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Optimal Tc of cuprates: The role of screening and reservoir layers
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We explore the role of charge reservoir layers (CRLs) on the superconducting transition temperature of cuprate
superconductors. Specifically, we study the effect of CRLs with efficient short distance dielectric screening
coupled capacitively to copper oxide metallic layers. We argue that dielectric screening at short distances and at
frequencies of the order of the superconducting gap, but small compared to the Fermi energy can significantly
enhance Tc, the transition temperature of an unconventional superconductor. We discuss the relevance of our
qualitative arguments to a broader class of unconventional superconductors.
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I. INTRODUCTION

The superconducting properties of the cuprates are widely
believed to be determined by the electrons in the copper-
oxide (CuO2) layer. This is confirmed by experiments that
have identified these electrons as the low-energy degrees of
freedom.1 Furthermore, the study of simplified low energy
effective models, such as the single-band Hubbard model
and its descendants have provided overwhelming evidence
in favor of this view. The robust broken symmetry phases
found in the cuprates, such as antiferromagnetism and d-wave
superconductivity, are unequivocally obtained as ground states
of these models in appropriate limits.

However, assuming that the CuO2 layers in different cuprate
materials are electronically similar, the origin of substantial
diversity of their optimal transition temperatures (i.e., Tc at
optimal doping) is an important issue that remains poorly
understood. For instance, the optimal Tc of La2−xSrxCuO4

(LSCO) is 40 K, whereas that of the single layer Hg-2201
compound is more than twice as large. It is difficult to
ignore this spectacular variation, despite the fact that Tc is
a nonuniversal quantity. Indeed, various theories have been
proposed to address this issue: the prevailing view is that
alterations of the electronic structure of the CuO2 layer itself
must be responsible for the differences in optimal Tc. For
instance, the variations could occur due to differential amounts
of disorder in the CuO2 layer. Another popular approach to
the problem involves relating changes in Tc to differences in
copper-apical oxygen bond lengths,2,3 which in turn induce
subtle changes in the structure of the Fermi surface.4–6

A more radical proposal7,8 invokes the role of charge
reservoir layers (CRLs), which are spatially separated from
the CuO2 layer, in determining the optimal Tc. The CRLs
are coupled to the CuO2 layer capacitively. Taken at face
value, the notion that CRLs affect Tc is not unreasonable:
systems with CRLs such as the mercury cuprates have
higher optimal Tcs than materials such as LSCO, which do
not possess CRLs. Moreover, materials with different CRLs
also have substantially different optimal Tcs. However, the
mechanism by which the CRLs affect Tc is unclear. Here, we
attempt to place the possibility that CRLs can affect Tc on
more firm theoretical footing. The work in Refs. 7 and 8
suggested that resonant pair tunneling due to negative U
centers was responsible for this enhancement. Here, however,
we take a very different approach: we argue instead that if

reservoir layers were highly polarizable, they can significantly
alter the effective pairing interaction (and therefore Tc) of
unconventional superconductors.

The intuition underlying our argument can be stated as
follows. Any realistic system will always have both onsite
and longer range repulsive electron interactions. Whereas the
onsite interactions (as emphasized in Hubbard-like models)
reflect atomic physics at the shortest distance scales, longer
range interactions reflect the solid state environment in which
the low energy degrees of freedom are embedded: they are
effective interactions among the essential degrees of freedom
generated by “integrating out” the environment. While the
onsite repulsive interactions are directly responsible for the
unconventional pairing, more extended repulsive interactions
have the opposite effect—they weaken the scale at which
pairing occurs.9 Therefore, if the environment (i.e., the CRL
in the present context) was highly polarizable, it could act
to weaken longer range interactions in the CuO2 layer and
therefore to enhance Tc.

While the discussion here is framed largely in the context
of the cuprates, we believe that the robust qualitative effects on
Tc emphasized here are relevant to a broader class of materials
exhibiting unconventional superconductivity. Some of the
effects described here could also be explored in artificially
engineered systems consisting of hybrids of distinct parent
materials.

The outline of the paper is as follows. In Sec. II, we
review phenomenological arguments that lead to the effective
Hamiltonian constructed in Sec. III. Section IV discusses the
superconducting properties of the system of interest in various
limits. We present our conclusions and outline future directions
in Sec. V.

