
and the Weyl nodes.3,4 These singularities have dramatic
effects on the boundary electronic structure. For example, the
zigzag edge of graphene has zero-energy (E = 0) flat bands,5,6

and the {110} surfaces of the cuprate superconductors have
zero bias Andreev bound states (ZBABS).7,8 Recently it has
been shown that the Weyl nodes will give rise to surface “Fermi
arcs.”4 We shall argue that the above examples are special cases
of a more general fact, namely translational invariant systems
with topologically stable bulk nodes also possess protected
gapless surface bound states. In the presence of disorder the
otherwise degenerate zero-energy band broadens into finite
width, but does not lose the signature of a gapless surface
bound state.

An important class of “nodal material” is the nodal
superconductor. Usually, the presence of gap nodes reflects
the overall repulsive nature of the (effective) Cooper pairing
Hamiltonian. The location of the gap nodes provides detailed
information about the momentum dependence of the pairing
interaction. This information is necessary for the understand-
ing of the pairing mechanism of nodal, hence unconven-
tional, superconductors. Among these superconductors the
pairing symmetry of iron-based superconductors (FeSCs) is
still very much under debate. Experimentally, roughly half
of the materials in this family show the evidence of gap
nodes. Examples include LaFePO,9 BaFe2(As1−xPx)2,10–13

KFe2As2,14,15 LiFeP,16 etc. The nodal structures of the ma-
jority in this group are unknown. The notable exception is
BaFe2(As1−xPx)2, whose node locations have been determined
by angle-resolved photoemission spectroscopy.13 Because of
the complex fermiology and the likelihood of “accidental
nodes,” these materials are not accessible to conventional

phase-sensitive probes. Finding experimental means to pin
down the location of the nodes for these materials has been a
major experimental challenge. In the following we propose to
study the correlation between the orientation of the surfaces
with the presence/absence of zero-energy peaks in surface
sensitive spectroscopy. We show that this method does not
suffer the above difficulty. We will illustrate the idea by
focusing on LaFePO. Near the end we shall briefly discuss
gapless noncentrosymmetric superconductors, and generalize
the idea presented here for the detection of a class of spin
liquids.

I. BULK NODES AND ZERO-ENERGY SURFACE
BOUND STATES

The gap nodes of a d-dimensional quasiparticle Hamil-
tonian can have nonzero dimension q. For example, q = 0
for point nodes and q = 1 for line nodes, etc. A prerequisite
of a stable nodal structure is that, in d − q − 1 dimensions,
the symmetry of the Hamiltonian17,18 at a generic k point
admits topological insulator/superconductors.19,20 If a nodal
structure is stable, and if d − q − 1 > 0, then suitably oriented
boundaries of this material will have an E = 0 bound state.
Generically the dimension of the sub-boundary Brillouin zone
(BZ) possessing E = 0 bound states is dE=0 = q + 1. For
graphene d = 2, q = 0; for cuprates d = 3, q = 1; and for
the Weyl semimetal4 d = 3, q = 0. For the purpose of this
paper we focus on the cases where the band topology of
the d − q − 1 dimensional system is classified by the group
of integers.17 Under this condition a winding number17(or
vorticity) can be assigned to each independent nodal manifold
(e.g., point or line). As long as the projection of opposite-
winding-number nodal manifolds does not completely overlap
in the boundary Brillouin zone (BZ), there will be gapless
surface bound states. Special cases of the above argument
have already been put forward in Refs. 4, 21, and 22, and
especially by Volovik et al.23 A more illustrative example is
given in the Appendix.
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FIG. 1. (Color online) Representations of the Fermi surfaces of
LaFePO and four examples of nodal structures. The blue/red curves
represent the hole/electron Fermi surfaces. Red dots with ± signs
indicate nodes with ± sign of winding numbers. (a), (b) Two different
s-wave gap nodes (red dots), (c) dx2−y2 nodes, and (d) px nodes. The
black circle in part (a) is a closed loop enclosing a gap node.

