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Determination of boson spectrum from optical data in pseudogap phase of underdoped cuprates
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Information on the nature of the dominant inelastic processes operative in correlated metallic systems can
be obtained from an analysis of their ac optical response. An electron-boson spectral density can usefully be
extracted. This density is closely related to the optical scattering rate. However, in the underdoped region of the
high-Tc cuprate phase diagram a new energy scale (the pseudogap) emerges, which alters the optical scattering
and needs to be taken into account in any fit to data. This can influence the shape and strength of the recovered
boson spectral function. Including a pseudogap in an extended maximum entropy inversion for optimally doped
Bi-2212 is more consistent with existing data than when it is left out as done previously.
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I. INTRODUCTION

Boson structures have been noted in the physical properties
of the high critical temperature superconducting cuprates using
various techniques.1 These include angular-resolved photoe-
mission spectroscopy (ARPES), infrared optical conductivity
(IR), point contact, as well as scanning tunneling spectroscopy
(STM), and Raman. Assuming that these structures can be
described approximately within a boson exchange formalism,
they can provide valuable information on the effective under-
lying electron-boson spectral density I 2χ (ω) related to the
inelastic scattering or glue involved in their superconductivity.
In such an approach a Kubo formula relates the spectral
density of interest to the ac optical conductivity. For example,
inversion of optical data then proceeds directly from the
conductivity σ (ω) or from the optical scattering rate 1/τop(ω).
A least-squares fit can be used to determine parameters in an
assumed mathematical form for I 2χ (ω). A maximum entropy
technique based on simplified yet quite accurate analytic forms
for the conductivity derived by Allen2 has also been employed.
Such a technique has the advantage that there is no need for
any assumption about the particular form for I 2χ (ω). Instead
it is obtained numerically in which case more fine details may
emerge.

Much of the work so far has been restricted3–5 to cases
in which the electronic structure does not develop a new
energy scale of the same order of magnitude as the boson
energies we wish to probe. In principle, the assumption that the
electronic density of state is energy independent in the energy
range of interest is likely to be valid only for the optimal and
overdoped region of the cuprate phase diagram. Modification
can be expected in the underdoped region when a pseudogap
develops.6–8 Some analyses of data including a pseudogap
have already appeared,9,10 in which parameters characterizing
an assumed form for the pseudogap density of states as well as
for the spectral density are varied in a least-squares fit. Here
we consider how the maximum entropy technique3 is to be
adapted to the case of an energy-dependent density of states.

This work will be based on a generalized approximate, but
still accurate, analytic form for the relationship between the
optical scattering rate and the spectral density which further
includes an electronic density of states factor Ñ (ω).11 When

this factor is assumed constant we recover the equation given
by Allen.2 The new equation at zero temperature T = 0 was
given by Mitrovic and Fiorucci12 and later generalized by
Sharapov and Carbotte11 to include finite temperatures. In the
case of finite T but constant Ñ (ω), the generalized formula
also reduces, as it should, to that given by Shulga et al.13

as the finite-temperature generalization of the original Allen
equation.2

Section II is an introduction to the theoretical concepts
on which this work is based, and Sec. III is a summary of
the maximum entropy inversion method (MEM) used here.
Section IV establishes preliminary numerical MEM results
which will guide us in inversion of real data which is found in
Sec. V.

II. THEORETICAL CONSIDERATIONS

The frequency-dependent optical conductivity σ (T ,ω) for
a correlated electron system can usefully be written in
terms of a frequency- and temperature-dependent optical
self-energy �op(T ,ω) which plays a role in optics similar to the
quasiparticle self-energy of angular-resolved photoemission
spectroscopy (ARPES). Denoting the plasma energy by �p

we can write

σ (T ,ω) = i

4π

�2
p

ω − 2�op(T ,ω)
. (1)

The imaginary part of −2�op(T ,ω) defines an optical scatter-
ing rate 1/τop(T ,ω) and the real part a renormalized optical
effective mass m∗op(T ,ω)/m with ω[m∗op(T ,ω)/m − 1] =
−2Re�op(T ,ω). The optical mass enhancement λop(T ,ω)
is defined as 1 + λop(T ,ω) = m∗op(T ,ω)/m. In terms of
1/τop(T ,ω) and λop(T ,ω) the conductivity takes on a Drude
form with its real part

σ1(T ,ω) = �2
p

4π

1/τop(T ,ω)

