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The ground-state phase diagram of a spin- 1
2 XXZ chain with competing ferromagnetic nearest-neighbor

(J1 < 0) and antiferromagnetic second-neighbor (J2 > 0) exchange couplings is studied by means of the infinite
time evolving block decimation algorithm and effective field theories. For the SU(2)-symmetric (Heisenberg)
case, we show that the nonmagnetic phase in the range −4 < J1/J2 < 0 has a small but finite ferromagnetic
dimer order. We argue that this spontaneous dimer order is associated with effective spin-1 degrees of freedom
on dimerized bonds, which collectively form a valence bond solid state as in the spin-1 antiferromagnetic
Heisenberg chain (the Haldane spin chain). We thus call this phase the Haldane dimer phase. With easy-plane
anisotropy, the model exhibits a variety of phases including the vector chiral phase with gapless excitations
and the even-parity dimer and Néel phases with gapped excitations, in addition to the Haldane dimer phase.
Furthermore, we show the existence of gapped phases with coexisting orders in narrow regions that intervene
between the gapless chiral phase and any one of Haldane dimer, even-parity dimer, and Néel phases. Possible
implications for quasi-one-dimensional edge-sharing cuprates are discussed.
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I. INTRODUCTION

The search for novel quantum states in frustrated magnets
has been a subject of intensive theoretical and experimental
research. One-dimensional (1D) systems offer unique labo-
ratories for this search, as strong fluctuations enhance the
tendency toward unconventional quantum states.1 Among
them, the 1D XXZ model with competing nearest-neighbor
J1 and second-neighbor J2 interactions, defined by the
Hamiltonian

H =
2∑

n=1

∑
�

Jn

(
Sx

� Sx
�+n + S

y

� S
y

�+n + �Sz
�S

z
�+n

)
, (1)

provides a paradigmatic example expected to host rich variety
of physics. Here, S� = (Sx

� ,S
y

� ,Sz
� ) represents the spin-1/2

operator at the site � ∈ Z and � parametrizes the XXZ
exchange anisotropy. The model has frustration as far as J2

is antiferromagnetic, irrespective of the sign of J1.
Early theoretical studies on the model (1) mostly considered

the case when both J1 and J2 are antiferromagnetic.2–7

However, interest is now growing in the case of ferromagnetic
J1 < 0 and antiferromagnetic J2 > 0 because of its relevance
to quasi-1D edge-sharing cuprates. Among such cuprates,
LiCu2O2 (Refs. 8 and 9), LiCuVO4 (Refs. 10 and 11), and
PbCuSO4(OH)2 (Ref. 12), for example, exhibit multiferroic
behaviors,13,14 i.e., spiral magnetic orders and concomitant
ferroelectric polarization at low temperatures. The negative
sign of J1 indeed plays a key role in stabilizing the vector
chiral order responsible for these phenomena.15 By contrast,
Rb2Cu2Mo3O12 (Ref. 16) shows no sign of magnetic order
down to very low temperatures and may be considered as
a candidate system for a spin liquid or a valence bond
solid.

In this paper, we study the ground-state properties of the
spin-1/2 frustrated ferromagnetic XXZ chain (1) with J1 < 0

and J2 > 0, by means of the infinite time evolving block
decimation algorithm (iTEBD)17 and effective field theories
based on the bosonization methods. Previous works on the
case with easy-plane anisotropy 0 � � � 1 have discussed
the competition among the vector chiral phase with gapless
excitations and the dimer and Néel phases with gapped
excitations.6,15,18–25 The main goal of this paper is to present
a conclusive phase diagram of the model (1), which is shown
in Fig. 1, through detailed analyses that extends our previous
works.15,24,25 Firstly, we uncover the nature of the nonmagnetic
phase around the SU(2)-symmetric case � = 1, which has
long been controversial. We show that this phase has a dimer
order associated with an emergent spin-1 degree of freedom
on every other bond. We term this new phase the Haldane
dimer phase. Secondly, we show the existence of narrow
gapped phases that intervene between the gapless chiral phase
and any one of gapped dimer and Néel phases. As weak
interchain couplings are turned on, while the gapless chiral
phase evolves into a spiral magnetic order, the Haldane dimer
phase can be stabilized by a coupling with phonons due to the
spin-Peierls mechanism. Our phase diagram may thus provide
a useful starting point for understanding the competing phases
in quasi-1D cuprates.

Let us briefly review previous results on the model (1)
and summarize our new findings. While we are mainly
concerned with the case of J1 < 0 and J2 > 0 in this paper,
for comparison, we also review established results on the case
of antiferromagnetic J1,J2 > 0 alongside.

In the classical limit S → ∞, the ground-state phase
diagram of Eq. (1) does not depend on � in the range
0 � � � 1. The ground state has ferromagnetic order for
J1/J2 < −4 and antiferromagnetic (Néel) order for J1/J2 > 4.
For 0 < |J1|/J2 < 4, the ground state is in a spiral magnetic
ordered phase in which the spins rotate by an incommensurate
pitch angle Q = ± arccos(−J1/4J2) along the spin chain.
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FIG. 1. (Color online) The ground-state phase diagram of the
model (1) with J1 < 0 and J2 > 0. The vector chiral phase, which
has a nonvanishing vector chirality (2), extends between the two
boundaries with the “�” symbols. These boundaries are determined
as in Figs. 2 and 3 (see the vertical solid lines in these figures).
Around the highly degenerate point (J1/J2,�) = (−4,1), these two
boundaries could not be determined accurately, but we expect both
of them to continue to this point. It was also difficult to draw the
boundary around the right top corner of the phase diagram. The onsets
of (Haldane and even-parity) dimer and Néel orders occur inside the
vector chiral phase, as indicated by the “×” symbols (determined
as in Figs. 14 and 15). Thus there are narrow intermediate phases
(between the “�” and “×” symbols) where two kinds of orders
coexist. The phase boundaries among the TLL, even-parity dimer, and
Néel phases are determined in a previous work.24 On the right of the
“◦” symbols, the even-parity dimer and Néel phases alternately appear
when approaching the point (J1/J2,�) = (−4,1): the first transition
occurs at � ≈ 0.7 (“�” symbols) and the second at � ≈ 0.93 (not
shown).24 On the line where � = 1 and J1/J2 < −4, the ground
state is ferromagnetic (FM). The “ + ” symbols inside the dimer
and Néel phases indicate the Lifshitz line on which the short-range
spin correlation changes its character from incommensurate (IC) to
commensurate (C); see Fig. 16.

Except for the isotropic case � = 1, the spiral plane is fixed
in the xy plane, and the vector chirality

κz
�,�+1 := 〈(S� × S�+1)z〉 (2)

has a nonvanishing uniform value κz
�,�+1 = ± sin Q indepen-

dent of �. Here, 〈· · · 〉 stands for average in the ground state
(with long-range order, if any).

In the ground state of the quantum spin-1/2 model, a
long-range magnetic order with broken U (1) spin rotational
symmetry is generally prohibited, unless the uniform magnetic
susceptibility is divergent as in the case of ferromagnetism.26

However, a long-range order (LRO) of the vector chirality
κz

�,�+1 that breaks only the Z2 parity symmetry can survive
quantum fluctuations in the case of � 
= 1. Using the bosoniza-
tion theory for |J1|/J2 � 1 and 0 � � < 1, Nersesyan et al.6

predicted the appearance of the vector chiral phase with
gapless excitations (as reviewed in Sec. IV A2). This gapless

chiral phase shows the spatially uniform vector chirality
κz

�,�+1 
= 0 and power-law decaying (incommensurate) spiral
spin correlations; this phase may therefore be viewed as
a quantum counterpart of the classical spiral phase. The
gapless chiral phase competes with other quantum phases, in
particular, valence bond solids driven by quantum fluctuations.
In fact, for antiferromagnetic J1 > 0, a dimerized phase, in
which the singlet state (|↑↓ 〉 − |↓↑ 〉)/√2 (written in the {Sz

�}
basis) is formed on dimerized bonds, appears in a large part of
the classical spiral regime 0 < J1/J2 < 4,2–5 and the gapless
chiral phase appears only in a small region in the space spanned
by J1/J2 and �.7

The phase diagram for the case of ferromagnetic J1 < 0 and
easy-plane anisotropy 0 � � � 1 is presented in Fig. 1. Early
works18,19 mainly discussed the transition from the Tomonaga-
Luttinger liquid (TLL) phase to a dimer phase with an even-
parity unit20 |↑↓ 〉 + |↓↑ 〉 appearing for 0 < � � 0.7. Our
recent works15,24 have uncovered a rich phase structure in
an extended parameter space of J1/J2 and �. In Ref. 15, it
was shown that the gapless chiral phase appears in a wide
region, and survives up to the close vicinity of the isotropic
case � = 1 for −4 < J1/J2 � −2.5 (we also refer to Refs. 22
and 23 for related earlier works). This remarkable stability
of the gapless chiral phase for J1 < 0 indicates that the sign
of J1 plays a crucial role in stabilizing the vector chirality
and the associated ferroelectric polarization in multiferroic
cuprates.8–12 In Ref. 24, the instability of the TLL phase toward
gapped phases was analyzed using the effective sine-Gordon
theory combined with numerical diagonalization. It was found
that the even-parity dimer phase27 discussed in Refs. 18–20
and a Néel ordered phase appear alternately as � is increased
on the right side of the TLL phase in the phase diagram.

An important result of this paper is concerned with the
nature of the nonmagnetic phase for −4 < J1/J2 < 0 around
the SU(2)-symmetric case � = 1. Previous field-theoretical
analyses6,21 have suggested that a dimer phase with a very
small energy gap should appear in this region (as reviewed
in Sec. III A). However, neither a dimer order nor an energy
gap has been detected in previous numerical studies. Using the
iTEBD, which allow us to treat infinite-size systems directly,
we present the first numerical evidence of a finite dimer order
parameter

D�,�+1,�+2 = 〈S� · S�+1〉 − 〈S�+1 · S�+2〉. (3)

Remarkably, this dimer order is associated with ferromagnetic
correlations 〈S� · S�+1〉 > 0 of alternating strengths, in con-
trast to antiferromagnetic correlations in singlet dimers for
J1 > 0. In this case, it is natural to interpret that effective
spin-1 degrees of freedom emerge on the bonds with stronger
ferromagnetic correlation, forming a valence bond solid state28

as in the Haldane chain.29 We thus call this new phase the
Haldane dimer phase.

We also present detailed analyses of the anisotropic case
� 
= 1, extending our previous works.15,24 In particular, we
analyze the transition from the gapless chiral phase to each of
the Haldane dimer, even-parity dimer, and Néel phases, and
identify narrow intermediate gapped phases where two kinds
of orders coexist (the regions between “�” and “×” symbols
in Fig. 1). Furthermore, we describe how the properties of
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various phases can be captured in the language of the Abelian
bosonization30,31 for |J1|/J2 � 1, as summarized in Table I.

