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We compute the temperature-dependent spin-wave spectrum and the magnetization for a spin system using
the unified decoupling procedure for the high-order Green’s functions for the exchange coupling and anisotropy
in both the classical and quantum cases. Our approach allows us to establish a clear crossover between quantum-
mechanical and classical methods by developing the classical analog of the quantum Green’s function technique.
The results are compared with the classical spectral density method and numerical modeling based on the
stochastic Landau-Lifshitz equation and Monte Carlo technique. As far as the critical temperature is concerned,
there is a full agreement between the classical Green’s functions technique and the classical spectral density
method. However, the former method turns out to be more straightforward than the latter because it avoids any
a priori assumptions about the system’s spectral density. The temperature-dependent exchange stiffness as a
function of magnetization is investigated within different approaches.
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I. INTRODUCTION

Spin systems offer a rich area for fundamental research,
always providing us with new open and challenging issues. In
the context of modern applications, magnetic systems at the
nanoscale have opened a huge territory for testing and applying
the available methods with the challenge to adapt them to
the constraints of the new area of magnetic nanotechnology.
Indeed, the rapid development of computers has opened a new
trend for the magnetic materials design. Today the large scale
materials modeling is often used as an efficient way to find
optimal material performance in technological applications
such as magnetic recording. The micromagnetic simulations
represent now a powerful tool, especially after the development
of publicly available software codes. To provide reliable
predictions, the modeling methods should be improved with
the incorporation of detailed information from microscopic
materials parameters into the macroscopic parameters such as
magnetization, anisotropy or exchange stiffness. An additional
problem arises when the full-fledged well-known approaches
have to be extended to finite-size systems with acute boundary
problems.

Furthermore, multiple recent applications require
temperature-dependent macroscopic properties. These
important applications include heat-assisted magnetic
recording,1 laser-induced magnetization dynamics,2 thermally
assisted magnetic random memories,3 and thermally assisted
domain wall motion.4 In this context, the multiscale scheme
where the temperature-dependent macroscopic parameters
are previously calculated numerically or analytically with
the aim to use them in larger scale modeling has been
proposed.5,7 A variety of methods, classical and quantum,
analytical and numerical were developed in the past and
can be adjusted today for applications within this multiscale
modeling framework. It is then necessary to take stock of the
various methods, compare them and establish their respective
limits of applicability. This is a tremendous task that has to
be tackled before one can apply these methods to design new
magnetic materials.

Accordingly, the present work is about a few standard
methods used for investigating the spectrum of spin waves
(SW) in magnetic systems at finite temperature and for
arbitrary spin. These are the quantum Green’s function (QGF)
technique and its classical limit (CGF), the classical spectral
density (CSD) method, and the purely numerical methods
(i) one that consists in solving the stochastic Landau-Lifshitz
equation or the Landau-Lifshitz-Langevin equation (LLL)8,9

and (ii) Metropolis Monte Carlo (MC) method.10 Although
these methods exist in the literature in different and multiple
formulations, no systematic comparison with the aim to
establish their agreement and crossover has been made. One of
our objectives here is to compare these methods and establish
the best framework for the calculation of the temperature-
dependent SW spectrum and physical observables such as
the magnetization and susceptibility. For each method, we
discuss the most reliable implementation which gives the
best agreement with numerical techniques and provide a clear
crossover between the classical and the quantum case. In this
task, we have realized that no unified decoupling scheme
used to take into account both the exchange and anisotropy
contributions in the classical case has been given in the
literature so far. However, this is exactly what is required for
the purpose of the hierarchical multiscale modeling, where
a classical Heisenberg-like Hamiltonian is parameterized via
ab initio calculations and is used to evaluate temperature-
dependent macroscopic properties.5,7 On the other hand, in
the future, the use of classical systems may be avoided if
direct reliable calculations of macroscopic properties at the
nanoscale based on quantum spin systems are available. This
is why it is important to establish clear connection between
quantum and classical approaches.

It is well known that the Green’s function and spectral
density methods involve a decoupling of high-order spin
correlations into two-point correlations. Here, we revisit this
issue and demonstrate a clear connection between, on one
hand, the classical and quantum approaches, and on the other,
the CGF technique and the CSD method. In the quantum
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case, the spin operators satisfy the SU(2) Lie algebra and
this implies that two spin operators commute when they refer
to distinct lattice sites. In particular, the longitudinal and
transverse spin fluctuations are uncorrelated when they refer
to two distinct lattice sites and they are strongly correlated
otherwise. However, a decoupling that may be successful in
dealing with the exchange coupling contribution, at least at
low temperature, may turn out to be a bad approximation for
the local (with identical lattice sites) contributions of (on-site)
anisotropy. This is why mean-field theory (MFT), random-
phase approximation (RPA), and the Bogoliubov-Tyablikov
approximation (BTA), which assume that the longitudinal and
transverse fluctuations are uncorrelated, provide a reasonably
good approximation for exchange, whereas they provide rather
poor results in the presence of anisotropy.

Here, we pay a special attention to this issue and consid-
erably clarify the situation regarding the decoupling scheme
that is used for exchange and anisotropy contributions. More
precisely, we provide a unified decoupling scheme for both
exchange and anisotropy contributions, for classical as well
as quantum spins. Then, using this decoupling we obtain
workable (semi-)analytical expressions for the SW dispersion,
the magnetization and the critical temperature, which are
supported by the good agreement with the numerical results
of the LLL method and Monte Carlo (MC) simulations.

In Sec. II, we define the generic system we study using
the Dirac-Heisenberg Hamiltonian. In Sec. III, we discuss the
various decoupling schemes used in QGF technique and show
how they are related, and compute the SW dispersion and the
magnetization. For the latter, we also provide the analytical
asymptotes at low temperature and near the critical point.
Next, we work out the classical limit of this approach and
obtain the corresponding dispersion and magnetization. For
the latter, we pinpoint an interesting connection between the
Callen’s (quantum) expression for the magnetization and the
MFT-like expression in terms of the Brillouin function in the
quantum case. Apart from its elegance, this formulation makes
it straightforward to derive the classical limit in terms of the
Langevin function. We then turn to the CSD method and clarify
the relevance of the decoupling scheme when it comes to treat
the exchange coupling and anisotropy. We end this section
with a brief account of the LLL and MC methods and a few
expressions and numerical estimates of the critical tempera-
ture. Section IV A presents the results for the SW spectrum,
the magnetization as a function temperature and field, and
spin stiffness. The paper ends with a conclusion and outlook.
In the Appendixes, we present the main steps of the QGF for
finite temperature, arbitrary spin, and oblique magnetic field.
In Appendix A, we give a detailed demonstration of some
expressions used within the CSD approach. In Appendix B,
we give a few expressions and numerical estimates for the
critical temperature.

II. MODEL: HAMILTONIAN AND SYSTEM STUDIED

We study a spin system of N atomic spins Si = Ssi , with
|si | = 1, interacting via a nearest-neighbor exchange coupling
Jij . In addition, each spin evolves in a (local) potential
energy that comprises an on-site anisotropy and a Zeeman
contribution. The anisotropy is taken uniaxial with a common

easy axis pointing in the z direction; the magnetic field is
applied in an arbitrary direction eh so that H = Heh. The
Hamiltonian of the system then reads

H = −1

2

∑
〈i,j〉

Jij Si · Sj − K

N∑
i=1

(
Sz

i

)2 − (gμBH )
N∑

i=1

Si · eh.

(1)

We consider only box-shaped systems of size NxNyNz = N
with, e.g., a simple cubic (sc) or a body-centered-cubic (bcc)
lattice structure.

In order to compute the spin-wave (SW) spectrum and the
magnetization, one deals with the spin fluctuations with respect
to the equilibrium configuration, which has to be determined
beforehand. In practice, one assumes that there exists a net
direction of the system’s magnetization denoted by ez:

m = 1

N
∑

i

Si ≡ m ez.

We start by passing to the new coordinate system in which the
(usually adopted) z reference direction is now the direction ez.
This amounts to performing a rotation of the original variables
Si to the new ones σ i around a given axis and at a given angle
depending on ez. Following the standard approach,12–14 we use
the Holstein-Primakov representation for the new variables σ i .
To rewrite the Green’s functions in the local reference frame,
we use a rotation matrix R(ey,ϑ) for the rotation of an angle
ϑ around the axis ey . So in the Hamiltonian (1), we replace the
spin variable Si by the new one σ i (with ‖σ i‖ = ‖Si‖ = S)
using

Si = R(ey, − ϑ)σ i = cos ϑ σ i − sin ϑ (σ i × ey)

+ (1 − cos ϑ) (σ i · ey)ey. (2)

For instance,

Sz = cos ϑσz
i − sin ϑσx

i

and the Zeeman term (Hy = 0) becomes

Si · H = (Hx cos ϑ − Hz sin ϑ)σx
i

+ (Hz cos ϑ + Hx sin ϑ)σ z
i . (3)

We also define the rotated field

HR ≡ R(ey,ϑ)H.

The new spin variables satisfy the same algebra as the original
spin variables Si , i.e.,

[σ+
i , σ−

j ] = 2δij σ z
i

[
σ 3

i , σ
μ

j

] = μσ
μ

i δij , μ = ±. (4)

Then, rewriting the Hamiltonian (1) in the new variables, we
obtain the quadratic form

H = −1

2

N∑
i,j=1

∑
μ,ν=+,−,z′

σ
μ

i Q
μν

ij σ ν
j −

N∑
i=1

∑
μ=+,−,z′

Lμσ
μ

i (5)

with the linear coefficients

L+ = (gμB)
H−

R
2

, L− = (gμB)
H+

R
2

, Lz = (gμB)Hz
R (6)
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and the quadratic ones

Q++
ij = K

2
sin2 ϑ δij = Q−−

ij ,

Q+−
ij = 1

2
[Jij + K sin2 ϑδij ] = Q−+

ij ,

(7)
Qzz

ij = Jij + 2K cos2 ϑδij

Qz+
ij = Q+z

ij = −K sin ϑ cos ϑδij = Qz−
ij = Q−z

ij .

These satisfy the symmetry relation Q
μν

ij = Q
μν

ji .