[ω(1 + λop(T ,ω))]2 + [1/τop(T ,ω)]2
, (2)

which differs from its simplest rendition only through energy
and temperature dependence14–17 in 1/τop(T ,ω) and mass
renormalization λop(T ,ω). This energy and temperature depen-
dence carries the information on the inelastic scattering here,
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due to coupling to an effective boson exchange mechanism. In
conventional superconductors these lead to so-called strong-
coupling corrections18–21 to conventional BCS theory. Of
course additional corrections can also play a role such as
energy dependence21–24 in the density of electronic states and
momentum anisotropies.25–27 In general σ1(T ,ω) of Eq. (2)
can be calculated from a Kubo formula14–17 which involves,
in a bubble approximation, thermal factors and the product of
two single-particle spectral functions A(k,ω) both at the same
momentum k but displaced in energy ω by the photon energy
�, neglecting vertex corrections. For a boson exchange model
with electron-boson spectral density I 2χ (ω), Allen2 derived a
very simple approximate, but analytic, formula which relates
1/τop(T ,ω) directly to I 2χ (T ,ω). It was generalized to finite
temperature by Shulga et al.13 and by Sharapov and Carbotte11

to the case when there is important energy dependence in the
effective electronic density of state Ñ (ω) which needs to be
taken into account. The formula of Sharapov and Carbotte11 is

1/τop = π

ω

∫ ∞

0
d�I 2χ (�)

∫ +∞

−∞
dz[N (z − �) + N (−z + �)]

× [nB(�) + 1 − f (z − �)][f (z − ω) − f (z + ω)],

(3)

where nB(�) and f (�) are respectively the Bose-Einstein and
Fermi-Dirac distribution functions. This generalized formula
properly reduces to the form given by Shulga et al.13 when
the effective density of state Ñ (z) is constant, and also to
Allen’s form when temperature is taken to be zero. For zero
temperature but a variable density of state, we get the formula
given by Mitrovic and Fiorucci12

1

τ op(T = 0,ω)
≡ 1

τ op(ω)
= 2π

ω

∫ ω

0
d�I 2χ (�)

∫ ω−�

0
dzÑ (z),

(4)
where Ñ (ω) is the symmetrized density of state [N (ω) +
N (−ω)]/2. When it is constant and equal to 1 we obtain the
well-known Allen formula and find that the second derivative28

of ω/τop(ω) is I 2χ (ω); i.e.,

1

2π

d2

dω2

[
ω

τop(ω)

]
= I 2χ (ω). (5)

While formula (5) is simple, even when the full Kubo formula
for the conductivity in a boson exchange model is used, this
formula is known to reproduce accurately the spectral density
in the energy range in which it is nonzero. Above the cutoff
in I 2χ (ω) the derivative on the left-hand side of Eq. (5) can
become negative in the more complete theory,28 but this is of
no consequence here.

III. MAXIMUM ENTROPY INVERSION
WITH ENERGY-DEPENDENT ELECTRONIC

DENSITY OF STATE

Equation (4) can be written in the general form

1

τ op(ω)
=

∫
d�I 2χ (�)K(ω,�), (6)

where the kernel K(ω,�) can be read off Eq. (4) but for
the present purpose can be left general and unspecified.
For a general kernel, K(ω,�), and input data, Din(ω), with

Din(ω) = ∫ +∞
0 K(ω,�)I 2χ (�)d�, the deconvolution of this

equation to recover an effective spectral density, I 2χ (�),
is ill conditioned and here we use a maximum entropy
technique.13 The equation can be discretized Din(i) =∑

j K(i,j )I 2χ (j )
� where 
� is the differential increment
on the integration over �j = j
� with j an integer. We define
a χ2 by

χ2 =
N∑

i=1

[Din(i) − �(i)]2

ε2
i

, (7)

where Din(i) is the input data, �(i) ≡ ∑
j K(i,j )I 2χ (j )
� is

calculated from the known kernel and a given choice of I 2χ (j ),
and εi is the error assigned to the data Din(i). Constraints such
as positive definiteness for the boson exchange function are
noted and the entropy functional

L = χ2

2
− σS (8)

is minimized with the Shannon-Jones entropy3 S:

S =
∫ ∞

0

[
I 2χ (�) − m(�) − I 2χ (�) ln

∣∣∣∣I
2χ (�)

m(�)

∣∣∣∣
]
d�.