II. APPLICATION TO LaFePO

LaFePO is a stoichiometric compound, it is clean enough
for quantum oscillation to be observed.24 According to
Ref. 24, LaFePO has nearly two-dimensional (2D) Fermi
surfaces: two hole pockets at the center and two electron
pockets on the face of the unfolded BZ [for a representation see
Fig. 1(a)]. In the following we shall use 2D notation. LaFePO
is the first FeSC where strong evidence of line nodes has been
reported.9 At the present time there is no direct information
about the location of the line nodes. In addition, early Knight
shift measurement has revealed a rather puzzling result. Unlike
conventional singlet-paired superconductors, the Knight shift
increases rather than decreases below Tc.25,26 This unusual
behavior calls for the examination of possible nodal triplet
pairing.

Theoretically it has been proposed that the singlet gap func-
tion of LaFePO possesses the so-called accidental nodes27–29

where the nodal gap function transforms without any sign
change under all point-group operations. A schematic illus-
tration of the proposed nodal structure is shown in Fig. 1(a).
First let us discuss the stability of these accidental nodes.
Consider a loop encircling one of the nodes [e.g., the black
circle in Fig. 1(a)]. Like the cuprates, the BdG Hamiltonian
defined on the loop is characterized by an even integer winding
number, and has a fully gapped spectrum. Thus the loop has
a nontrivial band topology. If the node is removed from the
interior of the circle the winding number must change, which
requires the spectrum on the circle to become gapless, i.e.,
the node must pass through the circle. Of course the above
statement applies to every loop enclosing the node. This leads
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FIG. 2. (Color online) The surface local density of states N (ω)
for some of the pairing symmetries in Table I. For each symmetry two
surface orientations are shown: one with zero bias peak and the other
without. The unit of the density of states is arbitrary. The �0 used
in this calculation is 0.01 eV. Thermal broadening with temperature
T = 0.4 meV is used.

to the “vorticity conservation law”: a single node can be
displaced but not annihilated. Annihilation can occur only
when two opposite vorticity nodes hit each other. Therefore,
although “accidental,” these nodes are stable against small
perturbations.

Because the opposite vorticity nodes distribute symmetri-
cally around the (10), (01) and (11), (11̄) axes in Fig. 1(a),
there will be no ZBABS on the edges. This is in sharp contrast
to the dx2−y2 nodes [Fig. 1(c)] which possess ZBABS on the
(11) and (11̄) edges, as well as the dxy nodes which have
ZBABS on the (10) and (01) edges. The lowest index edges
that does show ZBABS are the {21} edges. [The corresponding
orientation of the real surfaces can be obtained by adding an
extra zero, e.g., (11) → (110) etc.] Using the tight-binding
fit of the local-density approximation (LDA) band structure
adapted from Refs. 27 and 28 and the BdG Hamiltonian

HLaFePO(k) = ε(k) ⊗ σ0 ⊗ τ3 + �(k)I5×5 ⊗ σ0 ⊗ τ1, (1)

we calculated the surface local density of states for a number of
different singlet pairing symmetries and surface orientations.
In Eq. (1) ε(k) is the 5 × 5 band structure matrix, �(k) =
2�0(cos kx + cos ky), and I5×5 is the identity matrix in the
orbital space. (The calculation uses the iterative Green’s
function method of Ref. 30) A few examples of the results
for nodal singlet gap function are shown in Figs. 2(a)–2(d).

Of course the s-wave accidental nodes can fall on the central
hole pockets too; an example is shown in Fig. 1(b). (Not
dictated by symmetry, there is no reason for accidental nodes
to occur on both hole Fermi surfaces.) Due to the reflection
symmetry about the {10} and {11} axes, the projections of
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TABLE I. “�” denotes the presence of ZBABS and “×” the
absence of it. The pairing symmetries are defined in the main text.