III. METHODS

We would like to investigate the spectral properties of such
systems using and comparing two groups of methods: (i)
the (semi-)analytical methods, namely, the classical spectral
density method and the classical or quantum methods of
Green’s functions (GF) at finite temperature, (ii) the numerical
methods that consist either in solving the stochastic Landau-
Lifshitz-Gilbert equation (LLE) in the Langevin approach or
Monte Carlo (MC) simulations.

A. Quantum Green’s function approach

The Green’s function approach has been used thoroughly
in almost all areas of physics. For spin systems, this approach
allows us to obtain and investigate all kinds of observables.
As compared to spin-wave theory (SWT), it makes it possible
to obtain in a more systematic way the excitation spectrum at
finite temperature for arbitrary atomic (nominal) spin.

For our present purposes, we rederive the basic equations
involved in this approach and apply them to Hamiltonian (1). In
the latter, the magnetic field is applied in an arbitrary direction
with respect to the (common) anisotropy easy axis and as such,
a slight reformulation of the basic equations is needed with
respect to the equilibrium configuration. In particular, Callen’s
formula11 for the magnetization in the case of arbitrary spin
has to be rederived in this context.

We introduce the retarded many-body Green’s functions

Gμν(i − j,t) = Gμν(ri − rj ,t) ≡ 〈〈
σ

μ

i (t); σ ν
j (0)

〉〉
r

= −iθ (t)
〈[
σ

μ

i (t), σ ν
j (0)

]〉
, (8)

where σ i are the new spin variables obtained after rotation of
the original variables Si to the system of coordinates where the
z axis coincides with the direction of the net magnetization;
〈. . .〉 denotes the usual thermal average. Then, one establishes
the equations of motion of the GFs G+−

ij , G−−
ij , Gz−

ij whose
solution renders the SW dispersion.

The equation of motion for a GF of a given order in spin
operators generates GFs of higher orders and this leads to an
infinite hierarchy of GFs satisfying an open system of coupled
equations. In order to close this system of equations and solve
it (in Fourier space), one is led to apply a certain scheme for
breaking high-order GFs into lower-order ones, thus adopting
a certain approximation of the magnon-magnon interactions.
Finding an adequate scheme for doing so has triggered many
investigations each dealing with a specific situation with a
particular Hamiltonian. Unfortunately, there is no general
or systematic procedure. In fact, the variety of decoupling
schemes only reflects the complexity of dealing with magnon-

magnon interactions and thereby the nonlinear SW effects.
In the following section, we present a discussion of the main
decoupling schemes known in the literature and also propose
some improvements that allow for a certain unification thereof.

1. Decoupling schemes

When applying mean-field theory (MFT), random-phase
approximation (RPA), or the Bogoliubov-Tyablikov approx-
imation (BTA), it is implicitly assumed that the longitudinal
and transverse fluctuations are uncorrelated, and this is a valid
approximation only when they refer to distinct sites. Indeed,
the idea behind this approximation consists in writing

〈[AB,C]〉 � 〈A〉〈[B,C]〉. (9)

For spin systems, the factor 〈A〉 is usually the thermal
average of σ z and thereby is related to the temperature-
dependent magnetization. Hence, in practice, one rearranges
the various terms so that σ z appears on the left and then
use the approximation (9). However, in the (local) anisotropy
contributions the product factors are at the same site and thus
the longitudinal and transverse fluctuations are correlated,
which turns this kind of decoupling schemes into relatively
bad approximations. In particular, for uniaxial anisotropy it
has been emphasized in Ref. 16 that the classical approach
leads to the wrong result especially for spin 1/2.

In Ref. 15, it was argued that one may avoid this approx-
imation inherent to a decoupling scheme by establishing 2S

equations of motion for the anisotropy functions. The problem
with this approach, however, is that in practice one has to
specify the spin S thus limiting the calculations to a particular
material. In addition, it is not obvious how to obtain the
classical limit from the final results.

For the exchange coupling, RPA is commonly used with
reasonable satisfaction since the corresponding results for the
SW dispersion and thereby the magnetization compare fairly
well with other techniques such as Monte Carlo (MC) (see
Ref. 13 for a recent review), as long as the magnetization curve
at low temperature is concerned. However, for spin systems
with S > 1/2, if we want a more precise estimation of the
critical temperature TC , Callen’s decoupling scheme turns out
to be much more efficient, though it leads to a self-consistent
equation for TC , which is more difficult to tackle analytically.
Indeed, it was shown by Tahir-Kheli and Callen17–19 that the
more sophisticated decoupling scheme〈〈

σ z
i (τ )σ+

l (τ ); σ−
j (0)

〉〉 �
i �=j

〈
σ z

i

〉〈〈σ+
l (τ ); σ−

j (0)〉〉

− 〈
σ z

i

〉 〈σ−
i σ+

l 〉
2S2

〈〈σ+
i (τ ); σ−

j (0)〉〉
(10)

takes, to some extent, account of magnon-magnon interactions
and renders a nonlinear equation for the magnon dispersion
ω(k), see below.

For on-site magnetocrystalline anisotropy, the simplistic
RPA decoupling leads to poor and even wrong results. In the
presence of anisotropy with typical ratios K/J , the Anderson-
Callen decoupling scheme, originally proposed by Anderson
and Callen19,20 and later generalized by Schwieger et al.14 to
a rotated reference frame, turns out to be rather efficient in
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producing reasonable results. This is typically of the form

K
〈〈(

σ z
i σ−

i + σ−
i σ z

i

)
(t); σ−

j (0)
〉〉 ≈ 2Kσ

〈
σ z

i

〉〈〈σ−
i (t); σ−

j (0)〉〉,
(11)

with the effective anisotropy factor

Kσ = K

[
1 − 1

4S2
(〈σ+

i σ−
i 〉 + 〈σ−

i σ+
i 〉)

]
. (12)

The identity

〈σ+
i σ−

i 〉 + 〈σ−
i σ+

i 〉 = 2S(S + 1) − 2
〈
σ z

i σ z
i

〉
,

is derived from the quantum-mechanical identities

σ−σ+ = S(S + 1) − (σ z)2 − σ z,
(13)

σ z = 1
2 (σ+σ− − σ−σ+).

It is well known that the decoupling (11) is valid for all spin
values S and renders good results when compared with the
exact treatment of anisotropy and with quantum MC when
K/J is small.13

Similar to the decoupling in Eq. (11), the following
decoupling for anisotropy has been suggested20〈〈

σ z
i (τ )σ+

i (τ ) + σ z
i (τ )σ+

i (τ ); σ−
j (0)

〉〉
= 〈

σ z
i

〉 [
2 − 〈σ−

i σ+
i 〉 + 〈σ+

i σ−
i 〉

2S2

]
〈〈σ+

i (τ ); σ−
j (0)〉〉.

Then, splitting the right-hand side as follows:〈
σ z

i

〉 [
2 − 〈σ−

i σ+
i 〉 + 〈σ+

i σ−
i 〉

2S2

]
〈〈σ+

i (τ ); σ−
j (0)〉〉

= 〈
σ z

i

〉 (
1 − 〈σ+

i σ−
i 〉

2S2

)
〈〈σ+

i (τ ); σ−
j (0)〉〉

+ 〈
σ z

i

〉 (
1 − 〈σ−

i σ+
i 〉

2S2

)
〈〈σ+

i (τ ); σ−
j (0)〉〉,

we may propose the following decoupling:〈〈
σ z

i (τ )σ+
i (τ ); σ−

j (0)
〉〉

= 〈
σ z

i

〉 [
1 − 〈σ−

i σ+
i 〉

2S2

]
〈〈σ+

i (τ ); σ−
j (0)〉〉. (14)

Comparing this decoupling for the anisotropy contribution
with Eq. (10) for the exchange contribution, we see that the
former follows from the latter upon setting in the latter l = i,
i.e., restricting the product of spin operators to the same lattice
site. In fact, this is a consequence of the way σ z

i is written
in powers of σ z

i and the products σ±
i σ∓

j . More precisely,
if we start from the quantum-mechanical identities (13) and
then multiply them by α and 1 − α, respectively, and add the
resulting equations we obtain

σ z = αS(S + 1) − α(σ z)2

+
(

1 − α

2

)
σ+σ− −

(
1 + α

2

)
σ−σ+, (15)

where α is then determined so as to comply with the limits
at zero temperature and near the critical point.19 This leads to
α = 〈σ z〉/2S2.

Next, we insert the expression (15) for σ z in products
of spin operators such as those appearing on the left-hand

side of Eqs. (10) and (14) and use Wick’s or RPA-like
decoupling to obtain the decoupling (10) for exchange and
Eq. (14) for anisotropy contributions, respectively. In fact,
there exist several other decoupling schemes in the literature
with expressions for α that are polynomials of different degrees
in m = 〈σ z〉/S. Namely, α = 0 corresponds to RPA (or BTA),
α ∝ m to Callen’s decoupling, α ∝ m3 to the decoupling
proposed by Copeland and Gersch (CG),21 and

α(m) = 1

2

S − 1

S(S + 1)
m + 1

S(S + 1)
m3 (16)

to the decoupling proposed later by Swendsen.22

As already discussed, these polynomials with increasing
degrees are approximations to the more rigorous calculation
of spin correlations that consists in computing contributions of
high order of Feynman’s spin diagrams as is done in Refs. 23
and 24. As it will be seen later in Sec. IV A, the corresponding
decoupling yields fairly precise results for the magnetization
and critical temperature.

2. Spin-wave dispersion

Applying the RPA decoupling to a homogeneous ferromag-
net, i.e., with 〈σ z

i 〉 = 〈σ z〉, we obtain the following (coupled)
equations for the relevant GFs after Fourier transformations
with respect to time and space:⎛⎜⎝ ω − Ak Bk 2A−

k (Kσ )

−Bk ω + Ak −2A+
k (Kσ )

A+
k (Kσ /2) −A−

k (Kσ /2) ω

⎞⎟⎠
⎛⎜⎝G+−

k

G−−
k

Gz−
k

⎞⎟⎠
=

⎛⎝2〈σ z〉
0
0

⎞⎠ , (17)

where

Ak ≡ Lz + Kσ 〈σ z〉(2 cos2 ϑ − sin2 ϑ) + J0〈σ z〉(1 − γk),

A±
k ≡ L± − Kσ 〈σ z〉 sin 2ϑ, (18)

Bk ≡ Kσ 〈σ z〉 sin2 ϑ.