(9)

The parameter σ in Eq. (8) controls how close a fit to the
data is obtained. The parameter m(�) is here taken to be
some constant value on the assumption that there is no a
priori knowledge of the functional form of the electron-
boson spectral density I 2χ (�). While there is no guarantee
that a boson exchange model can successfully reproduce
consistently, quantitatively, and accurately all the details of
optical data in highly correlated systems, it does produce
important information. An important fact to note, and this has
been well documented and stressed in the review of Carbotte,
Timusk, and Hwang,1 is that there is a great deal of qualitative
agreement between recovered spectrum using ARPES, IR,
Raman, and STM tunneling. This provides confidence to go
further and now include more rigorously pseudogap features
which here enter into Eq. (6) through the density of state
factor Ñ (ω) with the necessary modifications due to the
opening of a pseudogap 
pg . Here we do not wish to commit
to a particular specific pseudogap model but instead take a
parameterized form for the effective symmetrized DOS Ñ (ω)
and vary parameters. Once this is fixed, maximum entropy will
provide us with a spectral density I 2χ (ω) for a given set of
data for the optical scattering rate 1/τop(ω). This does not tell
us anything about the actual origin of the boson involved in the
scattering of the charge carriers, and the origin of these bosons
remains controversial. A review of all available inversions
based on optics as well as on Raman and ARPES and other
considerations given in Ref. 1 led the authors to nevertheless
conclude that the spin fluctuations play the major role with
possibly a small29 contribution at the 10% level from the
phonons. Should the recently30–32 discovered novel magnetic
modes associated with zero momentum (q = 0) contribute
significantly to the glue, they would also in principle be
included in the recovered spectra.
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IV. PRELIMINARY NUMERICAL RESULTS FOR
MAXIMUM ENTROPY INVERSIONS

Taking the second derivative of ω/τop(ω) in Eq. (4) gives

1

2π

d2

dω2

[
ω

τop(ω)

]

= I 2χ (ω)Ñ(0) −
∫ ω

0
d�I 2χ (�)

d

d�
[Ñ (ω − �)], (10)

which is quite different from the result of Eq. (5) for the
constant density of state case. Here the first term does give
I 2χ (ω) reduced by the factor Ñ (0) ≡ N0 and the second is a
correction. It is instructive to change the integral in Eq. (10)
through an integration by parts to obtain

1

2π

d2

dω2

[
ω

τop(ω)

]

= I 2χ (ω = 0)Ñ (ω) +
∫ ω

0
d�Ñ (ω − �)

d

d�
[I 2χ (�)].

(11)

This form provides a first term for the second derivative of
ω/τop(ω) which is now the product of I 2χ (ω) at ω = 0 and
Ñ (ω) while the second term is a correction to this simplified
result. It is interesting to consider the case of a marginal Fermi
liquid (MFL) model for the spectral density I 2χ (�) which
has the form A tanh(�/kBT ). For low temperature this form
provides a constant I 2χ (ω) = A and its derivative is zero. Thus
for this particular case the second derivative of Eq. (11) gives
the product of I 2χ (ω = 0)Ñ (ω) = I 2χ (ω)Ñ(ω) and is to be
contrasted with Eq. (5). For a constant Ñ (ω) we get I 2χ (ω)
while for a constant spectral density we get the effective density
of states Ñ (ω) which includes the pseudogap. It is important to
stress that this result is restricted to a constant spectral density
and the second term in Eq. (11) will provide modifications in
all other cases.

FIG. 1. (Color online) The product (dash-dotted red curve) of the
input marginal Fermi liquid (MFL) spectral density I 2χ (ω) multiplied
by a density of state Ñ (ω) which is 33% its constant energy value
below ω = 
pg = 20 meV. Lost states in Ñ (ω) are piled up above

pg between 20 and 40 meV. The solid blue curve is the spectrum
recovered from a maximum entropy inversion of the scattering rate
1/τ op(ω) and the dashed green curve is the second derivative of
Eqs. (10) and (11).

In Fig. 1 we show results of our maximum entropy
inversions of optical data generated in a MFL model for I 2χ (ω)
and a square well model for Ñ (ω) which is taken equal to
0.33 below the pseudogap energy ω = 
pg = 20 meV with
missing states piled up just above this energy and distributed
equally in the range ω = 
pg to 2
pg . The input product of
I 2χ (ω) × Ñ (ω) is represented by the red dash-dotted curve,
the maximum entropy inversion is the solid blue curve, and
the second-derivative technique yields the dashed green curve.
Both agree quite well with the input product; our expectation
that we should get to a good approximation to I 2χ (ω) × Ñ (ω)
is borne out by the numerical work. It is clear however that
we cannot get independent information on Ñ (ω) and I 2χ (ω)
from optics even in this very simplified case.