The rest of the paper is organized as follows. In Sec. II,
we present the numerical results on the order parameters
and half-chain entanglement entropy, which provide the most
basic information for identifying symmetry-broken phases.
In Sec. III, we discuss in detail the dimer phases in the
SU(2)-symmetric case � = 1 from both field-theoretical30–33

and numerical analyses. In Sec. IV, we discuss the case with
the easy-plane anisotropy 0 � � < 1. In particular, we review
the effective field theory for the gapless chiral phase,6 and,
following Ref. 34, discuss its instability toward gapped chiral
phases. The ranges of the gapped chiral phases are then
determined numerically by analyzing the spin correlations.
In Sec. V, we briefly describe how the quantum phases in
the easy-axis case18,35,36 can be understood in the Abelian
bosonization framework. In Sec. VI, we conclude the paper
and discuss implications of our results for quasi-1D cuprates.

II. NUMERICAL ANALYSIS OF ORDER PARAMETERS

In this section, we present numerical results on several
order parameters and half-chain entanglement entropy calcu-
lated by iTEBD. The vector chiral order parameter and the
entanglement entropy are used to determine the boundaries of
the region where the long-range vector chiral order exists (the
“�” symbols in Fig. 1). The numerical results in this section
also suggest the existence of the narrow intermediate phases
(between “�” and “×” symbols) in which the vector chiral
order coexists with the dimer or Néel order. The precise ranges
of these intermediate phases, however, will be determined in
Sec. IV B2.

Before presenting the numerical results, let us briefly note
characteristic features of our numerical method; for a more
detailed account of the method, see Supplemental Material
of Ref. 15. The iTEBD algorithm17 we employed is based
on the periodic matrix product representation of many-body
wave functions of an infinite system. It can directly address
physical quantities in the thermodynamic limit, and is free
from finite-size or boundary effects. The (variational) wave
function is optimized to minimize the energy. The precision
of the algorithm is controlled by the Schmidt rank χ , which
gives the linear dimension of the matrices. We exploited the
conservation of the total magnetization

∑
� Sz

� = 0 to achieve
higher efficiency and precision of the calculations. When this
algorithm is used in ordered phases, a variational state finally
converges to a symmetry-broken state with an associated finite
order parameter (if it is allowed by the periodicity of the matrix
product state).37 In our implementation, we used a period-4
structure for the variational matrix product state. In this setting,
the vector chiral, dimer, and Néel order parameters analyzed
in this section can all be calculated through local quantities.
In order to allow a finite vector chiral order parameter, the
initial state must contain complex elements as a “seed” for the
symmetry breaking.38

A. Vector chiral order

Figures 2 and 3 present our numerical results along the
vertical line J1/J2 = −2 and the horizontal line � = 0.8,
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FIG. 2. (Color online) (a) Chiral and (b), (c) dimer order
parameters and (d) half-chain entanglement entropy as functions of
� for fixed J1/J2 = −2. These are calculated by the iTEBD with
Schmidt ranks χ = 200 and 300. (c) is a zoom of (b). In (d), SvN

1:2 and
SvN

2:3 are defined for the bipartitions of the system at the bonds (1,2)
and (2,3), respectively. Solid vertical lines indicate the boundaries
of the vector chiral phase, and are determined from the onsets of the
vector chiral order parameter in (a) or more accurately from the peaks
in the entanglement entropy in (d). Broken vertical lines indicate
the transition points on which dimer orders set in. These points are
difficult to locate within the analysis of dimer order parameters in
(b) and (c) and are instead determined by the analysis of spin
correlations in Fig. 14. Narrow intermediate phases exist between
solid and broken vertical lines, where the vector chiral and dimer
orders coexist. In the intermediate phase in 0.61 � � � 0.63, a dip
in the entanglement entropy is seen in (d), as zoomed in the inset.

respectively, in the phase diagram (see Fig. 1). Let us first
look at the vector chiral order parameter κz

12 = 〈(S1 × S2)z〉
displayed in Figs. 2(a) and 3(a). This order parameter is always
found to be spatially uniform along the spin chain in the present
model, so we have fixed the site labels. By observing the
rapid increase of κz

12, we find the onset of the vector chiral
phase. It is natural to think that this rapid increase comes from
the Ising nature of the transition with exponent β = 1/8 for
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FIG. 3. (Color online) (a) Chiral and (b) Néel order parameters
and (c) half-chain entanglement entropy as a function of J1/J2 for
fixed � = 0.8, calculated by the iTEBD. The solid and broken
vertical lines indicate the onsets of the vector chiral and Néel orders,
respectively. The former is determined by the peak position in the
entanglement entropy in (c), while the latter is determined in Fig. 15.
In the narrow intermediate phase in −3.225 � J1/J2 � −3.200, the
vector chiral and Néel orders coexist.

the spontaneous order parameter, as previously demonstrated
in the XY case � = 0.38 To determine the transition points
more precisely, however, we use the half-chain entanglement
entropy explained next.

The half-chain von Neumann (vN) entanglement entropy is
defined as17

SvN = −
χ∑

α=1

λ2
α ln λ2

α, (4)

where {λα} is a set of Schmidt coefficients associated with
the decomposition of the infinite system into the left and right
halves and χ is the Schmidt rank. As the system approaches a
critical point characterized by a conformal field theory with a
central charge c, this quantity is known to diverge as39,40

SvN = c

6
ln ξ + s1, (5)

where ξ is the correlation length and s1 is a nonuniversal
constant. In an iTEBD calculation with a finite Schmidt rank
χ , the divergence of SvN at the critical point is replaced by the
increasing function of χ ,41

SvN = 1√
12/c + 1

ln χ + s ′
1, (6)

where s ′
1 is another nonuniversal constant. The calculated

entanglement entropy is shown in Figs. 2(d) and 3(c). In
Fig. 2(d), we plot two entropies SvN

1:2 and SvN
2:3 associated with

the bipartitions of the system at the bonds (1,2) and (2,3), since
these bonds are inequivalent in the neighboring dimer phases.
By finding peaks of SvN, we can determine the boundaries of
the vector chiral phase, more accurately than by using κz

12; see
the solid vertical lines in Figs. 2 and 3. In this way, we have
determined the square symbols in Fig. 1. Although we could
not extract c from the current data of SvN using Eq. (6) (which is
expected to be satisfied for larger χ ), it is natural to expect that
these critical points are characterized by the two-dimensional
Ising universality class with c = 1/2 (we again note that the
critical exponent β = 1/8 for this class was confirmed in the
XY case38).

In most part of the vector chiral phase, the entanglement
entropy increases as a function of χ , indicating a critical nature.
Indeed, in the effective field theory of Nersesyan et al.,6 the
gapless chiral phase has c = 1, and the increase of S from
the cases of χ = 200 to 300 is roughly consistent with �S =
0.224 ln(300/200) = 0.091 expected from Eq. (6) for c = 1.
Near the boundaries (solid vertical lines), the entanglement
entropy shows dips, whose implications will be discussed later.

B. Dimer orders

Next we look at the xy and z components of dimer order
parameters:

D
xy

�,�+ 1,� + 2 := 〈(
Sx

� Sx
� + 1 + S

y

� S
y

�+1

)
− (

Sx
�+1S

x
�+2 + S

y

�+1S
y

�+2

)〉
, (7a)

Dz
�,�+1,�+2 := 〈

Sz
�S

z
�+1 − Sz

�+1S
z
�+2

〉
. (7b)

The alternation of the sign of D
xy

�,�+1,�+2 or Dz
�,�+1,�+2 along

the spin chain would indicate some sort of dimer ordering. We
assign the site labels in such a way that Dz

123 < 0. The two
order parameters are plotted in Figs. 2(b) and 2(c). We find
that D

xy

123 and Dz
123 are both finite and have mutually opposite

signs for � � 0.65. By contrast, the two order parameters have
small finite values of the same sign for � � 0.9; in spite of
the smallness, they are rather stable when the Schmidt rank
χ is increased as seen in the zoomed plot in Fig. 2(c). These
results indicate that the dimer phases in the two regions are of
distinct types.

The nature of the dimer phase for � � 0.6 can be easily
understood as follows.20,24 In the XY limit � = 0, the sign of
J1 in Eq. (1) can be reversed by performing the π rotations of
spins around the z axis on every second sites. From the fact that
the doubly degenerate ground states at (J1/J2,�) = (2,0) are
given by the products of singlet dimers, one finds, through the
above π -rotation transformation, that the exact ground states
at (J1/J2,�) = (−2,0) are given by the dimer states whose
unit is now replaced by (|↑↓ 〉 + |↓↑ 〉)/√2. We note that this
unit has the even parity with respect to the inversion about a
bond center, in contrast to the odd parity of the singlet dimer at
J1 > 0. The direct product states of even-parity dimers show
D

xy

123 = −2Dz
123 = ±1/2. The mutually opposite signs of D

xy

123
and Dz

123 and the approximate relation D
xy

123 ≈ −2Dz
123 found

for � � 0.6 in Fig. 2(b) indicate that the even-parity nature of
the dimer unit persists in this region. We thus call this phase
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the even-parity dimer phase.27 It is distinct from the singlet
dimer phase appearing for J1 > 0, in which D

xy

123 and Dz
123

show the same sign.
In the region � � 0.9 in Fig. 2, D

xy

123 and Dz
123 are both

negative as in the singlet dimer phase. However, forming
nearest-neighbor singlet dimers is unlikely for ferromagnetic
J1 < 0. In Sec. III, we point out that the dimer order in
this region is associated with ferromagnetic nearest-neighbor
correlations 〈S� · S�+1〉 > 0 of alternating strengths along the
chain, in marked contrast to an antiferromagnetic correlation
in a singlet dimer. A more detailed comparison of the dimer
phases for J1 < 0 and J1 > 0 in the isotropic case (� = 1)
will be presented in Sec. III.

In the region of a finite vector chiral order (0.61 � � �
0.92) in Fig. 2, we find that the two dimer order parameters
remain finite in the narrow regions between the solid and
broken vertical lines. This indicates the existence of the chiral
dimer phases (originally predicted in Ref. 34), in which the
vector chiral and dimer orders coexist and there are four-fold
degenerate ground states below an excitation gap. In the
entanglement entropy, a dip is seen in the interval 0.61 �
� � 0.63, which also supports the existence of an intermediate
gapped phase. The peaks in the entanglement entropy indicated
by the solid lines in Fig. 2(d) correspond to the Ising critical
point between two gapped phases. Between the two broken
lines in Fig. 2, the dimer order parameters diminish and the
entanglement entropy increases as we increase the Schmidt
rank χ ; these features are consistent with the gapless chiral
phase. The precise determination of the phase boundaries
between gapped and gapless chiral phases is difficult within
the analysis of the order parameters and entanglement entropy
in Fig. 2; it will be done instead by analyzing spin correlation
functions in Fig. 14 in Sec. IV B2.