J0 is the k = 0 component of the exchange coupling given by

J0 ≡ J (0) =
∑

j

Jij = zJ (19)

with z being the coordination number. If the exchange is
isotropic, we may write

J (k) = J (−k) =
∑

j

e−ik·rij Jij = J0 × 1

z

∑
j

e−ik·rij ≡ J0γk.

(20)

For a bcc lattice, we have (z = 8) the unit cell unit vectors

δij ≡ a

2
(±e

x
,±ey,±ez)

and, thereby,

γk = cos
akx

2
cos

aky

2
cos

akz

2
, (21)
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a being the lattice parameter. For long wavelength excitations,
we use cos kα � 1 − 1

2k2
α , which yields

1 − γk � (ak)2.

Note that the EM for Gz−
ij , which is the last equation in the

system Eq. (17), provides the equilibrium configuration. Near
equilibrium, the net magnetic moment m = 1

N
∑

i σi does
not change much, which means that dm/dt � 0. In quantum
mechanics, this implies that the total magnetic moment along
the equilibrium direction commutes with the Hamiltonian, or
in other words, the projection of the total magnetic moment
along the equilibrium direction is conserved, that is,

i
d

dt

(
1

N
∑

i

σ z
i

)
=

[
1

N
∑

i

σ z
i ,H

]
= 0. (22)

On the other hand, on the same level of approximation as
that used to obtain the system of EM (17), the commutator
above reads[

1

N
∑

i

σ z
i ,H

]
� [(gμB)(Hz sin ϑ − Hx cos ϑ)

+K〈σ z〉 sin 2ϑ]
1

N
∑

i

(
iσ

y

i

)
, (23)

which if set to zero according to Eq. (22), leads to the
equilibrium condition

(hz sin ϑ − hx cos ϑ) + Kσ 〈σ z〉 sin 2ϑ = 0. (24)

Hence the GF Gz−
k (ω) is eliminated from the system (17) and

thereby the latter simplifies into the following system of two
coupled equations:{

(ω − Ak)G+−
k + BkG−−

k = 2〈σ z〉,
−BkG+−

k + (ω + Ak)G−−
k = 0,

(25)

where

Ak ≡ Lz + Kσ 〈σ z〉(2 cos2 ϑ − sin2 ϑ) + J0〈σ z〉(1 − γk),

Bk ≡ Kσ 〈σ z〉 sin2 ϑ. (26)

J0 = J (0) being defined in Eq. (19). Therefore the magnon
energy with respect to the equilibrium state defined by Eq. (24)
reads

E2(k) = (h̄ω(k))2 = A2
k − B2

k

= [(gμB)(Hx sin ϑ + Hz cos ϑ)

+Kσ 〈σ z〉(2 cos2 ϑ − sin2 ϑ) + J0〈σ z〉(1 − γk)]2

− (Kσ )2〈σ z〉2 sin4 ϑ. (27)

This dispersion relation is effectively obtained within the linear
spin-wave theory, because the high-order GFs stemming from
exchange contributions have been decoupled using the RPA,
which does not take account of spin correlations or magnon-
magnon interactions. Indeed, following the standard procedure
described in the Appendix of Ref. 7 (and references therein),
one arrives at the equation for the dispersion (in the case ϑ = 0,
i.e., of longitudinal field and 〈σ z

i 〉 = 〈Sz
i 〉)

h̄ω(k) ≡ h̄ωk = (gμB)H + 2KS〈Sz〉 + 〈Sz〉[J (0) − J (k)]

+ 〈Sz〉
NS

α
∑

p

[J (p) − J (p − k)]〈np〉, (28)

where in the last contribution the sum is over the wave vector
p in the Brillouin zone of the system. KS is given by

KS = Kσ (ϑ = 0) = K

{
1 − 1

2S2
[S(S + 1) − 〈SzSz〉]

}
(29)

and α = m for Callen’s decoupling.
〈
np

〉
is the thermal occupa-

tion number given by the magnon Bose-Einstein distribution

〈np〉 = 1

eβh̄ωp − 1
, (30)

where β = 1/kBT . Then, using translation invariance we see
that

J (p) − J (p − k)

J (0) − J (k)
= γp − γp−k

1 − γk
= γp

and thereby

h̄ωk = (gμB)H + 2KS〈Sz〉 + J0〈Sz〉Q(α,β)(1 − γk). (31)

Here, we have introduced the exchange “stiffness coefficient:”

Q(α,β) = 1 + α

NS

∑
p

γp

eβh̄ωp − 1
= 1 + α

NS

∑
p

γp〈np〉,

(32)

where α, as defined earlier, depends on the decoupling
scheme.

3. Magnetization

Now, we turn to compute the magnetization for an arbitrary
spin S. In Callen’s method (see Ref. 11 and references therein),
one considers the GF

�μν(i − j,t ; ξ ) = −iθ (t) × 〈[
σ

μ

i (t), exp(ξσ z
j (0)) σ ν

j (0)
]〉
.

(33)

Then, replacing the GFs in the system (25) by their analogs
from Eq. (33), we obtain the new system of equations of
motions (EM):

{
(ω −Ak)�+−

k +Bk�
−−
k = 〈[

σ+
i (0), exp

(
ξσ z

i (0)
)
σ−

i (0)
]〉≡ �+−,

−Bk�
+−
k + (ω + Ak)�−−

k = 0.
(34)

Following again Callen’s procedure, we obtain for the first moment 〈σ z〉:

〈σ z〉 = (S − �)(1 + �)2S+1 + (S + 1 + �)�2S+1

(1 + �)2S+1 − �2S+1
, (35)
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where � is the following function of the 1st and 2nd moments
〈σ z〉 , 〈σ zσ z〉 ≡ Czz,

�(〈σ z〉,Czz) = 1

2

1

Nc

∑
k

[Ak

ωk
coth

(
βh̄ωk

2

)
− 1

]
. (36)

Nc is the number of unit cells in the Bravais lattice of the
ferromagnet and is also the number of allowed wave vectors
in the Brillouin zone.

Equation (35), together with Eqs. (31) and (36), constitutes
a transcendental equation whose solution involves several
sums (integrals) in Fourier space. In general, it is a heavy task
to solve Eq. (35) especially for lattices with several sublattices.
Nonetheless, it was shown in Ref. 25 that the magnetization
σ̄ ≡ 〈σ z〉 in Eq. (35) can be recast into the following more
compact form:

σ̄ = SBS[SX], (37)

where X is defined by

� = 1

eX − 1
(38)

and BS(x) is the Brillouin function (for the quantum spin S)

BS(x) = 2S + 1

2S
coth

[(
2S + 1

2S

)
x

]
− 1

2S
coth

(
x

2S

)
.

(39)

More generally, it was shown25,26 that the higher moments
〈σ̄ n〉 can all be expressed in terms of the reduced magnetization
m = σ̄ /S whereby the temperature T and field H enter via
m = m (T ,H ). It was argued that this model-independent
MFT-like result stems from the exponential form of the
probability density, i.e., ρ = eXSz

/Tr eXSz

. Indeed, Eq. (38)
expresses the fact that in MFT all the excitations are degenerate
and that one may define the energy ε = X/kBT as the effective
energy of the molecular-field-like excitations with the same
occupation number as the true excitations. On the other hand,
we note that Eq. (37) is also a transcendental equation for σ̄ ,
similar to Eq. (35), though much more compact and it readily
yields the classical limit, as will be seen below. In addition,
this establishes the connection to the standard result of MFT.

In order to solve either equation, i.e., Eq. (35) or (37),
and obtain the magnetization m (T ,H ), one has to supplement
the latter by a second equation for the correlation function
Czz = 〈σ zσ z〉; this is obtained by the Callen’s procedure [for
ξ = 0, see Eq. (33)] that leads to

〈σ−
i σ+

i 〉 = 2σ̄ �(σ̄ ,Czz) (40)

together with the first identity in Eq. (13).
The latter also yields

〈σ zσ z〉 = S(S + 1) − σ̄ − 〈σ−σ+〉 = S(S + 1) − (1 + 2�)σ̄ .

(41)

Finally, the magnetization (in the rotated frame) σ̄ is given by
the solution of the following system of two nonlinear (coupled)
equations: {

σ̄ = SBS

[
S ln

(
1 + 1

�

)]
,

Czz = S (S + 1) − (1 + 2�) σ̄ .
(42)

In general, this system can only be solved numerically
as it involves transcendental equations with several integrals.
However, we can establish a few analytical expressions for
the magnetization in the limiting temperature regions T → 0
and T → TC and upon restricting ourselves to a longitudinal
magnetic field, i.e., applied along the direction ez (ψ = 0).

In this case, the SW dispersion h̄ωk in Eq. (27) simplifies
into

h̄ωk = Ak = Lz + 2Kσ σ̄ + J0σ̄ (1 − γk) ,

and Eq. (36) becomes

�(σ̄ ,Czz) = 1

Nc

∑
k

1

2

[
coth

(
βh̄ωk

2

)
− 1

]
. (43)

Low-temperature asymptote. At low temperature, the spins
are strongly correlated and thereby the correlation function Czz

tends to S (S + 1). As a consequence, the effective anisotropy
obtained from the Anderson-Callen decoupling scheme simply
yields KS −→ K (S − 1/2) [see Eq. (29)] so that the system
of equations (42) decouples, leading to a closed equation for σ̄

whose solution then is Eq. (35). Expanding the latter in terms
of � (which becomes small at low temperature), we find

σ̄ � S − � (σ̄ ) .

Moreover, at low temperature, only low-energy spin waves are
excited and these are the long-wave length modes. Hence, in
the limit of small wave vectors, we have the dispersion relation

h̄ωk � gμBHz + 2K

(
S − 1

2

)
σ̄ + Aσ̄k2, (44)

where A ≡ Jδ2, δ2 ≡ ∑
a2J (a)/

∑
J (a), a is the lattice

parameter, and J (a) is the exchange coupling over the nearest-
neighbor bond.

Next, upon expanding � in terms of temperature T (or
rather in kBT/J0S), we obtain

〈σ z′ 〉 � S −
(

3τ

2πS

)3/2

Z3/2

[
h + κS

τ

]
, (45)

where

Zp (x) =
∞∑

n=1

n−pe−nx,

and Zp(0) = ζ (p) is the well-known Riemann ζ function. We
have also introduced the following dimensionless parameters:

τ ≡ 1

βJ0
= kBT

J0
, h ≡ (gμB) H

J0
, κ ≡ 2K

J0

(
S − 1

2

)
.