V. APPLICATION OF MAXIMUM ENTROPY METHOD
TO REAL DATA

In the top panel of Fig. 2 we present a model10 for the
optical scattering rate 1/τop(ω) serving as a convenient input
for our maximum entropy inversions. The model is based on
data for Bi-2212 UD 69 at T = 70 K5,10 with intercept at
ω = 0 set to zero so as to simulate a clean sample at zero
temperature. Based on this realistic form we now study how
maximum entropy inversion at T = 0 works when there is a
pseudogap in the system but the corresponding details of the
density of states Ñ (ω) are not known. In the middle panel we
show the recovered I 2χ (ω) for 5 cases. In all instances we
have taken a pseudogap model previously used with success
by Hwang10 in his least-squares fit analysis of Bi-2212. The
model has the form9,10

Ñ (ω) = N0 + (1 − N0)

(
ω


pg

)2

for |ω| � 
pg

= 1 + 2(1 − N0)

3
for |ω| ∈ (
pg,2
pg)

= 1 for |ω| � 2
pg. (12)

This mathematical form is illustrated in the inset of Fig. 3 for
a case N0 = 0.25 and 
pg = 44 meV. In Hwang’s previous
work10 the electron-boson spectral density was modeled with
two analytic curves

I 2χ (ω) = Asω

ω4
s + ω4

+ Amω

ω2
m + ω2

, (13)

which consists of an MMP piece33 (second term) representing
coupling to spin fluctuations as in the work of Millis, Monien,
and Pines (MMP). This provides a background extending
over several 100 meV with ωm a spin fluctuation frequency
and Am an amplitude. An additional sharp peak (first term),
possibly representing coupling to an optical resonance at ωs ,
is also included in the least-squares fit to the scattering rate
which has six parameters. Here, however, we will not use
the functional form Eq. (13) for I 2χ (ω) but instead employ a
maximum entropy technique; this in no way commits us to a
particular form for I 2χ (ω). Such a technique applied to optical
data in La1.83Sr0.17CuO4 produced a two-peak structure in the
recovered electron-boson spectral density, for example.34 Most
recovered spectra,4,5,35 however, show a low-energy resonance
structure superimposed on a background which extends to
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FIG. 2. (Color online) Model optical scattering rate data 1/τ op(ω)
(solid black curve) for zero temperature based on a Bi-2212 UD69
sample (top panel). The other curves are our maximum entropy
(ME) fits. The middle panel gives the recovered electron-boson
spectral density I 2χ (ω) when our ME inversion includes a pseudogap

pg = 44 meV with various values of N0 as noted in the figure.
The bottom panel is for fixed N0 = 0.25. The grey dashed curve
gives our input model for I 2χ (ω) and the solid purple curve the
spectrum recovered from ME inversion including the model DOS
Ñ (ω) with pseudogap. The solid red curve is the spectrum recovered
when Ñ (ω) is assumed constant, i.e., N0 = 1.0, in the inversion
process, and the dash-dotted orange curve is the second-derivative
result 1/(2π )d2/dω2[ω/τop(ω)]. In the inset we display the real
part of the optical conductivity σ1(ω) with (N0 = 0.0, solid red)
and without (N0 = 1.0, dashed blue) pseudogap from the work in
Ref. 6.

energies as high as 300 meV or even higher. Such features
are well represented qualitatively with the analytic form of
Eq. (13). We note that the density of state model used in
Ref. 10, which we retain here, is similar to what is found in
the STM work of Renner et al.36 The I 2χ (ω) obtained by
Hwang10 is shown as the grey dashed line in the bottom panel
of Fig. 2 and will be discussed later. In the middle panel we
show the results of the maximum entropy inversion of Eq. (6)
with the kernel given in Eq. (4) and the model Ñ (ω) as in
Hwang10 and previously in Hwang et al.8 where it is applied
to the analysis of ortho-II YBCO. In all cases 
pg = 44 meV,
but various values of N0 in Eq. (12) are employed, namely blue
(N0 = 0.1), pink (N0 = 0.25), green (N0 = 0.5), black (N0 =
0.75), and red (N0 = 1.0), which corresponds to the case of no
pseudogap, i.e., a flat density of state. In all instances a good
fit to 1/τop(ω) is obtained as shown in the top panel. We see

FIG. 3. (Color online) As in Fig. 2 but now the depth of the well
in the density of state Ñ(ω) is kept fixed at N0 = 0.25 and the size
of the pseudogap 
pg is varied as indicated in the figure. The various
lines in the top panel for the optical scattering rate 1/τ op(ω) are the
fits to the input data (black curve). The inset shows the model density
of state used for the pseudogap and the shaded region defines the
spectral weight lost below 
pg due to pseudogap formation which
we denote by PGloss.