Surface

Symmetry (010) (100) (11̄0) (110) (210)

Nodal s × × × × �
dx2−y2 × × � � �
dxy � � × × �
Horizontal ring nodes × × × × ×
px × � � � �
py � × � � �
px+y � � × � �
px−y � � � × �

the opposite vorticity nodes coincide, hence there will be no
ZBABS on those surfaces. In contrast there is no reflection
symmetry about the {21} directions, hence generically these
edges will have ZBABS. This argument holds when the
accidental nodes exist on both hole pockets and/or on the
electron pockets.

Because the unusual temperature dependence of the Knight
shift we have also considered triplet pairing. The BdG
Hamiltonian for this case is given by

H ′
LaFePO(k) = ε(k) ⊗ σ0 ⊗ τ3 + I5×5 ⊗ �(k) ⊗ τ1, (2)

where �(k) = �d(k) · �σ with �d(k) = −�d(−k). In general if
there is no further restriction on �d(k) the node should not
be topologically stable. This is because, for a loop consisting
of generic momenta around a node, the mapping from k to
(ε(k), �d(k)) [ε(k)2 + | �d(k)|2 �= 0] has the homotopy group
π1(S3) = 0. The situation can change if we impose further
constraints on the form of �d(k). For example, ignoring the
spin-orbit interaction, if we require �d(k) = f (k)d̂0 where f (k)
is a partner function of the point-group irreducible represen-
tation, the node becomes stable, and is characterized by the
winding number of the AIII class.17 Under such a condition
we expect boundary zero-energy states. For simplicity we
considered only the p-wave pairings with �d(k) = 2�0 sin kxẑ

(px pairing), 2�0 sin kyẑ (py pairing), and 2�0 sin(kx ± ky)ẑ
(px±y pairing).

In Table I we summarize the results for eight different
time-reversal-symmetric nodal pairing scenarios. In addi-
tion to the four triplet gap functions discussed above, we
have also studied nodal s, �(k) = 2�0(cos kx + cos ky)σ0;
dx2−y2 , �(k) = 2�0(cos kx − cos ky)σ0, and dxy , �(k) =
4�0 sin kx sin kyσ0 (here �0 = 0.01 eV). Moreover we have
also considered the horizontal ring nodes observed in Ref. 13
for BaFe2(As1−xPx)2. Surface-orientation-wise we considered
(010), (100), (11̄0), (110), and (210). Since there are no
identical rows, by studying the dependence of the zero-bias
peak on the surface orientation, one can differentiate different
types of nodal pairing symmetries.

Although our discussion is in the context of LaFePO, our
results should apply to other iron-based superconductors with
the same lattice symmetry and time-reversal symmetry as well.
For example, the proposed dx2−y2 -wave pairing in KFe2As2

31

should have the same surface-orientation dependence of
ZBABS as the cuprates.

III. EFFECTS OF DISORDER

A natural question one might ask in reading this work is
how protected these E = 0 surface states really are. Because
τ2, the second Pauli matrix in the Nambu space, anticommutes
with all Hamiltonians we have discussed, the E = 0 states
can be made eigenstates of it. It can be shown that for a
fixed winding number the E = 0 surface states with different
τ2 eigenvalues localize at the opposite ends of the sample.
Reversing the winding number exchanges these localized
states. Thus a local disorder potential can only mix E = 0
states at surface momenta where opposite winding numbers
occur. It turns out that time-reversal symmetry requires the
1D winding number to change sign from surface momentum
k to −k. As a result there are equal, opposite intervals in the
boundary BZ with opposite winding numbers. Smooth surface
potentials do not mix them but sharp impurity potentials
do. In the presence of the mixing the delta-function density
of states broadens into a peak centered around E = 0. The
width of the peak is proportional to the disorder strength.
Therefore, although the singular density of states at E = 0
is not protected, a broadened version of it is. Interestingly
the px,y-wave pairing studied in conjunction with LaFePO
evades disorder broadening, and hence is strictly protected.
This is because opposite winding number occurs for opposite
spin. As long as the disorder potential does not flip spins,
the E = 0 singularity is unaffected. Of course the ability
to see the zero-bias conductance peak32,33 and its surface-
orientation dependence34–37 in real experiment on cuprates,
where disorder should mix ZBABS, attests for the robustness
of the phenomenon discussed here.