Obviously, in the present limit and in zero applied field,
one obtains the well-known “3/2” Bloch’s power law for the
thermal decrease of the magnetization.

Near-critical temperature asymptote (H = 0). Just below
the Curie temperature, in the absence of magnetic field, the
mean number of excited quasiparticles and their density are
large, and it is then a reasonable approximation to pass to
the continuum limit. In this case, in Eq. (43) we make the
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transformation

1

Nc

∑
k

(· · · )k −→ 1

Nc

V

(2π )3

∫∫∫
d3k (· · · )k

= V

Nc

∫∫∫
d3k

(2π )3 (· · · )k = v0

∫
dk

(2π )3 (· · · )k ,

where v0 is the volume of the unit cell of the direct lattice.
Next, in this limit, the system (42) again decouples and

leads to the Callen’s expression (35) for the magnetization,
similarly to the low-temperature limit. In addition, we may
write for Czz as

Czz � S (S + 1)

3
, (46)

where the factor 1/3 stems from the three dimensional
rotational symmetry [SO(3)] of spins that starts to recover
as the temperature reaches the critical temperature of the
ferromagnet.

Consequently, upon inserting in Eq. (28) Czz = 〈SzSz〉
given by the result above, dropping the nonlinear SW contri-
butions and neglecting the second-order terms in σ̄ , we obtain
the dispersion

h̄ωk = 2Kησ̄ + σ̄ J0 (1 − γk) = J0σ̄ λ−1 (1 − λγk) , (47)

with

η ≡ 1 − S(S + 1)

3S2
, λ ≡ 1

1 + ηκ
. (48)

In addition, σ̄ is rather small because the density of SW is
large and since ωk is proportional to σ̄ , as is seen in Eq. (47),
we can expand � (〈σ z〉) in powers of ωk and obtain

� (σ̄ ) = v0

∫
dk

(2π )3

1

eβh̄ωk − 1

� v0

∫
dk

(2π )3

(
1

βh̄ωk
− 1

2
+ βh̄ωk

12

)
. (49)

Let us now compute these integrals. Using Eq. (47), the first
contribution reads

v0

∫
dk

(2π )3

1

βh̄ωk
= λP (λ)

σ̄
τ,

where we have introduced the well-known lattice Green’s
function (see Ref. 28 and references therein)

P (λ) ≡ v0

∫
dk

(2π )3

1

1 − λγk
. (50)

Analytical expressions for this integral for various limiting
cases of the parameter λ are given in Ref. 28, see also
Eq. (4.2) in Ref. 29. In our case, from Eq. (48), we
have λ = (1 + ηκ)−1 � 1 − ηκ since κ = 2K/J0 � 1. Hence
δλ ≡ 1 − λ � 1 and according to Refs. 28 and 29, we have

P (λ) � W − c0 (1 − λ)1/2 . (51)

W is the Watson integral that evaluates to 1.51639 for a sc
lattice and to 1.39320 for a bcc lattice; c0 is a lattice-dependent
constant that is equal to 3

π
( 3

2 )1/2 � 1.16955 for the sc lattice
and to 23/2/π � 0.90032 for the bcc lattice.28 Next, using the

fact that for both sc and bcc lattices28∫
dk

(2π )3 (γk)2n+1 = 0, n = 0,1,2, . . . , (52)

we compute the remaining contributions in Eq. (49) and obtain

� (σ̄ ) � λP (λ) τ

σ̄
− 1

2
+ 1

12λ

σ̄

τ
.

Finally, using this expression in Eq. (35) and expanding with
respect to σ̄ , we obtain the following asymptote for the
magnetization:

σ̄ QGF � 2
√

15λP (λ) τ√
4S(S + 1) + 5P (λ) − 3

√
1 − 3λP (λ) τ

S(S + 1)
. (53)

Now, in this relatively high-temperature regime, magnon-
magnon interactions become relevant. In order to take them
into account, we consider the dispersion in Eq. (47) to which
we add the last contribution in Eq. (31), i.e.,

h̄ωk = J0σ̄Q(α,τ )�−1 (1 − �γk) ,

where {
� ≡ Q(α,τ )

κ+Q(α,τ ) ,

Q(α,τ ) = 1 + α
S2N

∑
p

γp

eβh̄ωp −1
.

(54)

Upon neglecting the second-order terms in σ̄ , the last
expression leads to the transcendental equation for Q:

Q(α,τ ) � 1 + τ

Q(α,τ )

[
WN − C0

√
1 − Q(α,τ )

κ + Q(α,τ )
− 1

]
.

(55)

In the absence of anisotropy, one can easily solve the latter
and obtain

Q(α,τ ) � 1

2

[
1 +

√
1 + 4

α

m
τ (WN − 1)

]
≡ Qexch(α,τ ).

(56)

Since the anisotropy contribution is much smaller than that of
exchange, we may seek a solution for Q (α,τ ) in the form

Q (α,τ ) � Qexch(α,τ ) (1 + ε) , ε ≡ Qexch

Qanis
.

Then, inserting this in Eq. (55) and expanding successively
with respect to ε and then with respect to κ , we obtain (to first
order)

Q(α,τ ) � Qexch(α,τ ) − φ
C0τ

2Qexch(α,τ ) − 1

√
κ

κ + Qexch(α,τ )
.

(57)

Next, using the same expansion for �(〈σ 3〉), similar to
Eq. (49), we get

� (σ̄ ) � �P (�)

σ̄
τ − 1

2
+ 1

12�

σ̄

τ
,
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which leads to the following asymptote for the magnetization:

σ̄ QGF �
√

15�P (�)τ

Q(α,τ )
√

S(S + 1) + 5P (�)−3
4

×
√

1 − 3�P (�)τ

S(S + 1)Q(α,τ )
. (58)

Note that this expression reduces to that in Eq. (53) if we set
α = 0 since then Q(0,τ ) = 1 and � = λ, which corresponds
to the RPA decoupling. On the other hand, as we will see
later [see Eq. (B1)], one has to use this expression instead of
Eq. (53) to obtain the critical temperature. In addition, as far
as the magnetization is concerned, Eq. (58) renders a more
precise profile for relatively higher temperatures.

B. Classical Green’s function approach

In many situations, the classical approach turns out to
be appropriate for describing the magnetic properties of the
system studied. Therefore it is worth establishing analogous
expressions as in the quantum case by carefully examining the
corresponding decoupling schemes and controlling the various
approximations. Accordingly, in this section, we establish a
complete procedure, analogous to the quantum-mechanical
one, that yields the classical SW dispersion and thereby the
magnetization. In particular, we provide the classical analog of
Callen’s decoupling scheme, for both exchange and anisotropy
contributions.

For this purpose, we first set ϑ = 0 and return to the spin
variables Si . We then introduce the classical spin vectors
si = Si/S and make the substitutions Jij → J ′

ij = S2Jij ,K →
K ′ = S2K,H → H ′ = SH in the Hamiltonian (1). Next, we
define the classical two-time (retarded) GF:

Gij (τ ) = 〈〈s+
i (τ ); s−

j (0)〉〉 = −iθ (τ )〈{s+
i (τ ),s−

j (0)}〉, (59)

and its (time) Fourier transform

Gij (ω) =
∫ ∞

−∞
dτ Gij (τ )eiωτ ≡ 〈〈s+

i (τ ); s−
j 〉〉ω. (60)

Using the Poisson brackets for the classical spin variables si ,30{
s±
i ,sz

j

}= ±iδij s
±
i , {s+

i ,s−
j } = −2iδij s

z
i ,

we obtain the equation of motion for Gij (τ ) and, thereby for
its Fourier transform Gij (ω),

−iωGij (ω) = −2iδij

〈
sz
i (0)

〉 − i(gμBH ′)Gij (ω)

− 2iK ′〈〈sz
i (τ )s+

i (τ ),s−
j (0)

〉〉
ω

+ i
∑

l

J ′
il

〈〈
sz
i (τ )s+

l (τ ); s−
j (0)

〉〉
ω

− i
∑

l

J ′
il

〈〈
sz
l (τ )s+

i (τ ); s−
j (0)

〉〉
ω
. (61)

Then, in analogy with the quantum-mechanical decoupling
of exchange in Eq. (10), we propose the following decoupling

scheme:〈〈
sz
i (τ )s+

j (τ ); s−
l (0)

〉〉
ω

� 〈
sz
i

〉〈〈s+
j (τ ); s−

l 〉〉ω

− 〈
sz
i

〉 〈s+
i s−

j 〉
2

〈〈s+
i (τ ); s−

l 〉〉ω. (62)

We will show below that this decoupling scheme leads to the
correct classical limit of the SW dispersion and magnetization.

Similar to Eq. (14), the decoupling of anisotropy con-
tributions is obtained from the equation above upon setting
l = i. Note that this way the same decoupling scheme applies
to both quantum and classical spins, and to both exchange
and anisotropy. As discussed earlier, for quantum spins, this
unification of exchange and anisotropy decoupling schemes
is due to the expansion in Eq. (15) for Sz. However, on the
classical side, there is no such expansion. This is a consequence
of the fact that the second identity in Eq. (13) becomes
meaningless owing to [S+,S−] = 0.

Therefore, applying these two decoupling schemes and
passing to the Fourier space in Eq. (61), we obtain

Gk(ω′) = 2Nm

ω′ − ω′ (k)

with the classical dispersion relation [ω′
k ≡ ω′(k)]

h̄ω′
k = gμBH ′ + 2K ′m

(
1 − 〈s+

i s−
i 〉

2

)
+ m[J ′(0) − J ′(k)]

+ m

2N
∑

p

[J ′(p) − J ′(p − k)]
∑
i,j

eip·rij 〈s+
j s−

i 〉.