that the recovered I 2χ (ω) however changes significantly as
N0 goes from 0.1 to 1.0. The peak moves to higher frequency
and generally increases in height and more spectral weight
is transferred from the ω ∼= 0 region with increasing N0. If
there were a pseudogap in the system with N0 = 0.25 as
found in the least-squares fit approach of Hwang10 and it
were ignored in a maximum entropy fit, we would see that
the resultant I 2χ (ω) given in the dashed grey curve of the
lower panel would be very different from its true value. It is
clear from these results that in an analysis of optical data in
the underdoped region of the cuprate phase diagram, we need
to include the pseudogap if we are to obtain a reliable value of
the spectral density and in particular get correctly the position
of its peak which represents coupling to a sharp resonance
mode. The inset of the top panel makes a similar point. It
shows the real part of the optical conductivity based on a
model I 2χ (ω) of Ref. 6 (solid red) including a pseudogap and
without (dashed blue). We see significant differences between
these two curves. In particular the effective boson assisted
incoherent Holstein sideband shows a sharp onset at the energy
of the peak in our model I 2χ (ω), with the onset shifted to the
right by the pseudogap energy as compared with the case
without pseudogap. It is also reduced in magnitude.
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In the bottom panel of Fig. 2 we show that when maximum
entropy is used for inversion with the known pseudogap model,
we get an excellent reproduction (solid purple curve) of its
least-squares fit determination (dashed grey curve). On the
other hand if the maximum entropy inversion proceeds on the
assumption of a constant density of state we get the solid red
curve which peaks at higher energy than does the input I 2χ (ω).
This agrees well with the second-derivative result shown as
the orange dash-dotted curve. Figure 3 provides additional
results. The lower panel gives our MEM results for I 2χ (ω)
when various values of 
pg itself are used (pink 0 meV, blue
10 meV, orange 20 meV, blue 30 meV, and red 44 meV, as
before). The fixed parameter is the depth of the pseudogap
well at ω = 0; i.e., N0 = 0.25 in all cases. The fits to the
scattering rate data are given in the top panel. What is clear
from these data is that decreasing the value of the pseudogap
pushes the peak in the MEM I 2χ (ω) to higher energies, as the
spectral density tries to compensate for the loss in scattering
implied by a decrease in 
pg .

Plotting the position of the peak in I 2χ (ω) obtained in all
the cases considered in Figs. 2 and 3, and additional ones
for N0 = 0.25 in the upper panel of Fig. 4, shows that they

FIG. 4. (Color online) Microscopic parameters associated with
our recovered I 2χ (ω) spectra as a function of PGloss in meV. The top
panel gives the energy of the peak in the spectral density. The middle
panel gives the spectral mass enhancement λ(ωc) defined as twice the
first inverse moment of I 2χ (�). The various points shown are based
on the data in Figs. 2 and 3. The bottom panel gives the optical mass
enhancement factor λop(ω) at ω = 0 of Eqs. (15) and (16), which is
also the same as its quasiparticle renormalization. Both differ from
λ(ωc) when the electronic density of states varies with energy due to
a finite pseudogap.

vary mainly with value of PGloss defined as the area of the
shaded region in the density of state shown in the inset of
Fig. 3. This represents the area lost in the density of state
below the pseudogap energy ω = 
pg as compared with its
constant value (1.0 in our case). It is also the area recovered in
our model above ω = 
pg in the region to 2
pg . The almost
linear drop in the position of ωpeak as a function of increasing
PGloss is a useful observation because it can be employed, as we
will elaborate below, to constrain parameters in the effective
density of state Ñ (ω) when otherwise nothing is known about
its variation with ω. However, before we address this issue we
show in the middle panel of Fig. 4 corresponding results for
the derived mass enhancement parameter λ(ωc) defined in the
usual way, as twice the first inverse moment of the spectral
function, i.e., λ(ωc) = 2

∫ ωc

0 d� I 2χ (�)/� with a cutoff on
� set to 5000 cm−1. We will refer to this quantity as the
spectral lambda. By its definition this is the electron-boson
mass renormalization which enters many quantities such as
the critical temperature and quasiparticle, and optical mass
in the case of a flat density of electronic states. When Ñ (ω)
is not constant because there is a pseudogap, the optical and
quasiparticle mass remain equal to each other, but are not given
by the spectral lambda λ(ωc). In our model for the optical
conductivity λop(ω) is6–8,37,38

λop(ω) = 2

ω2

∫ ωc

0
d�I 2χ (�)