C. Néel order

The appearance of a Néel phase with spontaneous staggered
magnetizations 〈Sz

�〉 ∝ (−1)� is discussed in detail in Ref. 24.
In Fig. 3(b), this Néel order is detected in the region J1/J2 �
−3.2 by measuring 〈Sz

1〉. As in the case of the dimer phases,
even in the region where the vector chiral order is finite
(J1/J2 � −3.225), the Néel order parameter remains finite.
This indicates the existence of a narrow chiral Néel phase,
in which the vector chiral and Néel orders coexist. The
ground states in this phase should be four-fold degenerate
with a finite excitation gap. In Fig. 3(c), a dip in the
entanglement entropy can be found in this region, consistent
with the expected gapped excitation spectrum. The precise
determination of the transition point will be done in Fig. 15
in Sec. IV B2.

III. ISOTROPIC CASE � = 1

In this section, we present detailed analyses of the model (1)
in the isotropic case � = 1. While it is known that the singlet
dimer phase appears for 0 < J1/J2 � 4.15,2–5,42 the nature of
the nonmagnetic ground state in −4 < J1/J2 < 0 has not been
well understood. In Sec. III A, we summarize previous field-
theoretical analyses6,21 for the weak-coupling limit |J1| � J2,
which predicted the appearance of dimer orders for both signs

FIG. 4. Zigzag chain picture for the J1-J2 chain model (1). The
x axis indicates the coordinate for the continuum description.

of J1. At first glance, this result may seem bizarre since the
singlet dimerization on the J1 bonds, as formed in the case of
antiferromagnetic J1 > 0, is unlikely to occur in the case of
ferromagnetic J1 < 0. In Sec. III B, we present our numerical
results and point out a remarkable difference between the J1 >

0 and J1 < 0 cases in the way how the system hosts the dimer
order. This leads us to propose the picture of the “Haldane
dimer phase” for the dimer phase with J1 < 0. Although the
ground-state wave functions are largely different between the
Haldane and singlet dimer phases, we argue that the two phases
in fact share a common hidden order.

A. Field-theoretical analyses

Here we summarize previous field-theoretical
analyses6,21,43–45 for |J1| � J2. In this regime, the model
(1) can be viewed as two antiferromagnetic Heisenberg
spin chains which are weakly coupled by the zigzag
interchain coupling J1 as in Fig. 4. We apply the Abelian
and non-Abelian bosonization techniques to describe the two
chains separately, and then treat the interchain coupling J1 as
a weak perturbation.

1. Non-Abelian bosonization

We start from the non-Abelian bosonization31–33 descrip-
tion of the isotropic model (1) with � = 1 and present the
renormalization group (RG) analysis to identify (marginally)
relevant perturbations. In the limit J1/J2 → 0, each isolated
antiferromagnetic Heisenberg chain is described by the SU(2)1

Wess-Zumino-Witten (WZW) theory, with the spin velocity
v = (π/2)J2a, perturbed by a marginally irrelevant backscat-
tering term.31,32,42 The spin operators in the nth chain (n = 1,2)
can be decomposed as

S2j+n → a[Mn(xn) + (−1)j Nn(xn)] (8)

with x1(j ) = (j − 1
4 )a and x2(j ) = (j + 1

4 )a, where a is
the lattice spacing of each chain; see Fig. 4. The uniform
and staggered components, Mn and Nn, have the scaling
dimensions 1 and 1/2, respectively. The former can be
decomposed into chiral (right and left) components: Mn =
MnR + MnL. Another important operator is the (in-chain)
staggered dimerization operator εn defined by

(−1)j S2j+n · S2j+n+2 → aεn(xn), (9)

which has the scaling dimension 1/2.
The interchain zigzag coupling J1 produces at most

marginal perturbations, in the RG sense, around the WZW
fixed point; relevant perturbations such as N1 · N2 are pro-
hibited by the symmetry of the zigzag chain model. The
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symmetry-allowed marginal perturbations are summarized as

H ′ =
∫

dx
∑

i

giOi , (10)

where i runs over the following five operators:21

Obs = M1R · M1L + M2R · M2L, (11a)

O1 = M1R · M2L + M1L · M2R, (11b)

O2 = M1R · M2R + M1L · M2L, (11c)

Otw = a

2
(N1 · ∂x N2 − N2 · ∂x N1), (11d)

Odtw = a

2
(ε1∂xε2 − ε2∂xε1). (11e)

Here, Obs is the backscattering term present in isolated
chains. The zigzag J1 coupling produces the current-current
interactions, O1 and O2, and the twist operator Otw. The dimer
twist operator Odtw is generated in the RG process as we see
later. The bare coupling constants are given by

gbs(0) = −0.23(2πv), g1(0) = g2(0) = 2J1a, (12)

gtw(0) = J1a, gdtw(0) = 0, (13)

where gbs(0) was estimated in Ref. 42. All the operators in
Eq. (11) have the scaling dimensions 2, and their competition
in the RG flow must be analyzed carefully by deriving the RG
equations. We define the dimensionless coupling constants

Gi = gi

2πv
(i = bs,1,2), (14)

Gi = gi

2πvλ2
(i = tw,dtw), (15)

where λ is a dimensionless constant of order unity. Using the
operator product expansions in the WZW theory,33,47–50 the
one-loop RG equations46 are derived as6,21,44,45

Ġbs = G2
bs + G2

tw − G2
dtw, (16a)

Ġ1 = G2
1 + G2

tw − GtwGdtw, (16b)

Ġtw = − 1
2GbsGtw + G1Gtw − 1

2G1Gdtw, (16c)

Ġdtw = 3
2GbsGdtw − 3

2G1Gtw, (16d)

where the dot indicates the derivative (Ġi = dGi/dl) with
respect to the change of the cutoff: a → edla. See Appendix A
for the derivation of Eq. (16). We have ignored G2 since it
does not affect the flow of the other coupling constants at the
one-loop level.

Numerical solutions to the RG equations (16) are presented
in Fig. 5. For both signs of J1, the three coupling constants G1,
Gtw, and Gdtw finally grow to large values under the RG;6,21

they asymptotically have the simple ratio G1 : Gtw : Gdtw =
2 : 1 : (−1) or 2 : (−1) : 1 for J1 > 0 and J1 < 0, respectively.
Remarkably, G1 finally grows with a positive sign for both
signs of J1. For J1 < 0, in particular, it is initially negative
but changes sign before starting to grow in the RG process.
By contrast, Gtw retains the same sign as its initial value.
The properties of the fixed points governed by large G1(> 0),
Gtw, and Gdtw are nontrivial. In fact, while the non-Abelian
formalism allows us to derive the RG equations in a manifestly
SU(2)-invariant form, it is often not very useful for discussing
the physical roles of (marginally) relevant perturbations. In the
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FIG. 5. (Color online) Numerical solutions to the one-loop RG
equations (16) for (a) J1/J2 = 0.2 and (b) J1/J2 = −0.2. We set
λ = 1 [see Eq. (14)]. It is found that the three coupling constants
G1, Gtw, and Gdtw are most relevant and grow under the RG, with
asymptotically a simple ratio G1 : Gtw : Gdtw = 2 : 1 : (−1) or 2 :
(−1) : 1 for J1 > 0 and J1 < 0, respectively. In the plots, factors ±2
are multiplied to Gtw and Gdtw so that these ratios can be visually
confirmed.

next section, we proceed to the Abelian bosonization analysis
to show that the positive development of G1 induces a gapped
state with a finite dimer order parameter D123 
= 0.

As seen in Figs. 5(a) and 5(b), the coupling constants grow
much more slowly for J1 < 0 than for J1 > 0. This implies
that for J1 < 0, the energy gap associated with the dimer
order should be much smaller and the spin correlation length
ξ should be much larger. In fact, as argued by Itoi and Qin,21

the correlation length becomes of astronomical scale [e.g.,
ξ/a ∼ e83 ∼ 1036 for the case of Fig. 5(b)]. Such a tiny gap
or a large correlation length is very difficult to detect by any
numerical investigation; the system effectively behaves like a
gapless system even when the system size is macroscopically
large. We stress, however, that this insight is based on the
perturbative RG analysis for small J1/J2 < 0, and it is possible
that the energy gap grows to an observable magnitude as we
increase |J1|/J2. Our numerical result presented in Sec. III B
indeed identifies a large but detectable correlation lengths
around J1/J2 = −2.

2. Abelian bosonization

In this section, we use the Abelian bosonization
formalism30 to discuss the physical roles of the marginally
relevant perturbations G1(>0), Gtw, and Gdtw identified in
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the non-Abelian analysis. Although the Abelian formalism
obscures the SU(2) symmetry of the model, it has the
advantage of simplifying identification of various orders
with the pattern of locking of bosonic fields, as illustrated
in Table I.

Let us start from the two decoupled antiferromagnetic
chains in the limit J1/J2 → 0. We summarize the Abelian
bosonization description30,31 of a single XXZ chain (0 � � �
1), so that the same formulation can be used later in Sec. IV A.
Each decoupled XXZ chain labeled by n = 1,2 is described
by a Gaussian Hamiltonian

Hn =
∫

dx
v

2
[K(∂xθn)2 + K−1(∂xφn)2] (17)

where the velocity v and the TLL parameter K are given by

v = π
√

1 − �2

2 arccos �
J2a, K = 1

1 − (1/π ) arccos �
. (18)

The bosonic fields φn and θn satisfy the commutation relation

[φn(x),θn′ (x ′)] = iδnn′Y (x − x ′), (19)

where Y (x − x ′) is the step function

Y (x − x ′) =
⎧⎨
⎩

0 (x < x ′),
1/2 (x = x ′),
1 (x > x ′).

(20)

The spin and (in-chain) dimer operators are expressed in terms
of the bosonic fields as

Sz
2j+n = a√

2π
∂xφn(xn) + (−1)jA1 cos[

√
2πφn(xn)] + · · · ,

(21)

S+
2j+n = ei

√
2πθn(xn){(−1)jB0 + B1 cos[

√
2πφn(xn)] + · · · },

(22)

(−1)j S2j+n · S2j+n+2 = C sin(
√

2πφn) + · · · , (23)

where A1, B0, B1 (Refs. 51 and 52), and C (Ref. 53) are
nonuniversal constants which depend on �.