Note that we have used the translational invariance to write〈
sz
i

〉 = 〈sz〉 = m. Now if we apply the classical analog of the
spectral theorem,31,32 i.e.,

Gk(ω′ + iε) − Gk(ω′ − iε) = −4iπNmδ(ω′ − ω′
k),

we obtain∑
i,j

eip·rij 〈s+
j s−

i 〉 = 2m

βh̄ω′
p
, 〈s+

i s−
i 〉 = 2m

βN
∑

k

1

h̄ω′
k
. (63)

Inserting these expressions back into ω′
k, we obtain the

classical analog of the dispersion relation that accounts for
the SW interactions

h̄ω′
k = gμBH ′ + 2K ′m

[
1 − m

βN
∑

p

1

h̄ω′
p

]

+m[J ′(0) − J ′(k)] + m2

βN
∑

p

[
J ′(p) − J ′(p − k)

h̄ω′
p

]
.

(64)

We stress again that only after solving this transcendental
equation, one obtains the final SW dispersion ωk. This is,
however, a heavy procedure because ωk also enters the
magnetization m, which in turn involves ωk via �, and vice
versa. At each step, one has to compute three-dimensional
sums (or integrals) in Fourier space.

Obviously, this dispersion can also be obtained by taking the
classical limit of the quantum GF result, i.e., Eq. (28). Indeed,
in the presence of uniaxial anisotropy, the Anderson-Callen
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decoupling yields the equation (see Ref. 7 and references
therein)

h̄ωk = gμBH + 2K〈Sz〉
{

1 − 1

2S2
[S(S + 1) − 〈SzSz〉]

}
+〈Sz〉(J (0) − J (k)) + 〈Sz〉2

NS2

∑
p

[
J (p) − J (p − k)

eβh̄ωp − 1

]
.

Then, using the identities (13) and making the substi-
tutions ωk = ω′

k/S,Jij = J ′
ij /S

2,K = K ′/S2,H = H ′/S, to-
gether with m = 〈Sz〉 /S, we obtain

h̄ω′
k = gμBH ′ + 2K ′m

[
1 + m

2S
− 〈s+s−〉

2

]
+m[J ′(0) − J ′(k)] + m2

N
∑

p

[
J ′(p) − J ′(p − k)

S
(
eβ

h̄ω′p
S − 1

) ]
.

In the classical limit, 〈np〉 in Eq. (30) becomes

〈np〉 = 1

eβ
h̄ω′p

S − 1
→ 1

β
h̄ω′p

S

(65)

and, thereby,

(h̄ω′
k)S→∞

= gμBH ′ + 2K ′m
[

1 − 〈s+s−〉
2

]
+ m[J ′(0) − J ′(k)]

+ m2

N
∑

p

[
J ′(p) − J ′(p − k)

βh̄(ω′
p)S→∞

]
.

Next, upon replacing 〈s+
i s−

i 〉 by its expression given in
Eq. (63), we obtain

(h̄ω′
k)S→∞ = gμBH ′ + 2K ′m

[
1 − m

βN
∑

p

1

(h̄ω′
p)S→∞

]
+m[J ′(0) − J ′(k)]

+ m2

N
∑

p

[
J ′(p) − J ′(p − k)

βh̄(ω′
p)S→∞

]
. (66)

This is the dispersion in Eq. (64), which was obtained directly
from the retarded classical GF (59) using the (classical)
decoupling scheme (62) for exchange and its analog for
anisotropy. Therefore starting directly with GFs for classical
spins and using the classical analog of the spectral theorem
leads, as it should, to the same result that is achieved by
proceeding with the GFs for quantum spins and taking the
classical limit at the very end.

Similarly to the quantum case, the dispersion (66) can be
recast in the form

(h̄ω′
k)S→∞ = gμBH ′ + 2K′m + mJ ′(0)Q′ (α,β) (1 − γk) ,

where we have introduced the classical analogs of the effective
anisotropy (29) and the exchange stiffness (32)

K′ ≡ K ′
[

1 − m

βN
∑

p

1

(h̄ω′
p)S→∞

]
,

Q′(α,β) ≡ 1 + m

N
∑

p

γ p

β(h̄ω′
p)S→∞

.

Before ending this section, we discuss the magnetization. The
large-spin limit, i.e., S −→ ∞, yields the classical limit of the
Brillouin function, that is the Langevin function, i.e.,

lim
S→∞

BS (x) = L (x) = coth (x) − 1

x
.

On the other hand, this is what one obtains when the quantum
spins are replaced by classical vectors and, in the partition
function, the trace operator is replaced by integrals on the
spin variables (or their spherical coordinates). Doing so for
independent spins in a magnetic field x leads to the Langevin
function.

Now, in Eq. (37), setting m = 〈σ 3〉/S and taking the limit
S → ∞ yields the magnetization in the classical limit, i.e.,

lim
S→∞

m = 〈sz〉class = L
(

1

ρ

)
, (67)

with

ρ ≡ 1

Nc

∑
k

1

βh̄ω′
k

(68)

being the classical density of SW excitations.
We note in passing that it is more straightforward to obtain

the classical limit (67) from Eq. (37) than from Eq. (35). On
the other hand, Eq. (37) provides a clear connection with MFT.
Indeed, as discussed earlier, this connection can be revealed by
noting that all quasi-particle excitations in MFT are degenerate
and thus one can simply drop the dependence on the wave
vector in Eq. (43). However, this similarity in form should not
shadow the fundamental difference, namely that in pure MFT
the magnetization 〈sz〉class is calculated self-consistently using
(in a longitudinal magnetic field)

〈sz〉 = L{βS[gμBH ′z + 2K ′〈sz〉 + J ′(0)〈sz〉]}, (69)

while in Eq. (67), one explicitly takes into account the SW
dispersion via ρ. This SW density is obtained by the GF
technique using the RPA decoupling for exchange contribution
and the Anderson-Callen decoupling for single-ion anisotropy
contribution. Equation (67) is also a (self-consistent) transcen-
dental equation because ρ is a function of the dispersion ωk.
For a comparison of the corresponding critical temperatures
see Appendix B.

Magnetization asymptotes. The low-temperature asymp-
tote for the magnetization is obtained by expanding ρ and then
the magnetization with respect to τ = kBT/J0. Neglecting the
terms due to Callen’s decoupling for exchange and anisotropy
terms in the dispersion relation (64), we obtain

h̄ω′
k = gμBH ′ + 2K ′m + m[J ′(0) − J ′(k)]

that may be rewritten as [J ′(0) ≡ J ′
0 = zJ ′]

h̄ω′
k = J ′

0[h′ + (1 + κ)m][1 − ψ(m)γk],

where we have introduced the function

ψ (m) ≡ m

h′ + (1 + κ) m
(70)

with

h′ ≡ gμBH ′

J ′
0

= gμBH

J0S
= h

S
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and 2K ′/J ′
0 = 2K/J0 = κ . Then, the density ρ in Eq. (68)

becomes

ρ ≡ ψ (m) PN [ψ (m)]
τ ′

m
, (71)

where τ ′ ≡ τ/S2 and the function PN [ψ (m)] reads

PN [ψ (m)] ≡ 1

Nc

∑
k

1

1 − ψ (m) γk
� WN − c0

√
1 − ψ (m),

which is the analog of Eq. (50) for a finite lattice of linear
size N . Asymptotic expressions of the lattice Green function
PN (G) without the zero mode (k = 0), for free boundary
conditions (fbc) and periodic boundary conditions (pbc), can
be found in Refs. 33 and 34. WN is the well-known lattice sum
whose large-size (continuous) limit is the Watson integral W ,
introduced earlier in Eq. (51). For a bcc lattice, we have{

WN � Wbcc
(
1 − 0.65

N

)
for fbc,

WN � Wbcc
(
1 − 0.83

N

)
for pbc,

and for a sc lattice,34{
WN � Wsc + 9 ln(1.17N)

2πN
for fbc,

WN � Wsc
(
1 − 0.90

N

)
for pbc.

Wsc and Wbcc are the Watson integrals for the corresponding
lattices and are given after Eq. (51).

Now, at low temperature, the density of SW ρ is small and
using L (x) � 1 − 1/x for large x in Eq. (67), we obtain the
asymptote for the magnetization (up to the second order in τ ),
upon expanding ρ around m � 1,

mCGF � 1 − ρ � 1 − ψ (1) PN [ψ (1)]

× τ ′ − {ψ (1) PN [ψ (1)]}2 (τ ′)2. (72)

Note that ψ (1) is a function of the applied field, since
according to Eq. (70), ψ (1) = 1/

(
h′ + 1 + κ

)
. To first order

in τ ′, Eq. (72) obviously recovers the low-temperature linear
decay of the magnetization, which is typical of the classical
Dirac-Heisenberg models. In Ref. 27, the low-temperature
treatment of such models led to the same behavior for the
magnetization, i.e., M(T )/M(0) � 1 − 0.2527 T .

At very low temperature, we can neglect the second-order
terms and expand with respect to the field h′ leading to

mCGF � 1 − WN

1 + κ
τ ′ + c0

1 + κ

√
h′ + κ

1 + κ
τ ′.

This is also the SW theory result obtained in Ref. 34, second
line of Eq. (65), in the absence of anisotropy. We remark in
passing that in this reference, SW theory was extended to
account for finite-size effects in fine magnetic particles. One
of the consequences of these effects is that there appears a
critical field HV ∼ T/N that corresponds to the suppression
of the global rotation of the particle’s net magnetic moment,
below which the magnetization is quadratic in the applied
magnetic field. In the present work, the system size N is big
enough so that HV vanishes and the quadratic behavior of the
magnetization is suppressed. A more thorough comparison of
the present work with that of Ref. 34 will be addressed in a
future work.

Near the critical temperature and in the absence of the
applied field, we have

ρ = λ′P (λ′)
τ ′

m
. (73)

We note that we have replaced the finite-sum lattice Green
function PN (λ′) by its continuum limit defined in Eq. (50)
as this is appropriate in the present high-temperature regime.
In the absence of the magnetic field and neglecting Callen’s
decoupling for anisotropy and exchange, i.e., for h′ = 0, we
have ψ(m) = 1/ (1 + κ). Likewise, η in Eq. (48) is simply
replaced by one and thereby ψ equals the parameter λ but here
with the “primed” parameters, i.e., λ → λ′ = 1/ (1 + κ).