II. RELEVANT PHENOMENOLOGY OF MULTI-LAYERED
CUPRATES

In this section, we discuss phenomenological arguments
that inspired us to construct and analyze the model Hamil-
tonian of Sec. III. Figure 1 shows the optimal Tc of several
families of multilayer cuprate superconductors, each having
different CRLs. In these systems, each unit cell consists of
n-CuO2 layers stacked along the c axis and is separated
from the next by a CRL. The CRL is separated from the
outermost CuO2 plane (OP) by an insulating oxide layer,
which suppresses single electron tunneling between them.
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FIG. 1. Tc in several families of multilayered cuprate supercon-
ductors [reproduced with permission from J. Phys. Soc. Jpn. 76,
094711 (2007)].

Thus the CRL and OP form a naturally occurring “oxide
interface” and their coupling is primarily capacitive. For a
family of materials with the same CRL, the dependence of
Tc on n is remarkably universal: it increases from n = 1,
and decreases beyond an optimal value of n ≈ 3. For n > 5,
Tc(n) ≈ Tc(n = 1). Several theories have been proposed to
address the further enhancement at n ≈ 3, see for instance
Refs. 10 and 11. By contrast, the point we stress here is that,
as is clear from Fig. 1, for families with different CRLs, the
optimal Tc itself varies drastically. For a recent summary of
the experimental data of multilayer cuprates, see Ref. 12.

From simple electrostatic considerations, it follows that
the OP layers are more overdoped whereas the IP layers are
more underdoped. This is also consistent with the quantum
chemistry of these materials: the IP layers do not have
apical oxygens and therefore are closer to half-filling than
the OP layers. Indeed, this is confirmed by the fact that
antiferromagnetism has been experimentally observed in the
IPs.13 With increasing n, superconductivity occurs mainly on
the OPs and becomes more two dimensional; the three-layer
system consisting of two OPs sandwiched by a CRL are
separated from the next unit cell by a large number of
intervening antiferromagnetic layers. This point of view is
strongly substantiated by the fact that the vortex melting curves
of multilayered cuprates are two dimensional in character and
are independent of n for n > 5.14 The fact that Tc at large
n is close to the value at n = 1 gives us further justification
for the fact that the relevant degrees of freedom as far as
superconductivity is concerned, are the CRL and OP layers.
We are led, therefore, to consider a simple model Hamiltonian
built only out of these degrees of freedom. Within the context of
this simple model, we will study how the dielectric properties
of the CRL can affect Tc of the OP electrons.

III. MODEL HAMILTONIAN

If the CRL were to affect Tc of the OP electrons by
screening longer range interactions, its dielectric function must
satisfy specific requirements. Firstly, the dielectric function

should be large over a range of frequencies, kBTc � ω � EF.
Secondly, the dielectric screening must be efficient over a
broad range of momenta up to scales comparable to the inverse
lattice spacing. A very simple way in which the CRLs could
exhibit such properties is if they were metallic, or if they
consisted of a liquid of dipole moments that can fluctuate
and are able to screen the OP electron fluid. Very little is
known from experiments about the dielectric properties of
the CRLs and further work is needed to clarify the situation.
From a theoretical standpoint, electronic structure calculations
have found the possibility that CRL bands are close to being
metallic,15 and become metallic under pressure.16,17 We will
not speculate on the issue further here and will instead focus
on the consequences that would follow if the CRLs had the
dielectric properties described above.

Let ck,σ create an electron in the OP [see Fig. 2(b)]
and let dk,σ create an electron in the CRL. We express the
partition function of this system as a Grassman path integral of
the form

Z =
∫

Dc̄kσDckσDd̄kσDdkσ e− ∫ β

0 dτL,

L = Lcrl + Lop + Lop-crl. (1)

The action consists of three terms: (1) a contribution purely
from the CRL, (2) one purely from the OP, and (3) a coupling
between the CRL and OP. For purpose of illustration, we treat
the CRL as a free fermion system, whereas the OP action
consists of both kinetic and potential energy:

Lcrl =
∑
kσ

d̄kσ [∂τ + ξd,k]dkσ ,

Lop =
∑
kσ

c̄kσ [∂τ + ξc,k]ckσ + 1

2

∑
q

V1(q)n̂c(q)n̂c(−q),

(2)
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FIG. 2. (Color online) (a) The n-layer Hg cuprate consists of
n − 2 inner planes (IP), two outer planes (OP), and a CRL. In this
family, Tc exhibits no variation with n beyond n > 5 and is close
to Tc(n = 1) [reproduced with permission from J. Phys. Soc. Jpn.
76, 094711 (2007)]. (b) For sufficiently large n, the inner planes
are undoped and the outermost plane exhibits superconductivity. The
minimal description in this limit reduces to that of a bilayer consisting
of an OP layer and a CRL as shown in (b).
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where n̂c(q) denotes the electron density in the OP layer, and
ξc,k, ξd,k are the kinetic energies relative to the Fermi level of
the OP and CRL layer, respectively. Generically, the coupling
between the OP layer and the CRL will consist of a direct
single electron tunneling matrix element vk from the OP to the
CRL as well as Coulomb interactions between them:

Lop-crl =
∑

k

[vkd
†
kσ ckσ + H.c.] +

∑
q

V2(q)n̂d (−q)n̂c(q)

(3)

The low-energy effective action for electrons in the OP layer
is obtained by integrating out the electrons in the CRL. One
therefore obtains

Leff =
∑
kσ

c
†
kσ [(∂τ + ξc(k)) + �(k,ω)] ckσ

+
∑

q

Veff(q)n̂c(q)n̂c(−q) + · · · , (4)

where

�(k) = v∗
k(∂τ + ξd,k)−1vk,

(5)
V

(op)
eff (q) = V1(q) − 1

2V 2
2 (q)χ (q,ω),

and χ (q,ω) is the charge susceptibility of the CRL electrons,
which in turn is related to its dielectric function. Here, the “· · ·”
involve nonlinear susceptibilities that we have neglected in the
spirit of RPA (linear response); moreover, these terms produce
irrelevant corrections to the effective action to be treated below.
We note that the direct hybridization between the OP and
CRL produces a self-energy correction to the Green’s function
of the OP electrons. Therefore, if the CRL were sufficiently
disordered, the disorder would be introduced into the OP. The
fact that an oxide barrier is present in between the OP electrons
and the CRL electrons is likely to make the hybridization small,
and we shall neglect it in what follows.

In the analysis of the effective action of Eq. (4) in the next
section, we will make use of the following concrete form; for
the noninteracting kinetic term H0 = ∑

k,σ ξc(k)c†k,σ ck,σ , we
assume a square lattice including nearest (t) and next-nearest-
neighbor hybridization (t ′) for the OP layer, i.e., ξc(k) =
−2t(cos kx + cos ky) + 4t ′ cos kx cos ky − μ. Our goal here is
to illustrate the role of longer range interactions; it will suffice
to treat the interactions in Eq. (4) as being finite ranged as in
an extended-Hubbard model:

H = H0 + Hint,

Hint = U
∑
i,σ

c
†
i,σ ci,σ + U1

2

∑
〈i,j〉,σ,σ ′

ni,σ nj.σ ′

+ U2

2

∑
〈〈i,j〉〉,σ,σ ′

ni,σ nj.σ ′ , (6)

where ni,σ denotes the OP fermionic occupation operator of
spin σ at site i of the square lattice. Within this description,
the effect of capacitive screening from the CRL is to change
the ratio U1/U and U2/U in Eq. (6). This will be the
starting point for our subsequent analysis. In the spirit of our
phenomenological approach, we will largely be focusing on

the effect of U1/U ; while Tc is affected by U2/U , the dx2−y2

state is more directly affected by the ratio U1/U .

IV. SUPERCONDUCTIVITY

In this section, we study the pairing scale associated with
the model (6) in several different limits and find the same
qualitative trend in each case. Firstly, in the limit where the
interactions within the OP layers are weak compared to the
kinetic energy, we discuss asymptotically exact perturbative
renormalization group results.9,18 In this limit, the normal
state is a well-behaved Fermi liquid and superconductivity
is the only instability of this system. We next consider the
intermediate coupling regime. In this regime, there are no small
parameters, and therefore no well-controlled methods with
which to attack the problem. However, there is an unbiased ap-
proach known as the functional renormalization group (fRG),
which treats all possible ordering tendencies on equal footing.
This approach has provided us with important guidance and
intuition regarding the pairing tendencies of the cuprates and
pnictide superconductors.19–26 Lastly, we consider the limit of
strong coupling in which the low energy behavior of the system
is dictated by the proximity to a Mott insulating phase. In this
limit, there do not exist any controllable analytic treatments.
However, there are approximate treatments based on the idea
of spin-charge separation and electron fractionalization. These
methods, known as slave particle mean-field theories are the
simplest means of obtaining a system with a large Fermi
surface, but with a low superfluid density and provides us
with physical intuition as to the nature of the underdoped
cuprates.27–33 We stress below that in all three limits, when
longer range interactions are screened, the scale at which
superconductivity develops is enhanced.