×
∫ ∞

0
dω′Ñ (ω′) ln

[
(ω′ + �)2

(ω′ + �)2 − ω2

]
(14)

and its zero energy limit ω → 0 is

λop(ω = 0) = 2
∫ ∞

0
dω′Ñ (ω′)

∫ ωc

0
d�

I 2χ (�)

(ω′ + �)2
, (15)

which is different from the spectral lambda λ(ωc) as discussed
in Ref. 6 and seen in the lower panel of Fig. 4. We can rewrite
Eq. (15) for our Ñ (ω) which is specified in Eq. (12):

λop(ω = 0) = 2
∫ ωc

0
d�I 2χ (�)

{
N0

(
1

�
− 1

� + 
pg

)

+ (1 − N0)

[
1


pg

+ 2�


2
pg

ln

∣∣∣∣ �

� + 
pg

∣∣∣∣
+

(
�


pg

)2( 1

�
− 1

� + 
pg

)]

+
[

1 + 2

3
(1−N0)

](
1

� + 
pg

− 1

� + 2
pg

)

+ 1

� + 2
pg

}
. (16)

We see that the spectral renormalization λ(ωc) increases with
increasing PGloss (middle panel in Fig. 4); by contrast the
optical mass is nearly independent of pseudogap details. As
shown in the top panel, there is a decrease in ωpeak with
increasing PGloss and this leads to an increased contribution
to λ(ωc) because of the term 1/� in its definition. But in
λop(ω = 0) the additional presence of the pseudogap has the
opposite tendency, because it reduces the effectiveness of small
� below 
pg and both effects combined leave λop(0) fairly
constant.
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FIG. 5. (Color online) The electron-boson spectral density
I 2χ (ω) as function of energy ω in meV recovered from optical
scattering rate data in Bi-2212. The upper panel is for an underdoped
sample UD69 and the lower for optimally doped OPT96 from Ref. 5
The dash-dotted red and solid blue curves result from a least-squares
fit using a model spectral density consisting of an MMP background
augmented with a sharp peak at ωs/(31/4) [see Eq. (13)] (Ref. 10).
This energy is taken to be 5.4kBTc and is the energy of the spin-1
resonance seen in the spin fluctuation spectrum by inelastic polarized
neutron scattering. In addition a pseudogap is included in the density
of state model shown in the inset of Fig. 3 with parameters N0 and

pg which are also included in the least-squares fit with fixed value of
PGloss, 16.1 meV for UD69 and 8.7 meV for OPT96. The dashed blue
curve is for comparison and is the spectrum obtained in a flat-band
maximum entropy inversion of the same data.

Armed with the observation that ωpeak decreases with
PGloss, and that this relationship is robust and minimally
dependent on the details of the energy variation assumed for
Ñ (ω), we turn to experiments. In the upper panel of Fig. 5 we
reconsider the Bi-2212 UD69 first analyzed by Hwang.10 Here
we assume that the sharp peak in I 2χ (ω) is due to coupling
of the charge carriers to the spin-1 resonance observed in
inelastic spin-polarized neutron scattering39,40 following the
law ωsr

∼= 5.4kBTc where Tc is the sample critical temperature.
This allows us to fix the peak position in the spectral density
as well as the value of PGloss in the pseudogap density of
state at 16.1 meV read off the top panel of Fig. 4. This leaves
a single parameter in the characterization of Ñ (ω). Recently
Hüfner et al.41 have provided a summary of known pseudogap
values as a function of doping (p) for a great variety of
systems and from many different measurement techniques.
They find that the pseudogap becomes zero only at the top of
the superconducting dome and that it grows roughly linearly as
doping (p) is decreased. We can use their average fit to the data
to estimate the pseudogap value in the UD69 sample and obtain


pg
∼= 56 meV. This fixes our pseudogap density of state

model completely and N0 = 0.55. The remaining parameters
in I 2χ (ω) are then varied, and we get the solid blue curve in
the upper panel of Fig. 5. If instead we arbitrarily reduce 
pg

to 35 meV but change N0 to a value of 0.3 to preserve PGloss at
16.1 meV, the dash-dotted red curve is obtained which shows
that the recovered I 2χ (ω) of a least-squares fit to optical data
is not very sensitive to the value of 
pg used, provided PGloss

is left fixed.
While we have presented here only the results of a least-

squares fit with fixed model for Ñ (ω), we know from our
results in the bottom panel of Fig. 2 that a maximum entropy
inversion with this same fixed Ñ (ω) would return the same
I 2χ (ω) that the least-squares fit procedure did. If, however, we
had applied to the optical data a maximum entropy inversion
assuming instead that the density of state is flat (no pseudogap
structure), we would have obtained the dashed blue curve
shown in the upper panel of Fig. 5. As before, the peak in
this second function has been pushed upward as compared
to the input function. When a pseudogap forms, it depresses
the scattering in the energy range below ω � 
pg and if
this is assigned instead to the effect of the boson spectra, it
effectively needs to be reduced in that energy region. Further,
for energies above 
pg it would need to be increased because
of the recovery region in Ñ (ω) from ω = 
pg to 2
pg where
the DOS is larger than 1. The two effects combine to reduce
the spectra weight in I 2χ (ω) at low ω, compared with its input
value, and to increase it in the region of the peak in the dashed
blue curve.