We now focus on the case � = 1 in which K = 1. To treat
the coupled chains, it is useful to introduce the bosonic fields
for symmetric (+) and antisymmetric (−) sectors:

φ± = 1√
2

(φ1 ± φ2), θ± = 1√
2

(θ1 ± θ2). (24)

The three perturbations found to grow in the non-Abelian
analysis have the following expressions:6,44,54,55

O1 = − B2
1

2a2
cos(

√
4πφ+) cos(

√
4πθ−)

+ 1

8π
[(∂xφ+)2 − (∂xθ+)2 − (∂xφ−)2 + (∂xθ−)2],

(25a)

Otw =
√

πB2
0

a
(∂xθ+) sin(

√
4πθ−)

+
√

πA2
1

2a
[(∂xφ+) sin(

√
4πφ−) + (∂xφ−) sin(

√
4πφ+)],

(25b)

Odtw =
√

πC2

a
[(∂xφ+) sin(

√
4πφ−) − (∂xφ−) sin(

√
4πφ+)].

(25c)

Furthermore, the O2 term, which is decoupled from the
other terms in the RG equation (16), has the expression

O2 = − B2
1

2a2
cos(

√
4πφ−) cos(

√
4πθ−)

+ 1

8π
[(∂xφ+)2 + (∂xθ+)2 − (∂xφ−)2 − (∂xθ−)2]. (26)

The second lines of Eqs. (25a) and (26) can be combined
with the Gaussian Hamiltonians (17) of the decoupled chains,
leading to

H0 =
∫

dx
∑
ν=±

vν

2

[
Kν(∂xθν)2 + K−1

ν (∂xφν)2
]

(27)

with

K± = 1 ∓ G1

2
+ O

(
G2

1,G
2
2

)
,

(28)

v± = v

[
1 ± G2

2
+ O

(
G2

1,G
2
2

)]
.

Using the new Gaussian Hamiltonian H0, we can calculate the
scaling dimension of the operators in Eq. (25). Specifically, the
scaling dimension of ei

√
4πφ± and ei

√
4πθ± is given by K± and

K−1
± , respectively. In the non-Abelian analysis, we have seen

that G1 grows to a positive value in the RG flow irrespective
of the sign of J1. Assuming G1 > 0, we find that the product
of the two cosine operators in the first line of Eq. (25a) (with
scaling dimension 2 − G1) is the most relevant term among
those in Eq. (25). This term locks the bosonic fields at

(
√

4πφ+,
√

4πθ−) = (0,0) or (π,π ). (29)

These correspond respectively to finite positive or negative
value of the dimer order parameter D123 = 〈S1 · S2〉 − 〈S2 ·
S3〉, since the (interchain) dimer operator is expressed as

S2j+1 · S2j+2 − S2j+2 · S2j+3

= 2a2 N1 · N2 + · · ·
≈ 2B2

0 cos(
√

4πθ−) + A2
1[cos(

√
4πφ+) + cos(

√
4πφ−)].

(30)

In the last expression, the first term and the rest come from
the xy and z components of the spins, respectively. For the
locking in Eq. (29), these components acquire both positive or
both negative expectation values, in agreement with Fig. 2(c)
and with the SU(2) symmetry of the model. It is worth noting
that the locking positions of the two degenerate ground states
in Eq. (29) are independent of the sign of J1 in the isotropic
case � = 1. The second most relevant terms in Eq. (25)
are (∂xθ+) sin(

√
4πθ−) and (∂xφ−) sin(

√
4πφ+) with scaling

dimension 2 − G1/2. As explained in Sec. IV A, the former
has the effect of inducing the incommensurability in spin
correlations.6 Since a finite energy gap opens due to G1 > 0
in the dimer phases, the incommensurate spin correlations are
expected to remain short ranged.
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FIG. 6. (Color online) (a) Nearest-neighbor spin correlations
〈Sj · Sj+1〉 and the dimer order parameter D123, (b) the spin
correlation length ξ , and (c) the string correlation (34) with � = 2
and r = 50, as a function of J1/J2 in the isotropic case � = 1. In (a),
D123 multiplied by 40 is also plotted for J1/J2 < 0 (filled circular
symbols). In (b), ξ is too small to determine around J1/J2 = 2.

B. Numerical results and physical properties of dimer phases

In this section, we present numerical results on the
model (1) in the isotropic case � = 1, and discuss physical
properties of the dimer phases for different signs of J1. In
agreement with the field-theoretical results reviewed in the
previous section, we find that the dimer order parameter D123

becomes finite for both signs of J1, and that there are doubly
degenerate ground states with positive and negative D123.
While we propose different physical pictures for the dimer
orders in the J1 > 0 and J1 < 0 cases (Sec. III B1), we also
discuss a hidden order common to the two cases (Sec. III B3).
In the following, our numerical results (based on iTEBD with
χ = 300) are presented for the ground state with D123 < 0.

1. Local spin correlations

In Fig. 6(a), we plot nearest-neighbor spin correlations 〈S� ·
S�+1〉 (with � = 1,2) and the dimer order parameter D123 =
〈S1 · S2〉 − 〈S2 · S3〉 for −3 � J1/J2 � 3. While D123 
= 0
can be confirmed for both J1 > 0 and J1 < 0, a notable
difference between the two cases can be found in the signs
of local spin correlations.

For J1 > 0, one of the following inequalities is always
satisfied:

〈S1 · S2〉 < −〈S2 · S3〉 < 0 (0 < J1/J2 < 2), (31a)

〈S1 · S2〉 < 〈S2 · S3〉 � 0 (2 � J1/J2 � 4.15). (31b)

FIG. 7. (Color online) Sketches of (a) the singlet dimer state and
(b) the Haldane dimer state. The thick lines indicate valence bonds.
In (b), the encircled bonds indicate emergent spin-1’s. From each
of them, a valence bond emanate to each left and right; the wave
function is given by a superposition of such valence bond covering
states. Vertical cuts (dashed lines) are introduced to probe a hidden
order; the number of valence bonds crossing with each cut is shown
in the square. The alternation of odd and even numbers is found in
both the states.

Namely, the system has a strong antiferromagnetic correlation
on the bond (1,2) and a weaker correlation on (2,3). In this
case, it is natural to assume that singlet dimers are formed on
the bonds (2j + 1,2j + 2) (j ∈ Z), and are weakly correlated
with each other, as schematically shown in Fig. 7(a). Hence
we call this phase the singlet dimer phase. In particular, the
ground state is exactly given by a direct product of singlet
dimers at the Majumdar-Ghosh point2 J1/J2 = 2. In Fig. 6(a),
we find that the weaker correlation 〈S2 · S3〉 changes the sign
at this point.

By contrast, the following inequality is found to be satisfied
when −4 < J1/J2 < 0:

0 < 〈S1 · S2〉 < 〈S2 · S3〉. (32)

Namely, strong and weak ferromagnetic nearest-neighbor
correlations alternate along the chain. This observation led
us to propose that there should be emergent spin-1 degrees
of freedom on the bonds (2j + 2,2j + 3) (j ∈ Z) that have
stronger ferromagnetic correlation, as depicted by ellipses in
Fig. 7(b). Since the total wave function is a spin singlet, such
spin-1’s are expected to form a valence bond solid state28 as
in the spin-1 Haldane chain.29 Namely, from each encircled
bond in Fig. 7(b), two valence bonds emanate, one to the left
and one to the right; the total wave function is obtained by
superposing such valence bond covering states. We thus call
the dimer phase with J1 < 0 the Haldane dimer phase. The
emergence of the Haldane chain physics in this phase is also
supported by the presence of a hidden nonlocal order analyzed
in Sec. III B3.

In Sec. III A, it was argued that the marginal perturbation
G1, which induces the dimer order, grows very slowly under
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the RG for J1 < 0 and that the energy gap associated with the
dimer order can be extremely small.21 The result of Fig. 6(a)
indicates that the dimer order parameter D123 grows to a
numerically detectable magnitude for intermediate values of
|J1|/J2 (≈2), although the obtained values are much much
smaller compared to the J1 > 0 case (by a factor of around
1/40). The weakness of the effect of J1 in inducing the dimer
order and the associated energy gap for J1 < 0 is also seen in
the spin correlation length discussed next.

2. Spin correlation length

We determine the spin correlation length ξ in the dimer
phases by using the method of Ref. 5. Except at the Lifshitz
point J1/J2 = 2, the spin correlation function is expected to
behave at long distances as5,56

〈S1 · S1+r〉 ≈ A cos(Qr)r− 1
2 e−r/ξ . (33)

In the incommensurate regions −4 < J1/J2 < 0 and 0 <

J1/J2 < 2, the pitch angle Q changes continuously from 0
to π , as will be discussed in Sec. IV B3 (see Fig. 16). For
2 < J1/J2 � 4.15, Q is fixed at Q = π . To determine ξ , we
plot r1/2er/ξ 〈S1 · S1+r〉 as a function of r , and tune ξ such that
the amplitude of oscillations becomes as constant as possible,
as illustrated in Fig. 8. While the coefficient A in Eq. (33) is
given by the oscillation amplitude in Fig. 8, it is not simple to
determine Q that can fit these very rapid oscillations; instead,
it will be determined by calculating the spin structure factor in
Fig. 13.

The calculated ξ is plotted in Fig. 6(b). The data for J1 > 0
are broadly in agreement with Ref. 5.57 We find that the values
of ξ are much larger for J1 < 0 than for J1 > 0, as anticipated
from the magnitudes of the dimer order parameter in Fig. 6(a).

We use the above numerical data of the spin correlation
length ξ to infer the magnitude of the spin gap �s for J1 < 0. In
general the spin gap �s should be inversely proportional to ξ ,
with the proportionality constant being the spin velocity. From
the data of Ref. 5 for J1 > 0, we extract an approximate rela-
tion (�s/J2)ξ ≈ 2. Applying the same relation to the J1 < 0
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FIG. 8. Determination of the spin correlation length ξ , illustrated
for J1/J2 = −1.8. Assuming the asymptotic behavior (33), we plot
the function r1/2er/ξ 〈S1 · S1+r〉 and tune ξ such that the oscillation
width of this function becomes as constant as possible as a function
of r .5 While the oscillations arise from the cosine factor in Eq. (33),
it is difficult to extract the pitch angle Q from this figure; instead,
calculations in Sec. IV B3 give Q/(2π ) ≈ 0.235.

case, we estimate the spin gap �s around J1/J2 = −2 to be
roughly equal to 0.06J2. We note that this should be considered
as a crude order of magnitude estimate.