A. Asymptotically exact perturbative renormalization group
treatment at weak coupling

In the weak-coupling limit U � W , where W is the kinetic
bandwidth, superconductivity develops out of a well-behaved
Fermi liquid, and is the only generic instability of the system,
as was first demonstrated in Ref. 34. In a modern formulation of
this problem,18 the problem is solved in two stages. In the first
stage, one first introduces an unphysical, artificial cutoff 
0

and integrates out all modes with energy E > 
0. The cutoff
is chosen so that W exp (−1/ρU ) � 
0 � U 2/W and the
modes can be integrated out perturbatively in U/W to as high a
degree of precision that is desired. When this is accomplished,
the remaining electronic modes lie parametrically close to
the Fermi surface and induced attractive interactions due to
the particle-hole continuum are generated in the low-energy
effective action. In the second stage, the perturbative RG flows
of the resulting effective action are computed and marginally
relevant couplings destabilize the Fermi liquid to produce the
superconducting instability below a scale

Tc ∼ We−1/aU 2
, (7)

where a is a number of order unity that involves the
entire spectrum of particle-hole fluctuations. These results
are asymptotically exact: the pairing scale is expressed as
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an asymptotic series in the bare couplings and the leading
corrections to the expression above can easily be computed.

When only on-site interactions are present, the s-wave
state in which Cooper pairing occurs on the same lattice
site is disfavored; the induced attractive interactions due to
the particle-hole fluctuations, however, favor unconventional
superconducting states. For electrons in a nearly half-filled
tetragonal lattice, the predominant instability is towards dx2−y2

superconductivity.18

When longer range interactions are present, the induced
attraction generated from the particle-hole continuum must
overcome the bare repulsive forces in order for unconventional
superconductivity to occur. The interplay between these
bare long-range repulsive forces and the induced attractive
interactions results in a rich phase diagram that was studied in
detail in Ref. 9. Here, we summarize the main conclusions of
this work. Since we are working in the limit as U,U1,U2, . . .

all approach zero, and since the effective interactions form
an asymptotic, not a convergent, series in these interactions,
the result sensitively depends on the way in which the limit
is taken. If we set U1 to approach zero as U1 ∼ U 2, there is
direct competition between the induced attractive interactions
O(U 2) and U1, which exponentially weakens the pairing
strength associated with the dx2−y2 superconductor. However,
the superconducting state itself remains robust for a finite
range of U1. On the other hand, if U1 scales as U1 ∼ U in
this limit, induced attractive interactions cannot overcome
the bare repulsion and the result is that the dx2−y2 pairing
is completely lost. In general, as the range of the repulsive
interaction is increased, the separation between Cooper pairs
also increases.35

In summary, in the limit U � t , longer range repulsive
interactions substantially weaken the pairing scale at which
dx2−y2 superconductivity occurs; therefore, if a polarizable
medium were to be placed in proximity to the metal, the
superconducting pairing strength would be exponentially
enhanced.

B. Functional renormalization group treatment
at intermediate coupling

In the weak-coupling limit treatment above, there gener-
ically isn’t any competition between unconventional pairing
and nonsuperconducting orders, unless one fine-tunes the band
structure. In the intermediate coupling regime, longer range
interactions have two effects: they lower the pairing scale, as
in the weak-coupling case, but they also enhance competing
orders, as we discuss below. In this section, we discuss
both effects and show that both act to lower the transition
temperature.