IV. NODAL NONCENTROSYMMETRIC
SUPERCONDUCTORS

Another interesting application of the idea presented here
is to nodal noncentrosymmetric superconductors.38 In these
systems, due to the spin-orbit interaction, the Fermi surfaces
are spin nondegenerate. This is shown by the black and
gray curves in Fig. 3(a). Several known noncentrosymmetric
superconductors exist near an antiferromagnetic phase. These
include CePt3Si, CeRhSi3, CeIrSi3, and CeCoGe3.38 For these
systems it is natural to expect the superconducting gap function
to possess nodes (in particular d-wave nodes). This is indeed
substantiated by experimental findings.39 Therefore, according
to earlier arguments there should be surface E = 0 bound states.
We consider the following simple model BdG Hamiltonian:

H (k) = ε(k)σ0 ⊗ τ3 − λ �γ (k) · �σ ⊗ τ3

+�0(cos kx − cos ky)[ασ0 + β �γ (k) · �σ ] ⊗ τ1. (3)

Here ε(k) = − cos kx − cos ky − μ, �γ (k) = (sin ky, − sin kx)
and �σ = (σ1,σ2). The band structure on the {11} edges of this
model Hamiltonian is shown in Fig. 3(b). There are E = 0
flat bands in different portions of the edge BZ. Generally,
when they exist, such flat bands are twofold degenerate, i.e.,
on each edge there are two E = 0 bound states. The only
exceptions are the flat bands [marked by the red thick line
segments in Fig. 3(b)] in the momentum intervals between
the yellow arrows. The momenta of these two intervals are
opposite to each other (up to the reciprocal lattice vector). In
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FIG. 3. (Color online) (a) The spin nondegenerate Fermi surfaces
(the black and gray curves) of the noncentrosymmetric superconduc-
tor defined in Eq. (3). The nodes are designated by the red dots.
(b) The band structure of the {11} edges. The edge states exist
between the momenta marked by the yellow arrows. The parameters
we used in producing (b) are λ = 0.3, μ = 0.45, �0 = 0.1, and
α = 1, β = 0.

addition the zero-energy bound states there are nondegenerate.
The E = 0 quasiparticle operators associated with the two
different red intervals are Hermitian conjugates of each
other. In Ref. 22 similar surface flat bands are found in the
nodal states bordering noncentrosymmetric (fully gapped)
topological superconductors.

V. DETECTING NODAL SPIN LIQUIDS

The search for spin liquids is a focused interest in current
condensed matter physics. The difficulty of finding a spin
liquid is precisely why they are novel—they are “featureless”
in a conventional sense. Among different spin liquids there
is a class of those that are nodal (to ensure their stability we
focus on the ones having Z2 gauge symmetry). For example,
such a spin liquid was proposed for the pseudogap state of
the cuprates.40,41 Like the nodal superconductors described
above, nodal spin liquids should have surface “spinon” flat
bands. If they exist, these flat bands will give rise to Curie
behavior of local magnetic susceptibility, which allows for
experimental detection; for example, the low temperature
susceptibility will diverge as 1/T . Of course, as discussed