Then, since the magnetization m is small the density of SW
ρ is large. Hence, using L (x) � x/3 − x3/45 for small x, and
solving for mCGF, we obtain the asymptotic expression

mCGF � √
15λ′P (λ′)τ ′√1 − 3λ′P (λ′) τ ′. (74)

As in the quantum case, it is possible to take into account the
magnon-magnon interactions from the last term in Eq. (64).
The magnetization is then given by the following expression:

mCGF �
√

15�P (�)τ ′

Q′(α,τ ′)

√
1 − 3�P (�) τ ′

Q′(α,τ ′)
, (75)

with α = 0,m2,m4,m(m + m3) for the RPA, Callen,
Copeland-Gersch, or Swendsen decouplings, respectively.
Now we can see that this can be recovered, as it should,
as the classical limit of the asymptote (58) obtained for
quantum spins. Indeed, replacing the various parameters by
their classical counterparts (e.g., J0 by J ′

0 = J0S
2, τ ′ = τ/S2,

etc.) and dividing σ̄ by S, we obtain

σ̄ QGF

S
�

√
15�P (�)τ ′

Q(α,τ ′)
√

1 + 1
S2

(
1 + 5P (�)−3

4

)
×

√
1 − 3�P (�)τ ′(

1 + 1
S2

)
Q(α,τ ′)

.

This readily yields the asymptote in Eq. (74) upon taking
the limit S → ∞, here and in Eq. (54), and writing mCGF =
limS→∞(σ̄ QGF/S).

We note that while submitting the present work, we became
aware of a recent work35 where the classical GF method
is developed along the procedure employed by Callen for
quantum spins based on the generalized GF in Eq. (33).
The results obtained by the authors for the dispersion and
magnetization are quite similar to ours. We stress, however,
that the classical GF method we develop here is more
straightforward as it avoids the difficult algebra involved in the
calculation of the GF (33), which was introduced for dealing
with arbitrary quantum spin S.11 Moreover, our approach is
based on a unified decoupling scheme for both exchange and
anisotropy contributions and establishes a clear connection
with the quantum-mechanical Callen’s decoupling. In fact,
the work in Ref. 35 about Callen’s method together with
the present approach provide a complete picture of the GF
technique for classical spins.

094415-10



UNIFIED DECOUPLING SCHEME FOR EXCHANGE AND . . . PHYSICAL REVIEW B 86, 094415 (2012)

C. Classical spectral density method

In this section, we summarize the basic ideas and formulas
of the classical analog of the spectral-density method, the
so-called classical spectral density method (CSD). One of the
objectives of this method is to provide systematic and non triv-
ial approximations in classical statistical physics when applied
to classical spin systems. To the best of our knowledge, this was
initially formulated in Ref. 36 and later developed and applied
by several authors (see Refs. 32 and 37 and references therein).
This approach is then compared to the classical GF technique
developed in the previous section. In Ref. 35, the CSD method
was compared to the classical analog of Callen’s method.

Here, the spin si is a classical vector and the magnetization
is defined by m̄ = 〈sz〉. One then defines the classical spectral
density �k (ω) of the time-dependent spin correlations.
Then, the calculations proceed by assuming a given form
(e.g., a Gaussian or a Lorentzian) for �k (ω) involving some
parameters.36 The latter are obtained by solving a hierarchy
of (moment) equations which are in turn obtained from a
chain of equations for Green’s functions of all orders.36 For
the Hamiltonian H in Eq. (1), one obtains the following
dispersion relation:7,36

h̄ω′
k = h′ + 1

N 2

∑
q

[
(−2k′ + J ′

q − J ′
k−q)〈s+

q s−
−q〉

+ 2(2k′ + J ′
q − J ′

k−q)
〈
sz

qs
z
−q

〉]
. (76)

This involves the two correlation functions 〈sz
ks

z
−k〉 and

〈s+
k s−

−k〉, which have to be dealt with in order to proceed any
further. 〈s+

k s−
−k〉 is easily obtained as7

〈s+
k s−

−k〉 = 2Nm

βh̄ω′
k
.

The second approximation made in CSD—the first being
the form chosen for the spectral density �k (ω)—concerns
the unavoidable decoupling scheme, which is required for the
calculation of the longitudinal correlation function 〈sz

ks
z
−k〉.

Here, we stress that, as is seen from Eq. (76), this contribution
stems from the exchange as well as the anisotropy contribution.
However, as discussed earlier, the decoupling that should be
applied to the one or to the other contribution is rather different
from the physical point of view since this depends on whether
this contribution is a local or a bi-local term. Hence, let us
summarize the results of our developments concerning this
issue, which is extremely important as the soundness of the
results is strongly dependent on its outcome.

In fact, to obtain a decoupling for 〈sz
ks

z
−k〉 that stems from

the exchange contribution, we may start from Eq. (61) use the
decoupling (62), and then Fourier transform the result. These
developments are carried out in Appendix A and their outcome
is the following exchange decoupling scheme:∑

q

(J ′
q − J ′

k−q)
〈
sz

qs
z
−q

〉
�

∑
q

(J ′
q − J ′

k−q)

[〈
sz

q

〉 〈
sz
−q

〉 − 1

2
(1 − m2)〈s+

q s−
−q〉

]
. (77)

These calculations provide a clear derivation of the exchange
decoupling used in the literature, see e.g., Ref. 32. Note, how-

ever, that the decoupling of the longitudinal correlation func-
tion (77) is only valid under the sum over the wave vector q.

For the anisotropy contribution, one may start from the
decoupling schemeproposed in Eq. (62) with j = i and
decouple the high-order contributions, i.e.,〈〈

sz
−q(τ )s+

−k(τ ); s−
q+k(0)

〉〉
ω

= 〈
sz
−q

〉(
1 − 〈s+s−〉

2

)
〈〈s+

−k(τ ); s−
q+k〉〉ω.

In Ref. 37, the higher-order spectral density was reduced to
a simple form that leads to the correct results in the low- and
high-temperature limits. This yields the following equation:

m2

(
1 − 〈s+s−〉

2

)
= 1 − 3

2
〈s+s−〉. (78)

In turn, this renders the following expression for the magneti-
zation:

m �
√

1 − 3mρ

1 − mρ
(79)

with ρ being the spectral density defined in Eq. (68).
Here, a remark is in order concerning CSD as compared

to CGF. For a longitudinal magnetic field, Callen’s
expression (35) or (37) for the magnetization is exact, whereas
expression (79) rendered by CSD is an approximation. Hence,
in addition to the common approximation related with the
decoupling scheme and which yields the SW dispersion, CSD
introduces an additional approximation for the magnetization
itself.

The classical analog of Eq. (13) is obtained by using the
condition |s| = 1 and the fact that for classical spins we have
s+s− = s−s+. That is,

〈szsz〉 = 1 − 〈s+s−〉.
Consequently, Eq. (78) can be rewritten as

m2

(
1 − 〈s+s−〉

2

)
= 〈szsz〉 − 1

2
〈s+s−〉

leading to the following decoupling for the anisotropy contri-
bution: 〈

sz
qs

z
−q

〉 ≈ m2 + 1
2 (1 − m2)〈s+

q s−
−q〉. (80)

As stressed earlier, we see that for the same longitudinal
correlation 〈sz

qs
z
−q〉, we have a different decoupling scheme

according to whether this results from exchange or anisotropy.
Notice the difference in sign between Eqs. (77) and (80).

Applying the decoupling (77) for the exchange and Eq. (80)
for the anisotropy contributions to Eq. (76), we obtain an
expression for the dispersion that coincides with the classical
limit in Eq. (64). Summarizing, we see that only upon
clearly identifying the origin (exchange or anisotropy) of the
correlation function and applying the right decoupling scheme
does one show that the CSD method renders the same results
as the CGF technique. Next, we deal with the magnetization.

Low-temperature asymptote. Expanding Eq. (79) with
respect to ρ, which is small here, we obtain

m � 1 − ρm − 3
2ρ2m2,
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and then using the expression (71) for ρ, we get

m � 1 − ψ(1)PN [ψ(1)]τ − 3
2

{
ψ(1)PN [ψ(1)]

}2
τ 2.

Upon setting m ∼ 1 in the right-hand side, we see that this
expression and the corresponding CGF asymptote (72) differ
only at the second order in τ ′ by a factor of 3/2. In the case
h′ = 0, we obtain

mCSD � 1 − λ′P (λ′)τ ′ − 3
2 [λ′P (λ′)τ ′]2.

Near-critical temperature asymptote (h′ = 0). Starting
again from Eq. (79) in the absence of magnetic field and using
the expression (73) for ρ, we obtain

mCSD �
√

1

1 − λ′P (λ′) τ ′
√

1 − 3λ′P (λ′) τ ′. (81)

Similarly to the CGF method, if we take into account the
magnon-magnon interactions by introducing the parameter α,
the magnetization becomes

mCSD �
√

1

1 − �P (�)τ ′
Q′(α,τ ′)

√
1 − 3�P (�) τ ′

Q′(α,τ ′)
.

For comparison, we give the following relation between the
CGF and CSD high-temperature asymptotes:

mCGF �
√

15�P (�) τ ′

Q′(α,τ ′)

√
1 − �P (�) τ ′

Q′(α,τ ′)
mCSD.

D. Numerical methods

One of the numerical techniques used here is based on
the Langevin dynamics simulations of thermally excited spin
waves 6 and 7 in the classical case. The method is based on
the numerical integration of the stochastic LLE:

dsi

dt
= −γ

μ

(
si × Heff

i + λsi × [
si × Heff

i

] )
, (82)

where s is the classical localized spin corresponding to a
localized magnetic moment with modulus μ. λ and γ are
the Gilbert damping parameter and the gyromagnetic ratio,
respectively. The effective field Heff

i is then given by

Heff
i = ζ i(t) − 1

μ

∂Hi

∂si

. (83)

Here, ζ i(t) is the stochastic term that describes the coupling
to the external heat bath. Thermal fluctuations are included as
a white noise term (uncorrelated in time) that is added into the
effective field. The thermal fields are calculated by generating
Gaussian random numbers and multiplying by the strength of
the noise process. The correlators of different components of
this field are given by

〈ζ i,α(t)ζ j,β(t ′)〉 = 2λkBT

μγ
δij δαβδ(t − t ′), (84)

where α,β refer to the Cartesian components and T is the
temperature of the heat bath to which the spin is coupled.