As an adaptation of the Wilsonian RG for interacting
Fermi systems,19,20,36 the functional renormalization group
(FRG) of the two-dimensional Hubbard model has been
introduced by different groups.21–23,37 Within FRG, the flow
of the two-particle vertex function V �(k1,k2,k3,k4) is studied
as a function of the energy cutoff parameter �, where k1

and k2 (k3 and k4) denote the ingoing (outgoing) particles
[see Fig. 3(a)]. � denotes the energy scale up to which
high energy modes have been integrated out to provide an
effective two-particle interaction vertex. Its initial conditions
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FIG. 3. (Color online) (a) FRG parquet flow equation of the
two-particle vertex V�. The dotted derivative denotes ∂

∂�
V �,

the dashed internal line is the single scale propagator ∂

∂�
G0,�.

(b) Patching scheme (N = 64, counterclockwise) for a typical cuprate
Fermi surface at t ′ = 0.3t and electron concentration ne = 0.98.

are given by the bare interaction in Eq. (6). The largest scale
�c at which the RG flows break down will signal a Fermi
surface instability in a given interaction channel. While the
absolute magnitude of �c can differ from Tc, the variation
of �c upon changing system parameters is indicative of
relative variations of Tc. The momenta ki entering the vertex
function V � are constrained to take N finite values in the
Brillouin zone, which is divided into patches [see Fig. 3(b)].
The flow equation of the two-particle vertex then becomes
a system of coupled N3 integrodifferential equations, which
are then solved numerically [see Fig. 3(a)].37 As we ignore
all self-energy effect in the flow, the single-particle Green
function G0,� = C(�)

iω−ε(k) only changes with respect to the cutoff

function C(�).37

The main approximations of the FRG are given by
(i) neglecting the self energy corrections imposed by the two-
particle vertex, (ii) discarding the frequency dependence of
the vertex, (iii) limited momentum resolution due to the finite
patch number N , and (iv) neglecting higher order diagrams. It
is instructive to see how the weak coupling ansatz in Sec. IV A
and the FRG are connected: in the limit of infinitesimal U ,
the approximations (i), (ii), and (iv) become irrelevant, and the
precision along (iii) can be enhanced according to a regular
numerical momentum integration in the Brillouin zone.

For intermediate coupling, superconductivity generically
competes with density-wave type instabilities; at high �, the
main feature emerging in the renormalization group flow of
the interaction vertex are particle-hole fluctuations, which
then seed superconducting fluctuations.34 The phase diagram
for local Hubbard interactions has been obtained in Ref. 23.
Nearby nesting, SDW order is dominant for sufficiently large
U , while dx2−y2 superconductivity wins either by doping or
enhancement of t ′. While the FRG is an unbiased method,
it can be reliably trusted only when U < W . Below, we set
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FIG. 4. (Color online) Critical scale �SC
c as a function of U1/U ,

with fixed parameters U=2t , ne = 0.98, t ′ = 0.3t . �c decreases
significantly for finite U1.

U = 2t , and vary U1/U while remaining close to half-filling
(ne = 1). While the parameters we’ve chosen may not directly
be applicable to the cuprates, our goal here is to illustrate
the competition between superconductivity and density wave
orders, and the general trend for the resulting superconducting
pairing strengths as U1/U is varied.

dx2−y2 -wave superconductivity stays the leading supercon-
ducting instability for intermediate coupling when we consider
U and U1 interactions according to Eq. (6). �c decreases as
U1 is enhanced (see Fig. 4) because the long-range part of
Coulomb interactions considerably affects the critical scale
of unconventional superconductivity at intermediate coupling.
The sensitivity of �c to longer range interactions is strong
when competing orders are present in the particle hole channel:
in the vicinity of half filling, enhancing U can provide a change
from SC to SDW order; furthermore, U1/U > 0.6 drives the
system into a charge density wave (CDW) phase whose �c

increases for higher U1. In the overdoped regime, competing
orders in the particle-hole channel are generally suppressed
due to absence of Fermi surface nesting. However, we still
find �SC

c to slightly decrease upon enhancing U1, which is due
to reminiscent competing particle-hole fluctuation effects.