3. Hidden order

The singlet and Haldane dimer phases have different (local)
features of short-range correlations as expressed in Eqs. (31)
and (32). In spite of this local difference, the two phases in
fact share a common nonlocal order, as we now explain. Let
us count the number of valence bonds crossing the vertical
cuts (dashed lines) depicted in Fig. 7. We find that even and
odd numbers alternate in the same way in the two phases,
when we take the ground state with D123 < 0. The existence
of such a hidden nonlocal order can be probed numerically by
calculating the string correlation function58–63

Oz
str(�,� + 2r) := −

〈(
Sz

� + Sz
�+1

)
exp

(
iπ

�+2r−1∑
m=�+2

Sz
m

)

× (
Sz

�+2r + Sz
�+2r+1

)〉
. (34)

The intuition behind this expression is as follows. Consider a
pair of spins Sz

�+2j + Sz
�+2j+1 on the bond (� + 2j,� + 2j +

1) (j ∈ Z), which the string correlation function (34) consists
of. If an odd number of valence bonds cross any cut placed
between the neighboring pairs, then the pattern of Sz

�+2j +
Sz

�+2j+1 = −1,0, + 1 shows a hidden antiferromagnetic order,
namely, alternation of +1 and −1 after removing all 0’s (see
figures in Refs. 61 and 63). The correlation function (34)
detects this hidden order and takes a nonvanishing value in
the long-distance limit r → ∞.

Figure 9 presents the numerical data of the string correlation
functions (34) calculated with different starting points � = 1,2
for the ground state with D123 < 0. We find that for both signs
of J1, Oz(2,2 + 2r) remains finite in the long-distance limit
while Oz(1,1 + 2r) decays to zero, in agreement with the
even-odd structure in Fig. 7. We note that this behavior is
also consistent with the bosonized expressions of the string
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FIG. 9. (Color online) String correlation function (34) for
J1/J2 = 1.4 and −2.0 in the isotropic case � = 1. For both values of
J1/J2, Oz(2,2 + 2r) remains finite in the long-distance limit, while
Oz(1,1 + 2r) decays to zero.
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correlations:64

Oz
str(1,1 + 2r) ∼ 〈cos[

√
πφ+(x)] cos[

√
πφ+(y)]〉, (35)

Oz
str(2,2 + 2r) ∼ 〈sin[

√
πφ+(x)] sin[

√
πφ+(y)]〉, (36)

(with x and y being the two endpoints of the string) and
the field locking position

√
4πφ+ = π for the ground state

with D123 < 0 [see Eq. (29)]. The J1/J2 dependence of
Oz(2,2 + 2r) for a long distance r = 50 is shown in Fig. 6(c).
Although the dimer order parameter shows a large difference
in magnitude between the J1 > 0 and J1 < 0 cases, the values
of the string correlation are rather comparable between the two
cases.

Another way of probing the hidden order is to find the
degeneracy in the entanglement spectrum.65 Using the Schmidt
coefficients {λmα} calculated in iTEBD, we plot the spectra
{−2 ln λmα} in Fig. 10. Here, the spectra are classified by
the z-component magnetization m in the right half of the
system (this classification is done in the process of our
calculations to exploit the U (1) spin rotational symmetry for
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FIG. 10. Entanglement spectra {−2 ln λmα} for (a) J1/J2 = 1.4
and (b) J1/J2 = −2. The left and right panels are for the bipartition
of the system at the bonds (1,2) and (2,3), respectively. m refers to the
magnetization in the right half of the system. The lower entanglement
level corresponds to the more important weight in the total state. We
note that as an example, the exact singlet dimer ground state of Ref. 2
shows −2 ln λ± 1

2 ,1 = ln 2 and −2 ln λ0,1 = 0 for the two types of
bipartition (with all the other levels at infinity).

better efficiency). For the bipartition of the system at the bond
(1,2) (left panels), we find that the entanglement levels appear
only for half-integer m and are all doubly degenerate due
to the left-right symmetry around m = 0. By contrast, for
the bipartition at (2,3) (right panels), the entanglement levels
appear only for integer m, and nondegenerate levels are found
for m = 0.66 These features are found commonly for both
signs of J1, and are consistent with the even-odd structure in
Fig. 7.

In Fig. 7, we depicted short-range valence bonds only.
However, the even-odd structure we discussed can be also
defined in the presence of longer-range valence bonds. As
the correlation length becomes longer, the weights of such
longer-range valence bonds in the wave function would
gradually grow while retaining the even-odd structure.67 We
expect that through this process, the Haldane dimer state of
Fig. 7(b) smoothly changes into the exact resonating valence
bond ground state at J1/J2 = −4 in which valence bonds are
uniformly distributed over all distances.68

4. Adiabatic connectivity to a ladder model

In order to gain further intuition about the two dimer
phases, it is useful to introduce explicit bond alternation of the
J1 couplings in the Hamiltonian (1) (with � = 1). Namely,
we place inequivalent couplings J1 and J ′

1 on the bonds
(2j + 1,2j + 2) and (2j + 2,2j + 3) (j ∈ Z), respectively.
Figure 11 displays an expected phase diagram for small J1/J2

and J ′
1/J2. This phase diagram can be obtained45,63 by noticing

that in the non-Abelian bosonization framework, the bond
alternation induces the relevant term (J1 − J ′

1)N1 · N2 with
scaling dimension 1 in the Hamiltonian, which leads to the
ground state where D123 ∼ 〈N1 · N2〉 acquires a finite average
with the same sign as that of J ′

1 − J1. The limit J1 → 0 or
J ′

1 → 0 (the vertical or horizontal axis of Fig. 11) corresponds
to a spin ladder model for which it is established that the rung
singlet and Haldane phases appear for antiferromagnetic and
ferromagnetic rung couplings, respectively.47,61,62,69 Therefore
we expect that the Haldane dimer state with D123 < 0 in

FIG. 11. Expected phase diagram of the zigzag ladder model with
alternating nearest-neighbor couplings J1 and J ′

1. |J1|/J2 and |J ′
1|/J2

are assumed to be small. The solid diagonal line J1 = J ′
1 corresponds

to the original model (1) (with � = 1), and represents the first-order
phase transition line in the current model. The vertical and horizontal
dashed lines correspond to a usual ladder model (no phase transition
on these lines). In four insets of zigzag ladders, thick lines indicate
valence bonds, and ovals indicate the formation of effective spin-1’s.
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Fig. 7(b) should be adiabatically connected to the Haldane
state of a ladder model (the lower half of the vertical axis
of Fig. 11) by gradually switching off the J1 coupling. It is
also possible to adiabatically change the ground state from
the Haldane dimer state to the singlet dimer state (both with
D123 < 0) by moving counterclockwise around the origin
in Fig. 11, although the wave function may considerably
change in this process. In the zigzag ladder model with
J1 = J ′

1 (diagonal line), however, the singlet and Haldane
dimer phases are separated by the origin (open circle in
Fig. 11), at which the two chains are decoupled. We note
that only on the J1 = J ′

1 line in Fig. 11, the model has the
symmetry with respect to the translation S� → S�+1, and the
dimer order appears by spontaneously breaking this symmetry.
It would thus be interesting to investigate under what kind
of translationally symmetric perturbation the Haldane and
singlet dimer phases can be adiabatically connected to each
other while retaining the double degeneracy below a finite
excitation gap.

IV. EASY-PLANE CASE 0 � � < 1

In this section, we consider the model (1) in the easy-
plane case 0 � � < 1. In Sec. IV A, we present the Abelian
bosonization formulation of the model for |J1|/J2 � 1 and
explain how various phases in Fig. 1 are described in this
framework. In particular, we review the effective theory for
the gapless chiral phase6 and, following Ref. 34, discuss its
instability towards gapped chiral phases due to a symmetry-
allowed perturbation. Section IV B presents our numerical
results. We compute the spin correlation functions in the
gapless chiral phase and determine the phase boundaries to
the gapped chiral phases.

A. Bosonization analyses

We consider the easy-plane XXZ Hamiltonian (1) in
the regime |J1|/J2 � 1. Using the formulation described in

Sec. III A2, we obtain the effective Hamiltonian

H =
∫

dx

{∑
ν=±

vν

2

[
Kν(∂xθν)2 + K−1

ν (∂xφν)2
]

− γ1 cos(
√

4πφ+) cos(
√

4πθ−)

+ γtw(∂xθ+) sin(
√

4πθ−)

+ γ ′′
tw(∂xφ−) sin(

√
4πφ+) + · · ·

}
. (37)

The first line represents the Gaussian Hamiltonian while the
other lines represent perturbations that can become relevant in
the easy-plane case.6,22,44 As seen in Eq. (25), the γ1 term is
related to the G1 term in the non-Abelian bosonization, while
γtw and γ ′′

tw correspond to Gtw. The coupling constants are
obtained in lowest order in J1 as

K± = K

(
1 ∓ KJ1�a

2πv

)
, v± = v

(
1 ± KJ1�a

2πv

)
, (38)

γ1 = B2
1J1

a
, γtw = √

πJ1B
2
0 , γ ′′

tw =
√

π

2
J1�A2

1, (39)

where K and v are given by Eq. (18). We have discussed in
Sec. III that, in the isotropic case � = 1, γ1 grows to large
positive values for both signs of J1 under the RG, and induces
the singlet and Haldane dimer phases for J1 > 0 and J1 < 0,
respectively. Below we explain how other phases in Fig. 1 are
described using the effective Hamiltonian (37). The results are
summarized in Table I.

1. Even-parity dimer phase

If J1 < 0, the coupling constant γ1 is negative at the bare
level. Suppose that this term grows, keeping the negative sign
under the RG. Then the bosonic fields are locked at

(
√

4πφ+,
√

4πθ−) = (0,π ) or (π,0). (40)

In either case, it follows from Eq. (30) that the xy and z

components of the dimer order parameter, D
xy

123 and Dz
123,

become finite and have mutually opposite signs (Dxy

123D
z
123 <

0). This situation corresponds to the even-parity dimer phase

TABLE I. Summary of the Abelian bosonization description of the phases for small |J1|/J2. Both the easy-plane (see Sec. IV) and easy-axis
(see Sec. V) cases are presented. We note that the (chiral) even-parity dimer and chiral Néel phases appear for rather large |J1|/J2 in Fig. 1
although their essential features can be captured in the Abelian bosonization framework.