This new finding allows us to reassess the case of optimally
doped B-2212 OPT96 inverted by maximum entropy in the
work of Hwang et al.5 who assumed a flat density of state
model. Returning to the curve given in Hüfner et al.41

we estimate that the pseudogap 
pg for this sample has a value
of 32 meV. A puzzle noted but not resolved in Ref. 5 is that
the peak position in I 2χ (ω) obtained in that work, and shown
here as the blue dashed curve in the lower panel of Fig. 5,
was 60 meV while neutron scattering gives a smaller value of
45 meV. This is due to the existence of a pseudogap in Bi-2212
OPT96 which was not accounted for in the previous maximum
entropy inversion. If we take 
pg = 32 meV then, reference
to the top panel of Fig. 4 tells us that we should take PGloss =
8.7 meV to get ωpeak = 45 meV which implies N0 = 0.59.
This gives the solid blue curve for I 2χ (ω). Reducing 
pg

to 20 meV and keeping PGloss the same leads to the same
inverted I 2χ (ω) (dash-dotted red curve) whether one uses a
least-squares fit or maximum entropy.

VI. SUMMARY AND CONCLUSIONS

We have found that including a pseudogap in the inversion
process to obtain an electron-boson spectral density from
optical data can have a large influence on the shape of the
recovered I 2χ (ω). This holds whatever the modality used,
be it a maximum entropy technique or a least-squares fit to
a parameterized assumed functional form which represents
the spectral density we wish to obtain. Conversely, inversions
based on a constant density of electronic states in cases when
a pseudogap exists will tend to move a peak associated, for
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example, with coupling to a spin-1 resonance as measured in
polarized inelastic neutron scattering experiments to higher
energies and effectively increase its spectral weight in the
electron boson function I 2χ (ω). Based on this finding we
were led to reexamine the presently available inversion of
data in optimally doped Bi-2212 OPT96 for which the optical
resonance [a large peak in I 2χ (ω)] was found at 60 meV
which is considerably higher than the neutron resonance in this
material found at 45 meV. This discrepancy, so far unresolved,
here finds a natural explanation. Optimally doped Bi-2212
already has a significant pseudogap. Taking its value from
the compilation provided by Hüfner et al.41 and repeating the
inversion, we get a new I 2χ (ω) with a large peak at 45 meV
in agreement with neutrons. An important intermediate result

is our finding that the detailed shape of the electronic density
of state Ñ (ω) including a pseudogap does not impact strongly
on the position ωpeak of the resonance in I 2χ (ω). What is most
important is the number of states removed below ω = 
pg

which are assumed to pile up above 
pg in a recovery region
of order ω 	 2
pg .

ACKNOWLEDGMENTS

J.H. acknowledges financial suport from the National Re-
search Foundation of Korea (NRFK Grant No. 20100008552).
J.P.C. was supported by the National Science and Engineering
Research Council of Canada (NSERC) and the Canadian
Institute for Advanced Research (CIFAR).

*jungseek@skku.edu
1J. P. Carbotte, T. Timusk, and J. Hwang, Rep. Prog. Phys. 74, 066501
(2011).

2P. B. Allen, Phys. Rev. B 3, 305 (1971).
3E. Schachinger, D. Neuber, and J. P. Carbotte, Phys. Rev. B 73,
184507 (2006).

4E. van Heumen, E. Muhlethaler, A. B. Kuzmenko, H. Eisaki,
W. Meevasana, M. Greven, and D. van derMarel, Phys. Rev. B
79, 184512 (2009).

5J. Hwang, T. Timusk, E. Schachinger, and J. P. Carbotte, Phys. Rev.
B 75, 144508 (2007).

6J. Hwang, J. Yang, J. P. Carbotte, and T. Timusk, J. Phys.: Condens.
Matter 20, 295215 (2008).

7J. Hwang, J. P. Carbotte, and T. Timusk, Phys. Rev. Lett. 100,
177005 (2008).