C. Strong coupling

We now turn to the limit where the on-site and extended
electron-electron interactions are much larger than their kinetic
energy. Specifically, we start by investigating Eq. (6), and
assume t ′ = 0 for simplicity. In the strong coupling limit, we
take the on-site interaction U/t → ∞. In this limit, close to
half-filling, one projects the system onto the lower Hubbard
band consisting only of singly occupied sites. The mixing
between the Hubbard bands are eliminated via a canonical
transformation and a t/U expansion, which leads to the
following effective Hamiltonian:38,39

Heff = P
[

− t
∑
〈ij〉

c
†
iσ cjσ +

∑
ij

Vij (ni − 1)(nj − 1)

]
P

+ J
∑
〈ij〉

[
Si · Sj − 1

4
ninj

]
, (8)

where Vij takes on the values U1 for nearest-neighbor and U2

for next-nearest-neighbor repulsion and P is the Gutzwiller
projection operator onto the subspace without any doubly
occupied sites. The exchange coupling J = 4t2/(U − U1)
depends weakly on the longer-range interactions and sets the
scale for the low-energy spin dynamics of the system near
half-filling. It is important to stress that unlike the onsite
interactions, the extended interactions do contribute to the
dynamics of the lower Hubbard band. This will certainly hold
true in the approximate, yet physically motivated treatments
of this problem that we consider below.

A method that is frequently used to handle the projection
involves the introduction of auxiliary “slave” particles fiσ ,bi

defined via

c
†
iσ = bif

†
iσ . (9)

The physical electron operator is written as a product of a
charged bosonic operator bi and a neutral fermion operator
fiσ . The projection is implemented via the constraint∑

σ

f
†
iσ fiσ + b

†
i bi = 1 (10)

so that, e.g., matrix elements of operators involving the
product nf inb,i , where nf i(nbi) are the slave fermion(boson)
densities, vanish in the projected Hilbert space. The constraint
is implemented by introducing a U (1) gauge field whose
fluctuations are neglected in the simplest mean-field theories.

The mean-field treatment involves a series of approxima-
tions. Firstly, the constraint is satisfied only on average, i.e.,∑

σ 〈f †
iσ fiσ 〉 + 〈b†i bi〉 = 1. Secondly, in the superconducting

phase, the slave bosons condense and exhibit off-diagonal
long-range order. Therefore the operator bi is replaced by a
c number 〈bi〉 → √

δ, where δ is the concentration of holes,
and near half-filling, δ � 1. The resulting Hamiltonian does
not involve the projection operator P and can be written in the
form

H = −tδ
∑
〈ij〉σ

(f †
iσ fjσ + H.c.) + J

∑
〈ij〉

[
Si · Sj − 1

4
ninj

]

+
∑
ij

Vij (ni − 1)(nj − 1). (11)

Here, density and spin operators involve only the spinon degree
of freedom and the subscript “f ” on the density operator has
been eliminated for simplicity. As a consequence, the longer
range interactions are “felt” also by spinons, despite the fact
that they represent neutral particles.

The spinon Hamiltonian above still involves quartic
terms—the last approximation involves treating it variationally
via an unrestricted Hartree-Fock approximation. Specifically,
we introduce a trial Hamiltonian of the form

Htr =
∑
kσ

εkf
†
kσ fkσ + 1

2

∑
kσσ ′

[
�̃kf

†
kσ

(
iτ

y

σσ ′
)
f

†
−kσ ′ + H.c.

]
,

(12)

where �̃k is a variational parameter corresponding to the
“gap” due to preformed spinon pairs. The variational free
energy F0 = Ftr + 〈H − Htr〉tr is extremized, which leads to
the following self-consistent gap equation for �̃k, which is the
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main result of this section:

1

J − U1
=

∑
k

(cos kx − cos ky)2 1

2Ek
tanh

(
βEk

2

)
, (13)

where Ek =
√

ε2
k + �̃2

k. The physical order parameter corre-

sponding to the superconducting state is �ij = δ�̃ij . From
the gap equation, it follows that the magnitude of the spinon
gap decreases linearly as the nearest neighbor repulsion U1

increases. However, since the gap has dx2−y2 symmetry, it
is relatively unaffected by the second-neighbor repulsion.
Similar results were found in DMRG studies of extended
Hubbard models on ladder systems.9 An additional effect of
longer-range interactions is that they disfavor superconductiv-
ity by enhancing the tendency towards competing orders such
as flux phases and density-wave orders: we have observed this
competition in an explicit Hartree-Fock analysis of the spinon
Hamiltonian above and will discuss our results elsewhere.