Phase Relevant perturbations Field-locking positions Order parameters

Singlet/Haldane dimer γ1 > 0 (
√

4πφ+,
√

4πθ−) = (0,0),(π,π ) D
xy

123D
z
123 > 0

Even-parity dimer γ1 < 0 (
√

4πφ+,
√

4πθ−) = (0,π ),(π,0) D
xy

123D
z
123 < 0

Gapless chiral γtw ∼ J1 
= 0
√

4πθ− = − π

2 sgn(J1〈∂xθ+〉) κz
12 
= 0

Chiral singlet/Haldane dimer γtw ∼ J1, γnd < 0, γ1 > 0 (
√

4πφ+,
√

4πθ−) =
{

(0, ± π

2 ) → (0,0)
(π,± π

2 ) → (π,±π )
κz

12 
= 0, D
xy

123D
z
123 > 0

Chiral even-parity dimer γtw < 0, γnd < 0, γ1 < 0 (
√

4πφ+,
√

4πθ−) =
{

(0,± π

2 ) → (0, ±π )
(π,± π

2 ) → (π,0)
κz

12 
= 0, D
xy

123D
z
123 < 0

Chiral Néel γtw < 0, γnd > 0, γ ′′
tw 
= 0

√
4πφ+ = ±π/2,

√
4πθ− = ±π/2 κz

12 
= 0, 〈Sz
�〉 ∝ (−1)�

uudd γbs < 0
√

2πφ1 = 0,π ,
√

2πφ2 = 0,π 〈Sz
2j+1〉 = ±〈Sz

2j 〉 ∝ (−1)j

Partially polarized γ ′
tw < 0

√
4πφ− = π

2 sgn(〈∂xφ+〉) 〈Sz
�〉 
= 0
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appearing at strong easy-plane anisotropy (� � 0.6); see
Fig. 2(b).

2. Gapless chiral phase

As shown by Nersesyan et al.,6 the gapless chiral phase
appears when γtw grows under the RG. To discuss the effect of
the γtw term, it is useful to perform the mean-field decoupling6

(∂xθ+) sin(
√

4πθ−)

→ 〈∂xθ+〉 sin(
√

4πθ−) + (∂xθ+)〈sin(
√

4πθ−)〉. (41)

Then the Hamiltonian (37) separates into “+” and “−” sectors:

H = H+ + H− (42)

with

H+ =
∫

dx
v+
2

[K+(∂xθ̃+)2 + K−1
+ (∂xφ+)2], (43)

H− =
∫

dx

{
v−
2

[K−(∂xθ−)2 + K−1
− (∂xφ−)2]

+ γtw〈∂xθ+〉 sin(
√

4πθ−)

}
. (44)

Here we have introduced

θ̃+ := θ+ − qx, q := −γtw〈sin(
√

4πθ−)〉
v+K+

. (45)

While H+ is a Gaussian Hamiltonian of free bosons (φ+,θ̃+),
H− is a sine-Gordon Hamiltonian in which the relevant sine
potential generates a finite energy gap for the θ− field. Since
〈∂xθ̃+〉 = 0 from H+, 〈∂xθ+〉 = q. The coefficient of the sine
potential in H− is thus given by γtwq, and the field θ− is locked
at distinct positions depending on the sign of this coefficient:

〈
√

4πθ−〉 = −π

2
sgn(γtwq). (46)

Correspondingly, the sine term acquires a finite expectation
value:

〈sin(
√

4πθ−)〉 = −c1sgn(γtwq), (47)

where c1 is a positive constant. Equations (45) and (47) can
be solved self-consistently70 by inserting the exact solution of
the sine-Gordon model into Eq. (47), yielding two solutions,
one positive and one negative q. It should be understood that
the mean-field parameters c1 and q used in the following calcu-
lation of correlation functions are determined self-consistently.

First, the nonvanishing value of the mean-field parameter in
Eq. (47) directly leads to a finite vector chiral order parameter
(2):

κz
�,�+1 = −B2

0 〈sin(
√

4πθ−)〉 = B2
0c1sgn(γtwq). (48)

Therefore the two mean-field solutions correspond to the
ground states with positive and negative κz

�,�+1. Let us take
the ground state with κz

�,�+1 > 0 (i.e., γtwq > 0) and discuss
the expressions of the spin operators. We focus on gapless
degrees of freedom, and ignore the fluctuations of θ− around
its average (46). Then we find
√

2πθ1,2 = √
π (θ+ ± θ−) = √

πθ̃+ + √
πqx1,2 ∓ π

4
, (49)

which are combined into
√

2πθn(xn) = √
πθ̃+(xn) + √

πqxn + π

2

(
n − 3

2

)
. (50)

The in-plane component of the spins are then expressed as

S+
2j+n ≈ B0(−1)j ei

√
2πθn(xn)

= B0 exp

{
i

[√
π (θ̃+ + qxn) + π

2

(
2j + n − 3

2

)]}
.

(51)

Introducing � = 2j + n and x(�) = xn(j ) = (a/2)(� − 3/2),
we obtain

S+
� ≈ B0e

i[
√

πθ̃+(x)+Q(�−3/2)], (52)

with

Q = π + √
πqa

2
. (53)

As for the z component of the spins, we simply ignore the φ−
part of the expression:

Sz
� ≈ a√

4π
∂xφ+. (54)

Spin correlation functions are then calculated as6,71

〈S+
� S−

�′ 〉 = A
e−iQ(�′−�)

|�′ − �|1/(2K+)
+ · · · , (55)

〈
Sz

�S
z
�′
〉 = − K+

2π2|�′ − �|2 + · · · (56)

with A = B2
0 21/(2K+). The finite vector chiral order parameter

κz
�,�+1 in Eq. (48) and the quasi-long-range in-plane spiral

correlation with an incommensurate pitch angle Q in Eq. (55)
are two major features of the gapless chiral phase.

3. Gapped chiral phases

Following Lecheminant et al.,34 we consider the following
symmetry-allowed perturbation to the effective theory of the
gapless chiral phase:

γnd

∫
dx cos(2

√
4πφ+), (57)

with which the “ + ” sector of the Hamiltonian becomes a
sine-Gordon model. The scaling dimension of this perturbation
is 4K+. If the γnd term becomes relevant (4K+ < 2), a
Berezinskii-Kosterlitz-Thouless (BKT) transition takes place
and as a result, the bosonic field φ+ is locked at distinct
positions dependent on the sign of γnd. This leads to gapped
chiral phases in which the chiral order coexist with either the
dimer or the Néel order, depending on the sign of γnd.

First, when γnd < 0,
√

4πφ+ is locked at
√

4πφ+ = 0 or π, (58)

which produces a finite value of the z component of the
dimer order parameter, Dz

123, as seen in Eq. (30). We have
thus obtained the “chiral dimer phase” in which the vector
chiral and dimer orders coexist.34 Once φ+ is locked as in
Eq. (58), the locking position of

√
4πθ− is affected by the γ1

term in Eq. (37) and changed from ±π/2 of the gapless chiral
phase [see Eq. (46)], so that the xy component of the dimer
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order parameter, D
xy

123, also becomes finite, in agreement with
Fig. 2. Specifically, for positive γ1, the field-locking positions
of the four degenerate ground states change smoothly with the
strength of γ1 as

(
√

4πφ+,
√

4πθ−) =
{

(0,±π
2 ) −→ (0,0),

(π,±π
2 ) −→ (π,±π ) ≡ (π,π ),

(59)

finally resulting in the two degenerate ground states of either
the Haldane dimer or the singlet dimer phase as specified by
Eq. (29). For negative γ1, the field-locking positions change as

(
√

4πφ+,
√

4πθ−) =
{

(0,±π
2 ) −→ (0,±π ) ≡ (0,π ),

(π,±π
2 ) −→ (π,0),

(60)

resulting in the two degenerate ground states of the even-parity
dimer phase as indicated by Eq. (40).

Second, when γnd > 0, φ+ is locked at
√

4πφ+ = ±π

2
. (61)

This yields a finite Néel order paramter along the z direction,
as we explain below. From Eqs. (21) and (24), the Sz

� operator
has the staggered component

(−1)�Sz
� = a√

4π
∂xφ− + · · · , (62)

which, at first sight, looks insensitive to the locking of φ+.
However, after the locking (61), the γ ′′

tw term in Eq. (37) reduces
to the operator ±γ ′′

tw∂xφ−, which can be absorbed into the
Gaussian part of H− in Eq. (44) by redefining φ− (so that
∂xφ− is shifted by a constant). Consequently, Eq. (62) acquires
a nonvanishing expectation value

(−1)�
〈
Sz

�

〉 = − K+a√
4πv+

γ ′′
tw〈sin(

√
4πφ+)〉 + · · · . (63)

We have therefore obtained the “chiral Néel phase” in which
the vector chiral and Néel orders coexist.

At the BKT transition point K+ = 1/2, the sine-Gordon
theory for the “ + ” sector predicts the appearance of
a multiplicative logarithmic correction to the correlation
functions:30,42,72,73

〈S+
� S−

�′ 〉 = A
e−iQ(�′−�)

|�′ − �| ln1/2(|�′ − �|/a) + · · · . (64)

This logarithmic correction is utilized to locate the BKT phase
transition point numerically in the next section.

B. Numerical results

In this section, we present our numerical iTEBD results
(with the Schmidt rank χ = 300) on the spin correlation
functions in the easy-plane case 0 � � < 1.

1. Spin correlations in the gapless chiral phase

We first discuss the numerical results for the gapless
chiral phase, where we choose the ground state with κ12 > 0.
Figure 12 shows the in-plane spin correlation function
|〈S+

1 S−
1+r〉| at � = 0.8 for various values of J1/J2 in the

gapless chiral phase. The data for |J1|/J2 � 2 follow straight

10-2

10-1

 1  10  100

| 〈
 S

+ 1 
S− 1+

r 〉
 |

r

[Δ=0.8]

J1/J2= −3   
 −2.5
 −2   
 −1.6
 −1.2

FIG. 12. (Color online) In-plane spin correlation function
|〈S+

1 S−
1+r〉| for fixed � = 0.8 and various values of J1/J2 in the

gapless chiral phase. Logarithmic scales are used in both axes.

lines in logarithmic scales, in agreement with the power-law
behavior in Eq. (55). By contrast, the data for J1/J2 = −1.6
and −1.2 show some oscillations at short distances although
the overall behaviors are linear as expected from Eq. (55) (we
suspect that the downward bending at large r for J1/J2 = −1.2
is due to a finite Schmidt rank χ = 300 and is not a genuine
behavior).