earlier, disorder broadens the singular density of state at E = 0
into a peak, which renders the local magnetic susceptibility
finite. In addition one might need to worry about the effect of
residual spinon interaction on these flat bands. We believe
that if the residual spinon interaction is repulsive, surface
ferromagnetism will result.
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FIG. 4. (Color online) (a) The 2D nodal band structure and
its projections on (11̄) and (01) surfaces for a model d-wave
superconductor. The first BZ and one extended zone are drawn. The
solid black curves denote the Fermi surface and the shaded region is
filled in the normal state. Red arrows are the unit vectors in Eq. (A2).
The blue dots with ± signs represent nodes with vorticity ±2
respectively. Top left: the slanted thin black line segment is the surface
BZ of the (11̄) edge. The black arrow with letter “P” indicates the
direction of projection. Thick red line segments mark the surface
momenta with zero-energy bound states. Top right: the thin black
horizontal line segment is the BZ of the (01) edge. The ± vorticity
nodes overlap after projection. The vorticity of the node enclosed by
the parallelogram is equal to the winding number difference along the
two side blue segments because the windings along the top and bottom
segments cancel due to the periodicity in momentum space. This can
be explicitly seen by following the turning of the red arrows (the actual
winding number is twice that of the winding shown by the arrows,
due to the spin degeneracy). (b) The (11) edge band structure. The
surface flat bands are marked red. In constructing this figure we have
used ε(k) = − cos kx − cos ky − μ and �(k) = �0(cos kx − cos ky)
in Eq. (A1). Here μ = 0.45, �0 = 0.1.
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VI. DISCUSSIONS

Experimentally one can prepare differently oriented sur-
faces by thin film growth and perform scanning tunneling
microscopy (STM) measurements to measure the local density
of states associated with ZBABS. The advantage of using STM
is it can probe nanometer length scales. Therefore even when
the surface is not ideal, it can pick up signals from surfaces
with different local orientations. Thus by scanning the tip it is
possible to acquire the required data from a single sample.

After completion of this work we noticed a very re-
cent experiment observing a zero-bias conductance peak for
FeSe0.3Te0.7.42
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APPENDIX: THE CRITERION ILLUSTRATED
BY THE CUPRATE EXAMPLE

The idea behind the criterion presented in the main text
is best illustrated by using the cuprate superconductor as an
example. The Bogoliubov-de Gennes (BdG) Hamiltonian of
the cuprate superconductor reads

Hcuprates(k) = ε(k)σ0 ⊗ τ3 + �(k)σ0 ⊗ τ1, (A1)

where σ0 is the identity matrix acting in the spin space and
τ1,3 are 2 × 2 Pauli matrices in the Nambu space, ε(k) is the
normal-state dispersion satisfying ε(−k) = ε(k), and �(k) is
the d-wave gap function. (Since the cuprates are quasi-two-
dimensional materials, we shall use two-dimensional notations
in the following discussions.) The Fermi surface and the gap

nodes are shown in Fig. 4(a), therefore d = 2, q = 0. In the
same figure, the normalized vector

n̂(k) = (ε(k),�(k))/
√

ε(k)2 + �(k)2 (A2)

is plotted as a function of k over two BZs (see the red arrows).
Inspecting these arrows one notices each node is a “vortex” in
n̂(k). Around each vortex the arrows exhibit nonzero winding.
The total winding number associated with each node is given
by

w = 2

2π

∮
dp · [n1(k)∇kn2(k) − n2(k)∇kn1(k)]. (A3)

(The extra factor of 2 is due to spin degeneracy.) Clearly
each node is characterized by an even integer winding num-
ber. The BdG Hamiltonians defined on all one-dimensional
(=d − q − 1) loops enclosing the node are topologically
nontrivial.

Now consider the band structure projected along the (11̄)
direction. For each transverse momentum k along (11) we
have a 1D chain running in (11̄). As long as k does not
coincide with the projection of the nodes, the spectrum is fully
gapped and characterized by the winding number defined in
Eq. (A3). For any two chains whose k straddle the projection of
a node, their winding numbers must differ by ±2 [see Fig. 4(a)
caption], hence at least one of them is topologically nontrivial
and possesses E = 0 end states when the boundary condition
along (11̄) changes from closed to open. This implies E = 0
bound states exists for intervals of k. Therefore dE=0 is indeed
q + 1 = 1. An example of the (11) boundary band structure is
shown in Fig. 4(b). The k intervals showing the flat bands are
represented by the thick red line segments in the top left corner
of Fig. 4(a). The only edges which do not possess ZBABS are
the {10} (Miller’s notation is used) edges where the projections
of positive and negative nodes overlap [see top right corner of
Fig. 4(a)]. For the real material d = 3, q = 1, and the only
modification is that dE=0 changes from 1 to 2.
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