The longer-range interactions have another significant
consequence, which is purely quantum mechanical in origin.
They suppress charge fluctuations and in turn enhance phase
fluctuations.40 This is most easily seen from an alternative
mean-field decoupling of the extended t–J Hamiltonian above
in which the system is expressed in terms of the slave boson
degrees of freedom. When longer-range interactions are re-
pulsive (attractive), the superfluid density decreases(increases)
linearly with U1,U2 . . .. In this regime, longer-range compo-
nents of the electron interactions affect Tc linearly. Thus even in
the strong-coupling limit, which is relevant to the underdoped
cuprates, screening from proximate polarizable media can act
to raise Tc.

V. DISCUSSION AND CONCLUSION

There are many factors that play a role in optimizing Tc:
after all, since it is a nonuniversal quantity, it will depend
sensitively on small variations of the microscopic properties
of a material. To make quantitative predictions of Tc, a
complete understanding of the microscopic pairing mechanism
is required, taking into account all material-specific details.
Clearly, this is an impossible task at present. Alternatively,
by searching for robust qualitative phenomena that depend on
microscopic physics in a simple parametric fashion and by
looking at relative trends of pairing strengths, one could, in
principle, uncover new strategies for optimizing Tc in existing
unconventional superconductors.

Indeed, this type of pursuit has led us to understand how
altering the properties of the CuO2 layers can optimize Tc.
Examples include ideas that focus on the relative influence of
the pairing scale and superfluid density10,41–43 in optimizing Tc

as well as on the effect of delocalizing Cooper pairs in layered
structures via interlayer tunneling.11 These scenarios may have
much to do with the universal features of the Tc curves in Fig. 1.
However, these ideas focus on the properties of the CuO2

layers and cannot address the question of why, for instance the
optimal Tc of Hg-based cuprates are much larger than LSCO
and La2−xBaxCuO4 (LBCO), which do not have CRLs.

By similarly focusing on robust qualitative effects on
Tc, we have shown that highly polarizable media, when
coupled capacitively to a metal, can act to raise the transition

temperature of an unconventional superconductor. We have
shown this by considering the problem in various limits and
arguing within the phenomenological context of extended
lattice Hubbard models, that the longer-range components
of the repulsive interactions are always detrimental to d-
wave superconductivity. We stress here that this result
does not require us to invoke a sharply defined bosonic
pairing “glue.”

At present, very little is known experimentally about the
CRLs. It would therefore be of much interest in this context
to obtain the dielectric properties of the CRL using resonant
x-ray spectroscopic methods. The dielectric properties of
CRLs can also be investigated theoretically in first-principles
calculations, which we believe are worth undertaking. If
the CRLs did possess the required dielectric properties, the
behavior of Tc would be nonmonotonic as a function of
uniaxial pressure, applied along the c axis. As the CRLs
move closer to the OP layers, Tc would increase due to the
mechanism that we discussed above. However, if the CRLs
were too close to the OP layers, even onsite interactions would
be screened; this in turn would lower Tc.

While we have been motivated here by material specific
considerations involving the role of the charge reservoir
layers, our findings are likely to apply to a broader class
of unconventional superconductors. With this in mind, it
will be vital to explore these ideas in artificially engineered
interfaces between metals and polarizable media where the
complications due to material properties are less pronounced.
An example is an interface between amorphous dipolar liquids
(i.e., amorphous mixtures of ferroelectric and antiferroelectric
subsystems) and correlated metals. A particularly exciting
example is the case of a two-dimensional electron gas (2DEG)
with metallic gates where screening due to the gates may
enable the observation of unconventional superconductivity.
In this context, by tuning the ratio of the bandwidths of the
2DEG relative to that of the metallic gates, it will be possible, in
principle, to overscreen the Coulomb interactions resulting in
attraction. We shall pursue these studies in a future publication.

By contrast, the effects of screening on Tc that we consider
here are unlikely to apply to conventional electron-phonon
superconductors. Even in these systems, the attractive inter-
action due to electron-phonon coupling, λ, must overcome
the renormalized Coulomb pseudopotential μ∗. However, the
range of the Coulomb interaction has virtually no consequence
for Tc: the retarded interaction is usually local in real space
and is insensitive to any subtle momentum-dependence of μ∗.
Furthermore, the quantity μ∗ depends mainly on the ratio of
ωD/EF and hardly depends on the bare Coulomb interaction.
It therefore follows that the screening mechanisms we consider
here would likely not affect its magnitude.
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