The origin of the oscillations can be found in the spin
structure factors shown in Fig. 13. For L consecutive spins
at the sites � = 1,2, . . . ,L in a translationally invariant infinite

 0
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 10

-0.5 -0.25  0  0.25  0.5

S
+ 

− (q
)

q / (2π)

(a)
[Δ=0.8]

J1/J2= −3.0
−2.5
−2.0
−1.6
−1.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.5 -0.25  0  0.25  0.5

S
zz

(q
)

q / (2π)

(b) [Δ=0.8]

J1/J2= −3.0
−2.5
−2.0
−1.6
−1.2

FIG. 13. (Color online) Equal-time spin structure factors [see
Eq. (66)], (a) S+−(q) and (b) Szz(q), in the gapless chiral phase.
Calculations were done for the same parameter points as in Fig. 12,
and we set L = 100.
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Δ=0.895
0.900
0.905
0.910(D)
0.915
0.920(C)

FIG. 14. (Color online) In-plane spin correlation function, cal-
culated for fixed J1/J2 = −2 and various values of � around the
transition points shown in Fig. 2. The symbols “C” and “D” indicate
our estimates of the transition points (with a precision of 0.005) for the
onsets of the vector chiral and dimer orders, respectively. Logarithmic
scale is used for the horizontal axis. At the BKT transition related
to the onset of the dimer order, the plotted function is expected to
become linear in the long-distance limit, which we use to determine
the “D” points. In (b), all the curves are slightly bent downward around
r = 70 (broken vertical line) due to the finiteness of the Schmidt rank
χ (= 300) in iTEBD, so we use the range r � 70 for our analysis.

system treated by iTEBD, we introduce

Sα
q = 1√

L

L∑
�=1

Sα
� e−iq� (65)

and define the equal-time spin structure factors as

Sαβ (q) = 〈
Sα

q S
β
−q

〉
with (α,β) = (+,−),(z,z). (66)

In Fig. 13(a), S+−(q) shows sharp peaks at incommensurate
wave number q = Q > 0, which become sharper and higher
for large |J1|/J2. This feature is consistent with Eq. (55),
provided that K+ becomes larger with increasing |J1|/J2; see
Eq. (38). These peaks are expected to diverge as L → ∞ in
the gapless chiral phase. For small |J1|/J2, a second peak
around q = −Q < 0 develops, which indicates the ellipticity
of the spiral correlations and is the origin of the oscillating
behavior in Fig. 13. The appearance of the second peak can be
understood by observing that S+−(q) should gradually become
left-right symmetric as the vector chiral order parameter κz

decreases.22 In Fig. 13(b), Szz(q) shows linear behaviors
around q = 0 as expected from the Fourier transform of
Eq. (56): Szz(q) = K+|q|/2π for |q| � 1. In addition, it shows
finite peaks at incommensurate q. Although the explanation of

 0

 0.5

 1

 1.5

 2

 10  100

r2  | 
〈 S

+ 1 
S

− 1+
r

〉 |
2

r

[Δ=0.8]J1/J2=−3.185
−3.190
−3.195
−3.200(N)
−3.205
−3.210
−3.215
−3.225(C)

FIG. 15. (Color online) In-plane spin correlation, calculated for
fixed � = 0.8 and various values of J1/J2 around the transition points
shown in Fig. 3. The symbols “C” and “N” indicate our estimates of
the transition points (with a precision of 0.005) for the onsets of the
vector chiral and Néel orders, respectively.

these peaks is beyond the scope of the effective theory, their
occurrence is rather natural for � = 0.8, since the xy and
z components should show similar behaviors as the system
approaches the isotropic limit � = 1.

2. Transitions to the gapped chiral phases

Next we analyze how the spin correlation changes at the
transition from the gapless chiral phase to the gapped dimer
or Néel phase. The existence of the intermediate gapped
chiral phases where two kinds of orders coexist is anticipated
from the analyses of the order parameters and entanglement
entropy in Figs. 2 and 3 and from the bosonization analysis of
Sec. IV A3. The in-plane spin correlation function is expected
to show a multiplicative logarithmic correction in Eq. (64) at
the BKT transition point from the gapless to gapped chiral
phases. Therefore, in Figs. 14 and 15, we plot r2|〈S+

1 S−
1+r〉|2,

which is expected to become a linear function of ln r at the
BKT transition point. In Figs. 14(a) and 14(b), the symbols
“C” indicate the Ising transition points (determined in Fig. 2)
at which the inversion symmetry is spontaneously broken and
the vector chiral order appears. Finding the linear behavior of
the plotted functions, we determine the BKT transition points
as indicated by the symbols “D.” Narrow but finite ranges
of intermediate phases between “C” and “D” are found in
the intervals 0.61 � � � 0.63 and 0.91 � � � 0.92, which
we identify with the “chiral (even-parity and Haldane) dimer
phases.” Similarly, we determine the range of the “chiral Néel
phase” in Fig. 15. In this way, we have determined the “×”
symbols in Fig. 1. Since the method of determining the BKT
point from the logarithmic correction to spin correlation, as
employed here, has not been discussed in literature (as far as
we know), we demonstrate its validity using a simpler example
in Appendix B.

3. Pitch angle

Finally, we determine the pitch angle Q of the incom-
mensurate spin correlations in the vector chiral and gapped
phases. It is determined from the maximum position of the
in-plane structure factor S+−(q) (as in Ref. 74). The data of Q

so obtained as a function of J1/J2 are shown for different
values of � in Fig. 16. The Lifshitz points, at which the
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FIG. 16. (Color online) Pitch angle Q as a function of J1/J2

for different values of �. This angle is determined by finding the
peak in the in-plane structure factor S+−(q) as shown in Fig. 13(a).
The classical value Q = arccos(− J1

4J2
), which is independent of �, is

plotted together for comparison.

in-plane spin correlation function changes its character from
incommensurate to commensurate (Q = 0 or π ), occur inside
the singlet dimer phase for J1 > 0 and inside the even-parity
dimer or Néel phase for J1 < 0. For J1 > 0 and all values
of �, the determined Lifshitz points are very close to the
point J1/J2 = 2 with the exact singlet dimer ground states.
According to the argument of Ref. 56, the Lifshitz points
should be in fact located exactly at J1/J2 = 2. The small
discrepancy comes from the difference in the definition of Q;
in Ref. 56, it is defined in terms of the asymptotic behavior of
the correlation function in the long-distance limit. For J1 < 0,
the determined Lifshitz line is drawn by broken lines in Fig. 1;
it starts from the highly degenerate point68,74 (J1/J2,�) =
(−4,1) and ends near the point (J1/J2,�) = (−2,0) with the
exact even-parity dimer ground states.

V. EASY-AXIS CASE � > 1

To complete our analysis of the XXZ chain model (1)
with J1 < 0 and J2 > 0, let us shortly discuss the case
with easy-axis anisotropy � > 1. In this case, Igarashi35 and
Tonegawa et al.18 have found the following three phases.
For J1/J2 � −4, the ground state is fully polarized (ferro-
magnetic) along the z direction. For small |J1|/J2 and large
�, the ground state is antiferromagnetic, having a period-4
structure ↑↑↓↓ . . . (uudd). Between the fully polarized and
uudd phases intervenes the partially polarized phase, in which
the spontaneous ferromagnetic moment along the z direction
changes continuously as a function of J1/J2 and �. We
note that the uudd phase was also found in the model with
antiferromagnetic J1,2 > 0.36 Here, we describe the uudd and
partially polarized phases in terms of the Abelian bosonization
formulation for |J1|/J2 � 1 and 0 < � − 1 � 1.

A. uudd phase

We start from the decoupled isotropic Heisenberg chains
with J2 > 0. The in-chain easy-axis anisotropy J2(� −
1)

∑
j,n Sz

2j+nS
z
2j+n+2 (with � > 1) adds to the Hamiltonian

the backscattering terms

γbs[cos(2
√

2πφ1) + cos(2
√

2πφ2)] (67)

with γbs < 0. If this term grows dominantly under the RG, the
fields are locked at

(
√

2πφ1,
√

2πφ2) = (0,0), (0,π ), (π,0), or (π,π ). (68)

These fourfold degenerate ground states correspond to the
period-4 uudd structures with〈

Sz
2j+1

〉 = c2(−1)j ,
〈
Sz

2j+2

〉 = ±c2(−1)j , (69)

where c2 is a nonzero constant [see Eq. (21)].

B. Partially polarized phase

The partially polarized phase found numerically18 can be
understood from the mean-field treatment of the operator
(∂xφ+) sin(

√
4πφ−),54 which is contained in Otw in Eq. (25b).

Here we review the formulation of Zarea et al.,54 and then
discuss the behaviors of correlation functions, which were not
discussed in detail in previous studies.18,35,54

We start from the effective Hamiltonian54

H =
∫

dx

{∑
ν=±

vν

2
[Kν(∂xθν)2 + K−1

ν (∂xφν)2]

+ γ ′
tw(∂xφ+) sin(

√
4πφ−)

}
(70)

with γ ′
tw < 0. The mean-field decoupling similar to the one

used in Sec. IV A2 yields the effective Hamiltonian H =
H+ + H−, where

H+ =
∫

dx
v+
2

[K+(∂xθ+)2 + K−1
+ (∂xφ̃+)2], (71)

H− =
∫

dx

{
v−
2

[K−(∂xθ−)2 + K−1
− (∂xφ−)2]

+ γ ′
twμ sin(

√
4πφ−)

}
. (72)

Here we have introduced

φ̃+(x) = φ+(x) − μx, (73)

with

μ = −K+γ ′
tw〈sin(

√
4πφ−)〉

v+
= 〈∂xφ+〉. (74)

There are two self-consistent solutions: μ = +|μ|, − |μ|. A
nonvanishing μ directly leads to the spontaneous magnetiza-
tion 〈

Sz
�

〉 = a√
4π

〈∂xφ+〉 = a√
4π

μ ≡ M. (75)

Furthermore, the sine potential in H− locks the bosonic field
at √

4πφ− = π

2
sgn(μ). (76)

To see the physical consequence of the field locking in
Eq. (76), we discuss spin correlation functions in the ground
state. The transverse component of spin, S+

� , contains the
operator e±√

πθ− , which strongly fluctuates due to the locking
of the dual field φ−; therefore the correlation function 〈S+

� S−
�′ 〉

decays exponentially with the distance. Instead, the longitu-
dinal correlation 〈Sz

�S
z
�′ 〉 and the bond nematic correlation71,75
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〈S+
� S+

�+1S
−
�′ S

−
�′+1〉 show power-law decays. Ignoring fluctua-

tions of φ−, we obtain the bosonized expressions for these
operators as

Sz
� = M + a√

4π
φ̃+

+A1 cos

{√
πφ̃+ + π

[
M −sgn(M)

2

](
� − 3

2

)}
+ · · · ,

(77)

S+
� S+

�+1 = (−1)�+1B2
0ei

√
4πθ+

+ 2B0B1e
i
√

4πθ+ cos

[
π

2

(
1

2
− |M|

)]

× cos

{√
πφ̃+ + π

[
M + sgn(M)

2

]
(� − 1)

}
+ · · · , (78)

from which the correlation functions are calculated as〈
Sz

�S
z
�′
〉 = M2 − K+

2π2|�′ − �|2

+B
cos

[
π

(|M| − 1
2

)
(�′ − �)

]
|�′ − �|K+/2

+ · · · , (79)

〈S+
� S+

�+1S
−
�′ S

−
�′+1〉 = B ′ (−1)�

′−�

|�′ − �|2/K+

−B ′′ cos
[
π

(|M| + 1
2

)
(�′ − �)