Using this technique, we simulate a generic three-
dimensional ferromagnet with a Heisenberg Hamiltonian as
in Eq. (1) with an external applied field H parallel to the z

axis. The correlated magnetization fluctuations introduced by
the random Langevin field are dealt with by Fourier analysis,
both in space and time. More precisely, we transform the
magnetization fluctuations s̃(r,t) = (sx(r,t),sy(r,t)) around
the equilibrium direction along the axis z via a discrete fourier
transform (DFT ),

s̃(k,ωn) = DFT ( s̃(r,tn)), (85)

where {tn} are discrete time instants and the wave vector
for a finite box-shaped ferromagnet with periodic boundary
conditions takes the form Refs. 33 and 38 akα = 2πnα/Nα

with nα = 0,1, . . . ,Nα − 1; α = x,y,z. Then we compute the
power spectrum density defined by F (k,w) = |̃s(k,ω)|2.

The second numerical method used in this work is the
classical Monte Carlo simulation technique using the standard
Metropolis algorithm, see, e.g., Refs. 10 and 34. The results
of this method are used as a benchmark for those rendered
by the (semi-)analytical methods of QGF/CGF and CSD with
various decoupling schemes. For equilibrium properties, it is
well known that MC and LLL render similar results, with the
difference that the former method is computationally faster at
high temperatures, whereas at low-temperature LLL is faster.
At the same time, we should note that the MC techniques do
not include proper magnetization dynamics and thus are not
suitable for the calculations of the spin wave spectrum but
certainly are for the magnetization.

IV. RESULTS AND FURTHER COMPARISON BETWEEN
DIFFERENT METHODS

In this section, we present a sample of the results for the SW
spectrum and magnetization as a function of temperature and
magnetic field, taking account of magnon-magnon interactions
within various decoupling schemes. The second objective here
is to compare the latter and assess their validity. We also
evaluate the temperature-dependent exchange stiffness and
provide (in Appendix B) analytical expressions for the Curie
temperature within the decoupling schemes considered.

A. Temperature-dependent magnetization within different
decoupling schemes

First, as an illustration of the temperature dependence of the
SW spectrum, we plot in Fig. 1 the dispersion as a function of
the wave vector k along the z axis, for different temperatures.

It can be seen that ωk, which includes magnon-magnon
interactions, is strongly dependent on temperature. At temper-
atures near the critical value, the SW softening is clearly seen.
A favorable comparison of these curves obtained by the CSD
method with those rendered by the numerical LLL method was
presented in Ref. 7.

Now, we present the magnetization curves, as a function
of temperature and applied field, computed with the different
methods for the bcc lattice and iron parameters (per atom)
J = 1.44 10−21J and K = 5.4 10−24J.

In Fig. 2, we plot the magnetization m = 〈Sz〉 /S as
a function of (reduced) temperature τ = kBT/J0 in zero
magnetic field, as obtained from (i) QGF with two values
of the nominal spin S = 5/2,30, (ii) CGF, and (iii) classical
MFT (CMFT), i.e., Eq. (69). We see that as S increases
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FIG. 1. (Color online) Dispersion relations, obtained by the CGF
method, with wave vector (0,0,k) and without magnetic field.

the magnetization curve m tends to that rendered by CGF
and CMFT. In particular, at low temperature, we do see the
evolution from the m ∼ T 3/2 Bloch law to the linear law
m ∼ T , as is typical of the classical Dirac-Heisenberg model.
It is interesting how the CMFT result agrees with that of
CGS when m is plotted against the reduced temperature. The
low-temperature asymptote (45) shows a good agreement with
the QGF curve for T � TC/4. Similarly, the asymptote in the
critical region (53) also reproduces correctly the QGF curve.

In Fig. 3, we compare the magnetization curves rendered
by CGF [see Eq. (67)] for various decoupling schemes, with
MC as a benchmark. Here, we prefer to plot the magnetization
against the absolute temperature τ so as to see how different
are the critical values of temperature rendered by the various
decoupling methods.

It is seen that the decoupling schemes of Callen and
Swendsen agree quite well with MC. On the other hand,
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c

FIG. 2. (Color online) Magnetization against reduced tempera-
ture. Comparison of (i) QGF for S = 5/2,30, (ii) CGF, and (iii)
classical MFT. We also show the low-temperature asymptote (45) and
the asymptote near the critical temperature (53). The critical temper-
ature τc is that of the method used for obtaining the corresponding
magnetization curve and τ ≡ kBT /J0.
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FIG. 3. (Color online) Magnetization curves rendered by different
decoupling schemes. The methods are compared to Monte Carlo
method.

Copeland and Gersch (CG) and RPA decoupling schemes
render nearly the same curve m (τ ) that goes below the previous
curves at high temperature. This is simply due to the fact
that decoupling schemes with terms of high powers of m,
e.g., three in the CG decoupling and in the second term in
Swendsen’s decoupling [see Eq. (16)], lead to a negligible
contribution at temperatures nearing the critical value. On the
contrary, contributions that are linear in m in the decoupling
schemes, such as Callen’s and Swendsen’s, do improve the
magnetization curve at all temperatures.

In Fig. 4, we compare the magnetization rendered by
(i) CGF and its Langevin function in Eq. (67) and (ii) CSD
given by Eq. (79), within RPA, and the two results are
compared to MC. Globally, CGF renders a magnetization
curve that keeps closer to MC than CSD method, which does
so only at low temperature and near the critical temperature.
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FIG. 4. (Color online) Magnetization obtained by CGF and CSD
within RPA. The two methods are compared to Monte Carlo method.
Inset: difference between CGF, CSD (with RPA decoupling) and MC.
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FIG. 5. (Color online) Comparison between the CGF methods
(by different decoupling schemes) and LLL approach.

In the inset, we plot the three differences between the
CSD, CGF, and MC. It is seen that large deviations occur for
T/TC � 0.4.

In Fig. 5 we compare, for the simpler case of an sc lattice,
the classical Green’s function method with three decoupling
schemes, with the numerical LLL method. It is seen that LLL
compares quite well with CGF using the Swendsen decoupling
in almost the whole range of temperature. Note, however, that
in the numerical LLL method the finite-size effects are clearly
seen in the critical temperature region, as is also the case with
MC, while the analytical methods do not ignore such effects
for they implicitly consider an infinite lattice.

Next, we study the relative magnetization variation

δ̃m (T ,H ) = m(T ,H ) − m(T ,0)

1 − m(T ,0)

as a function of the applied field for different values of
temperature, without anisotropy. The results are shown in
Fig. 6.

In the quantum-mechanical case, we may use the low-
temperature asymptote (45) to get (in the absence of
anisotropy)

δ̃m(T ,H ) � 1 − 1

ζ (3/2)
Z3/2

(
gμBH

kBT

)
.

This can also be seen within the quantum linear SW theory,
which renders exactly the same expression. It is clear from
the behavior of Zp (x) that in the low-temperature regime δ̃m

decreases when the temperature increases.
In the classical case and at low temperature, we use the

asymptote (72) and obtain

δ̃mCGF � 1 − (1 + κ)ψ(1)

+ (1 + κ)ψ(1)[λ′ − ψ(1)]PN [ψ(1)] τ ′.

Here, we see that this expression increases when the temper-
ature increases since λ′ = 1/(1 + κ) > ψ(1) = 1/[h′ + (1 +
κ)] for any h′ > 0.

However, it remains unclear why in the quantum-
mechanical case there is a change of behavior at a particular
temperature because it is difficult to derive an (approximate)
analytical expression for the latter. Indeed, this would at least
require to derive the magnetization asymptote in the critical
region in finite magnetic field which, unfortunately, leads
to a rather cumbersome expression. Nevertheless, quantum
spin effects are attenuated at high temperatures and as such
the quantum approach renders the same behavior for the
magnetization as the classical one.

B. SW spectrum and exchange stiffness at finite temperature

Now we discuss the exchange stiffness as a function of the
magnetization taking account of nonlinear SW effects. As we
have seen, taking account of these effects (or magnon-magnon
interactions), through the various decoupling schemes, leads
to a temperature-dependent dispersion. This dependence on
temperature comes about through the magnetization m. Let us
consider, for simplicity, the case with the sole contribution
from exchange coupling. Hence, we may define the SW
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FIG. 6. (Color online) Field dependence of the relative magnetization variation δ̃m, (left) from QGF with RPA decoupling and (right) from
CGF [Callen (a) and RPA (b) decoupling] and MC.
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stiffness D as follows:

h̄ω′
k = D(m)(1 − γk), (86)

assuming that all SW nonlinear effects [see the last term in e.g.,
Eqs. (28) and (64)] are booked into the function D (m). On the
other hand, in the absence of applied field and anisotropy, and
for a given decoupling scheme with the parameter α introduced
in Eq. (15), we deduce from Eq. (32) that

D (m) = J ′
0mQ′ (α,m)

with

Q′(α,β) = 1 + α

N
∑

p

γp

βh̄ω′
p

in the classical limit.
In the general case, as discussed in the previous sections, the

dispersion ωk and the magnetization m are solved for by using
the system of coupled equations and then D (m) is obtained
by fitting the curves of ω as a function of the wave vector
k in a given direction in Fourier space. Next, we substitute
h̄ω′

k = J ′
0mQ′ (1 − γk) in Q′ to obtain

Q′(α,β) = 1 + 1

Q′(α,β)

α/m

N
∑

p

γp

1 − γk′
τ ′

= 1 + α(W − 1)

mQ′(α,β)
τ ′, (87)

where W is the Watson integral for the given lattice.28

At low temperature, the magnetization is given by (CGF or
CSD)

m � 1 − W

Q′ (α,β)
τ ′

leading to

τ ′ = (1 − m)
Q′

W
.

Then, when this is substituted in Eq. (87) yields

Q′ (α,β) = 1 + W − 1

W

(1 − m) α

m

and, thereby, the spin stiffness D (m) reads

D (m) = J ′
0m

[
1 + W − 1

W

(1 − m) α

m

]
. (88)

Now, defining φ = α (m) /m and ς ≡ (W − 1) /W , we write

D (m) = J ′
0m [1 + ςφ (m) (1 − m)] .

Finally, considering the fact that at low temperature 1 − m is
small so that we may write

D (m) � J ′
0m [1 − (1 − m)]−ςφ(m) = m1−ςφ(m).