8J. Hwang, J. P. Carbotte, and T. Timusk, Europhys. Lett. 82, 27002
(2008).

9J. Hwang, J. Yang, T. Timusk, S. G. Sharapov, J. P. Carbotte, D. A.
Bonn, R. Liang, and W. N. Hardy, Phys. Rev. B 73, 014508 (2006).

10J. Hwang, Phys. Rev. B 83, 014507 (2011).
11S. G. Sharapov and J. P. Carbotte, Phys. Rev. B 72, 134506 (2005).
12B. Mitrovic and M. A. Fiorucci, Phys. Rev. B 31, 2694 (1985).
13S. V. Shulga, O. V. Dolgov, and E. G. Maksimov, Physica C 178,

266 (1991).
14J. P. Carbotte, C. Jiang, D. N. Basov, and T. Timusk, Phys. Rev. B

51, 11798 (1995).
15E. J. Nicol, J. P. Carbotte, and T. Timusk, Phys. Rev. B 43, 473

(1991).
16E. J. Nicol and J. P. Carbotte, Phys. Rev. B 44, 7741 (1991).
17E. Schachinger, J. P. Carbotte, and F. Marsiglio, Phys. Rev. B 56,

2738 (1997).
18J. P. Carbotte, F. Marsiglio, and B. Mitrovic, Phys. Rev. B 33, 6135

(1986).
19F. Marsiglio, R. Akis, and J. P. Carbotte, Phys. Rev. B 45, 9865

(1992).
20B. Mitrovic, C. R. Leavens, and J. P. Carbotte, Phys. Rev. B 21,

5048 (1980).
21E. Schachinger, M. G. Greeson, and J. P. Carbotte, Phys. Rev. B 42,

406 (1990).

22P. Arberg, M. Mansor, and J. P. Carbotte, Solid State Commun. 86,
671 (1993).

23B. Mitrovic and J. P. Carbotte, Can. J. Phys. 61, 758 (1983).
24B. Mitrovic and J. P. Carbotte, Can. J. Phys. 61, 784 (1983).
25D. Branch and J. P. Carbotte, Phys. Rev. B 52, 603 (1995).
26H. K. Leung, J. P. Carbotte, D. W. Taylor, and C. R. Leavens, Can.

J. Phys. 54, 1585 (1976).
27C. O’Donovan and J. P. Carbotte, Phys. Rev. B 52, 16208 (1995).
28F. Marsiglio, T. Startseva, and J. P. Carbotte, Phys. Lett. A 245, 172

(1998).
29E. Schachinger and J. P. Carbotte, Phys. Rev. B 81, 014519

(2010).
30Y. Li, V. Baledent, G.Yu, N. Barisic, K. Hradil, R. A. Mole, Y. Sidis,

P. Steffens, X. Zhao, P. Bourges, and M. Greven, Nature (London)
468, 283 (2010).

31S. D. Almeida-Didry, Y. Sidis, V. Baledent, F. Giovannelli,
I. Monot-Laffez, and P. Bourges, arXiv:1207.1038v1.

32Y. Li, G. Yu, M. K. Chan, V. Baledent, Y. Li, N. Barisic,
X. Zhao, K. Hradil, R. A. Mole, Y. Sidis, P. Steffens, P. Bourges, and
M. Greven, Nat. Phys. 8, 404 (2012).

33A. J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167 (1990).
34J. Hwang, E. Schachinger, J. P. Carbotte, F. Gao, D. B. Tanner, and

T. Timusk, Phys. Rev. Lett. 100, 137005 (2008).
35J. Yang, J. Hwang, E. Schachinger, J. P. Carbotte, R. P. S. M. Lobo,

D. Colson, A. Forget, and T. Timusk, Phys. Rev. Lett. 102, 027003
(2009).

36C. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, and O. Fischer,
Phys. Rev. Lett. 80, 149 (1998).

37A. Knigavko and J. P. Carbotte, Phys. Rev. B 72, 035125
(2005).

38A. Knigavko and J. P. Carbotte, Phys. Rev. B 73, 125114 (2006).
39H. He, Y. Sidis, P. Bourges, G. D. Gu, A. Ivanov, N. Koshizuka,

B. Liang, C. T. Lin, L. P. Regnault, E. Schoenherr, and B. Keimer,
Phys. Rev. Lett. 86, 1610 (2001).

40H. He, P. Bourges, Y. Sidis, C. Ulrich, L. P. Regnault, S. Pailhes,
N. S. Berzigiarova, N. N. Kolesnikov, and B. Keimer, Science 295,
1045 (2002).
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