]
|�′ − �|2/K++K+/2

+ · · · ,

(80)

with B ∝ A2
1, B ′ ∝ B4

0 , and B ′′ ∝ B2
0B2

1 . We note that the TLL
phases with similar power-law correlations, called the nematic
and SDW2 phases, have also been discussed for the model
(1) in a magnetic field, for both ferromagnetic71,75–77 and
antiferromagnetic78,79 J1. For small |J1|/J2 and � − 1, K+ is
close to unity, and the longitudinal (spin-density-wave; SDW)
correlation decays more slowly than the nematic correlation.
The TLL phase with a dominant SDW correlation and short-
ranged transverse spin correlation is called the SDW2 state
in Refs. 71 and 79. It is natural to assume that the partially
polarized phase at � > 1 in zero magnetic field is continuously
connected to the SDW2 phase in a finite magnetic field.71,75,76

With interchain couplings, the dominant quasi-long-range
SDW correlation is expected to evolve into a true long-range
order.80 Since K+ changes continuously in the TLL phases, it
is also possible that the system crosses over to a region with
the dominant nematic correlation (K+ > 2). It is known that
such a region does appear at high-magnetic fields.71,75,76

VI. CONCLUSIONS

In this paper, we have studied the ground-state properties
of the one-dimensional spin-1/2 frustrated ferromagnetic
XXZ model (1). In the isotropic case � = 1, the nonmagnetic
phase in the region −4 < J1/J2 < 0 was characterized as
the Haldane dimer phase, in which the ground state has
spontaneous ferromagnetic dimerization and nonlocal string
order. We argued that the dimer order is associated with an
emergent spin-1 degree of freedom on every other bond. In
the easy-plane case 0 � � < 1, the model displays a rich

phase diagram as in Fig. 1. Our previous works have revealed
the appearance of the gapless chiral phase in a wide region
for −4 < J1/J2 < 015 and the unusual alternate appearance
of the Néel and even-parity dimer phases.24 In this paper, we
have newly discovered narrow intermediate gapped phases in
which the vector chiral order coexists with the dimer or Néel
order. We described how the properties of the various phases
can be captured for |J1|/J2 � 1 and general anisotropy � � 0
by the Abelian bosonization formalism, as summarized in
Table I (by continuity, the same qualitative description can be
extended to larger |J1|/J2).

The Haldane dimer phase we found for � = 1 has only
a very small excitation gap and, with a weak easy-plane
anisotropy, is easily replaced by the gapless chiral phase.
With small interchain couplings, the gapless chiral phase
would evolve into a genuine spiral long-range-order. Therefore
the stable appearance of the gapless chiral phase up to the
close vicinity of the isotropic case � = 1 naturally explains
why many quasi-one-dimensional cuprates with ferromag-
netic J1 < 0 show the spiral magnetism and the associated
multiferroicity.15 By contrast, it is also expected that the small
excitation gap (�0.06J2; see Sec. III B2) in the Haldane dimer
phase can be enhanced by a coupling with phonons, due to the
spin-Peierls mechanism as is known in the antiferromagnetic
J1-J2 chain compound CuGeO3.81 It will be interesting to
explore a spin-Peierls transition to the Haldane dimer phase
in quasi-1D edge-sharing cuprates without a spiral magnetic
order. The present study also raises the possibility of observing
the chiral Haldane dimer state, which shows no magnetic order
but a spontaneous electric polarization due to a vector chiral
order of spins.
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APPENDIX A: DERIVATION OF THE
RENORMALIZATION GROUP EQUATIONS (16)

Here we briefly explain how the RG equations (16) are
derived by using the perturbative RG method46 and the
operator product expansions (OPE) in the SU(2)1 WZW
theory. We first discuss the OPEs in the decoupled spin chains,
each described by the SU(2)1 WZW theory. We drop the chain
subscript n = 1,2. The OPEs of the uniform spin components
MR/L obey the well-known SU(2) current algebra:31,33,47–49

Ma
R/L(x,τ )Mb

R/L(0) = δab

8π2z2
R/L

+ iεabcMc
R/L(0)

2πzR/L

(A1)
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with zR/L = vτ ∓ ix. Here, εabc is the fully antisymmetric
tensor with ε123 = 1, and summation over repeated indices
are assumed throughout the appendix. The OPEs present the
singular terms that appear when two operators at the points
(x,τ ) and 0 = (0,0) are brought close together.

The OPEs of the uniform components Ma
R/L with the

staggered components Na and the dimerization ε are given
by49

Ma
R/L(x,τ )Nb(0) = i

4πzR/L

[εabcNc(0) ± δabε(0)], (A2)

Ma
R/L(x,τ )ε(0) = ∓iNa(0)

4πzR/L

. (A3)

These equations imply that MR/L induce mixing of N and ε.
Similar to Eqs. (A2) and (A3), the OPEs among N and

ε can be derived33,49 by taking advantage of the well-known
spin-charge separation in 1D spin-1/2 Dirac fermions; with
bosonization, the charge and spin sectors of Dirac fermions
are described by a free scalar boson and the SU(2)1 WZW
theory, respectively. The use of fermionic fields simplifies the
calculations of OPEs in the WZW theory. For illustration, here
we derive the OPE of two ε’s. We take the same conventions as
used in the Appendix of Ref. 49, and introduce the right- and
left-moving fermionic fields �R/L,s (s =↑,↓), which obey the
OPEs

�R/L,s(x,τ )�†
R/L,s ′ (0) = δss ′

2πzR/L

. (A4)

We define the fermionic staggered dimerization operator as

εF = i

2
(�†

Rs�Ls − �
†
Ls�Rs). (A5)

Using bosonization, one can show that εF is related to ε as

εF = ε cos(
√

2πφρ), (A6)

where φρ is the bosonic field of the charge sector. We now
assume that the charge sector is in the gapped Mott phase
where φρ is locked (〈φρ〉 = 0) as in the Hubbard chain at
half-filling. This allows us to identify εF with λε, where λ =
〈cos(

√
2πφρ)〉 is a dimensionless constant of order unity. The

OPE of two ε’s is then obtained from the OPE of two εF ’s.
Performing all possible contractions of four fermion fields

(see Appendix A of Ref. 82), the OPE of two εF ’s is calculated
as

εF (x,τ )εF (0) = 1

4
�

†
Rs(x,τ )�Ls(x,τ )�†

Ls ′ (0)�Rs ′ (0)

+ (R ↔ L)

= 1

4πzRzL

+ 1

4π

[
ρR(0)

zL

− ρL(0)

zR

]

+ 1

2
�

†
Rs(0)�Ls(0)�†

Ls ′ (0)�Rs ′ (0)

with ρR/L = �
†
R/L,s�R/L,s . The last term is related to the

backscattering term:

�
†
Rs�Ls�

†
Ls ′�Rs ′ = −2MR · ML − 1

2ρRρL, (A7)

where the uniform components of the fermionic spin density
are defined as

Ma
R = 1

2�
†
Rsσ

a
ss ′�Rs ′ , Ma

L = 1
2�

†
Lsσ

a
ss ′�Ls ′ . (A8)

After gapping out the charge sector, we can neglect the
fluctuations of ρR/L. Thus we obtain

ε(x,τ )ε(0) = 1

4π2λ2zRzL

− 1

λ2
MR(0) · ML(0). (A9)

Similar calculations yield

Na(x,τ )Nb(0) = δab

4π2λ2zRzL

+ iεabc

2πλ2

[
Mc

R(0)

zL

+ Mc
L(0)

zR

]

+ 1

λ2
Oab

NN (0), (A10)

Na(x,τ )ε(0) = −i

2πλ2

[
Ma

R(0)

zL

− Ma
L(0)

zR

]
(A11)

where Oab
NN in Eq. (A10) is expressed in terms of fermionic

fields as

Oab
NN = 1

2σa
s1s2

σb
s3s4

�
†
Rs1

�Ls2�
†
Ls3

�Rs4 . (A12)

For the current purpose, we only need the trace (in the spin
direction indices) of this term, which gives the backscattering
term: Oaa

NN = MR · ML − 3
4ρRρL.

In the limit of weak interchain coupling |J1| � J2, the
OPEs of the perturbation operators in Eq. (11) are readily
obtained from the OPEs of operators in each decoupled chain
described above. Given the OPEs, one can write down the
corresponding one-loop RG equations.46 For example, if the
OPE of marginal operators Oa and Ob have the form

OaOb = λc
ab

(2π )2zRzL

Oc + · · · , (A13)

where λc
ab are dimensionless constants, then the one-loop RG

equation for the perturbation gcOc has the contribution

dgc

dl
= −gagbλ

c
ab

4πv
+ · · · . (A14)

APPENDIX B: TLL-DIMER TRANSITION

In Sec. IV B, we determined the BKT transition points
between gapless and gapped chiral phases by observing the
logarithmic correction in the spin correlation function (see
Figs. 14 and 15). Here we test the validity of the method
with a simpler example. We consider the antiferromagnetic
XY model with J1,J2 > 0 and � = 0. For large J1/J2(�3),
the system is in a TLL phase in which the transverse spin
correlation function behaves as30

〈
Sx

� Sx
�′
〉 = Ax

0(−1)�
′−�

|�′ − �|η − Ax
1

|�′ − �|η+1/η
+ · · · . (B1)
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FIG. 17. (Color online) Plots of r2|〈Sx
1 Sx

1+r〉|2 for fixed � = 0 and
various values of J1/J2 around the TLL-dimer transition point studied
in Ref. 4. A logarithmic scale is used for the horizontal axis. The
symbol “D” indicates the estimate of the transition point within the
current analysis (with a precision of 0.05), which agrees reasonably
well with the previous accurate estimate4 J2/J1 ≈ 3.0893.

Here, Ax
0 and Ax

1 are nonuniversal constants. The decay
exponent η gradually increases as J1/J2 is decreased. At η =
1, a BKT transition from the TLL to the singlet dimer phase
occurs. At the transition point, a multiplicative logarithmic
correction appears in the spin correlation function:30,42,72,73

〈
Sx

� Sx
�′
〉 = Ax

0(−1)�
′−�

|�′ − �| ln
1
2 (|�′ − �|/a) + · · · . (B2)

In Fig. 17, we plot the function r2|〈Sx
1 Sx

1+r〉|2 for various J1/J2

around the BKT transition point. From the linear behavior
as a function of ln r , we locate the BKT transition point. In
this figure, the data points of J1/J2 = 3.10 and 3.15 exhibit
almost linear behavior. It is not easy to decide which one of
the two curves is closer to the perfect linear dependence. Here
we choose the one with smaller correlations since the iTEBD
method tends to underestimate correlations at large r . The
determined point J1/J2 = 3.10 agrees reasonably well with
the previous accurate estimate4 J2/J1 ≈ 3.0893.
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