α (m) and, thereby, φ (m) is given according to the RPA,
Callen’s, Copeland and Gersch, or Swendsen decoupling
scheme, see Eq. (16) et seq. For the RPA decoupling, for
instance, α = 0 and thus D (m) ∼ m, as it should. For Callen’s
decoupling, α (m) = m leading to D (m) ∼ m1−ς . For a decou-
pling scheme with α (m) = am + bm3, we make an expansion
around m � 1, and obtain D (m) � m [1 − ζ (a + b) (m − 1)].
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FIG. 7. (Color online) Exchange stiffness against the magnetiza-
tion for different decoupling schemes obtained by CGF.

In Fig. 7, we plot the exchange stiffness as obtained
numerically from Eqs. (86), (28), and (64), for the decoupling
schemes discussed in Fig. 3.

As is seen in Eq. (88) and confirmed by the numerical
results in Fig. 7, the exchange stiffness depends on the
decoupling scheme or the way the spin-spin correlations are
tackled, especially at moderate temperatures. Obviously, the
curves corresponding to the four decoupling schemes merge
for m ∼ 1 (very low temperature) and m ∼ 0, i.e., at high
temperature where they exhibit a linear behavior.

V. CONCLUSION

We have established clear connections between the quan-
tum/classical Green function technique and the classical
spectral density method, and have compared them with the
numerical methods of Monte Carlo and Landau-Lifshitz-
Langevin dynamics. We have proposed a unified decoupling
scheme for both anisotropy and exchange contributions for
classical as well as for quantum spins which allows us to
establish a clear connection between the various methods and
to obtain reasonable results for the magnetization and critical
temperature. We have computed the spin-wave spectrum at
finite temperature and inferred the magnetization as a function
of temperature and field and have obtained the exchange stiff-
ness, for various decoupling schemes. Asymptotic expressions
for the magnetization have been given at low temperature and
in the critical region, both for classical and quantum spins, and
the crossover between them has been established. As far as the
(semi-)analytical methods are concerned, it turns out that the
classical Green’s function technique is more straightforward
and does not require any a priori assumptions about the
the system’s spectral density. In particular, Callen’s famous
formula for the magnetization is recast in a compact form
using the Brillouin function. This makes it straightforward
to obtain the classical limit leading to the familiar Langevin
function for the magnetization. However, the outcome is still
a transcendental equation involving the spin-wave density,
unlike the Langevin form one obtains from mean-field theory.
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In future work, we would like to extend the present
calculations and the Green’s function technique to finite-size
systems by taking account of boundary and surface effects,
similarly to what has been done in Refs. 33 and 34. This
should be useful for studying the dynamics of multilayered
magnetic systems and magnetic nanostructures.
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APPENDIX A: DECOUPLING OF EXCHANGE
CONTRIBUTIONS WITHIN CSD

Following the procedure described in Sec. III C, before
Eq. (77), we obtain

1

N
∑

q

J ′
q

〈{
sz

k−q(τ )s+
q (τ ); s−

−k(0)
}〉

ω

� mJ ′
k〈〈s+

k (τ ); s−
−k〉〉ω − m

N 2

∑
p,q

J ′
q

〈s+
p s−

q 〉
2

×〈〈s+
k−p−q(τ ); s−

−k〉〉ω.

Similarly, for the second contribution, we get

1

N
∑

q

J ′
q

〈{
sz

q(τ )s+
k−q(τ ); s−

−k(0)
}〉

ω

� mJ ′
0〈〈s+

k (τ ); s−
−k〉〉ω − m

N 2

∑
p,q

J ′
q

〈s+
p s−

k−q〉
2

×〈〈s+
q−p(τ ); s−

−k〉〉ω.

Now, using the two moment equations⎧⎨⎩
∫ ∞
−∞

dω
2π

�k(ω) = i〈{S+
k ,S−

−k}〉,∫ ∞
−∞

dω
2π

ω�k(ω) = −〈{{S+
k ,H},S−

−k}〉.
(A1)

with the spectral density, see Ref. 32,

�k(ω) = 〈〈s+
k (τ ); s−

−k〉〉ω
= i〈{s+

k (τ ),s−
−k(0)}〉ω = 2πNmδ(ω − ωk) (A2)

we integrate over ω and obtain for the first contribution∫ ∞

−∞

dω

2π

1

N
∑

q

J ′
q

〈{
sz

k−q(τ )s+
q (τ ); s−

−k(0)
}〉

ω

� 2Nm2J ′
k − 2m

N
∑

q

J ′
q〈s+

−qs
−
q 〉

and for the second∫ ∞

−∞

dω

2π

1

N
∑

q

J ′
q

〈{
sz

q(τ )s+
k−q(τ ); s−

−k(0)
}〉

ω

� 2Nm2J ′
0 − m2

N
∑

q

J ′
q〈s+

q−ks
−
k−q〉.

Then, subtracting the second contribution from the first yields

∫ ∞

−∞

dω

2π

1

N
∑

q

J ′
q

[ 〈{
sz

k−q(τ )s+
q (τ ); s−

−k(0)
}〉

ω

−〈{
sz

q(τ )s+
k−q(τ ); s−

−k(0)
}〉

ω

]

� 2Nm2(J ′
k − J ′

0) − m2

N
∑

q

(J ′
q − J ′

k−q)〈s+
−qs

−
q 〉.

On the other hand, using the zero-moment equation, we get

∫ ∞

−∞

dω

2π

1

N
∑

q

J ′
q

[ 〈{
sz

k−q(τ )s+
q (τ ); s−

−k(0)
}〉

ω

−〈{
sz

q(τ )s+
k−q(τ ); s−

−k(0)
}〉

ω

]

= − 1

N
∑

q

(J ′
q − J ′

k−q)
[
2
〈
sz

qs
z
−q

〉 + 〈s−
−qs

+
q 〉].

Consequently, we have the equation

2Nm2(J ′
0 − J ′

k) + m2

N
∑

q

(J ′
q − J ′

k−q)〈s+
−qs

−
q 〉

� 1

N
∑

q

(J ′
q − J ′

k−q)
[
2
〈
sz

qs
z
−q

〉 + 〈s−
−qs

+
q 〉],

which leads to∑
q

(J ′
q − J ′

k−q)
〈
sz

qs
z
−q

〉
� N 2m2(J ′

0 − J ′
k) + 1

2
m2

∑
q

(J ′
q − J ′

k−q)〈s+
−qs

−
q 〉

− 1

2

∑
q

(J ′
q − J ′

k−q)〈s−
−qs

+
q 〉.

One can can easily check that 〈s+
−qs

−
q 〉 = 〈s−

−qs
+
q 〉 and, thereby,

one obtains∑
q

(J ′
q − J ′

k−q)
〈
sz

qs
z
−q

〉
�

∑
q

(J ′
q − J ′

k−q)

[
N 2m2�(q) − 1

2
(1 − m2)〈s+

q s−
−q〉

]
.

This may also be recast into the form (77), which can be more
easily compared to RPA.

APPENDIX B: THE CRITICAL TEMPERATURE VIA
DIFFERENT APPROACHES

Within the QGF approach and using parameter φ for
exchange decoupling, the Curie temperature can be calculated
from Eq. (58) by setting 〈σ 3〉 � 0 at τ = τc. This leads to

094415-16



UNIFIED DECOUPLING SCHEME FOR EXCHANGE AND . . . PHYSICAL REVIEW B 86, 094415 (2012)

TABLE I. Reduced Curie temperature τC/S2 ≡ kBTC/S2J0 for a bcc lattice with Fe parameters and S = 5/2. (a) stands for the RPA or
Copeland-Gersch, (b) for Callen, and (c) for Swenden’s decoupling schemes used for the exchange contributions.

QGF CGF CSD

Method (a) (b) (c) (a) (b) (c) (a) (b) (c) MFT MC

τC/S2 (K) 0.335 0.380 0.354 0.240 0.262 0.262 0.240 0.262 0.262 0.333 0.268

[see Eq. (48) for notation]

τc = S(S + 1)

3

κ + Q(φ,τc)

P (�)
.

In the absence of anisotropy, which is negligible near Tc, we
obtain

τQGF
c = S(S + 1)

3

Qexch
(
φ,τQGF

c

)
W

→ τQGF
c

= S(S + 1)

3W

[
1 + φ

3

(
1 + 1

S

)(
1 − 1

W

)]
. (B1)

In CGF (or in CSD where we obtain the same result), we
similarly use the high-temperature asymptote (75) and obtain

τCGF
c = S2 Q′

exch

(
φ,τCGF

c

)
3W

→ τCGF
c

= S2

3W

[
1 + φ

3

(
1 − 1

W

)]
. (B2)

We remark in passing that this is also the result that one
obtains within the spherical model, in the isotropic case 33,
i.e., κ = 0, and for a RPA decoupling φ = 0, which yields

τc = 1

W

S2

3
. (B3)

On the other hand, from the MFT magnetization (69), one
obtains the Curie temperature (for H = 0 and κ = 0)

τMFT
C = J0S

2

3
. (B4)

Note that contrary to the MFT result (B4), the expression (B2)
for τC , as obtained from the GF in the classical limit, or
Eq. (B3) from the isotropic spherical model, depends on the
lattice and on the SW dispersion via the Watson integral
W . Moreover, as mentioned earlier, we can relate MFT to
SWT by assuming that all excitations are degenerate and by
ignoring spin fluctuations. More precisely, this amounts to
dropping the terms that are responsible for the propagation
of the SWs (or magnons) through the lattice. This can be
done by dropping the propagation function γk from all SWT
expressions. Hence the MFT result (B4) can be obtained from
the classical limit of the GF result (B2) by formally setting
γk = 0 in the lattice integral W (leading to W = 1) and taking
φ = 0.

In Table I, we collect the values of τC estimated by the
different approaches in the isotropic case. First, we remark that
the values obtained within quantum-mechanical approaches
are higher than the classical ones. Indeed, comparing for
instance Eqs. (B1) and (B2), we see that for small spin
values the difference in τc, due to the contribution S in
S (S + 1) = S2 + S, is non negligible. This is no surprise
because this decoupling scheme, unlike RPA, accounts for
magnon-magnon interactions whose role becomes crucial in
the vicinity of the critical temperature. Second, there is a
perfect agreement between the two classical methods CGF
and CSD. As discussed earlier, this shows that given that
(i) CGF renders the same results as CSD and (ii) that CGF
does not require any assumptions about the spectral function,
it might be preferable to use the CGF method.
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