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von Neumann entropy spectra and entangled excitations in spin-orbital models
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We consider the low-energy excitations of one-dimensional spin-orbital models which consist of spin waves,
orbital waves, and joint spin-orbital excitations. Among the latter we identify strongly entangled spin-orbital
bound states and spin-orbital quasiparticle states which appear as peaks in the von Neumann entropy spectral
function introduced in this work. We present the scaling of the von Neumann entropy with system size and find a
qualitatively different behavior for the bound state and the quasiparticle—the strong entanglement of these states
is manifested by a universal logarithmic scaling of the von Neumann entropy with system size, while the entropy
saturates for other spin-orbital excitations. We suggest that spin-orbital entanglement can be experimentally
explored by the measurement of the dynamical spin-orbital correlations using resonant inelastic x-ray scattering,
where strong spin-orbit coupling associated with the core hole plays a role.
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I. INTRODUCTION

The spin-orbital interplay is one of the important topics in
the theory of strongly correlated electrons.1,2 In many cases,
the intertwined spin-orbital interaction is decoupled by mean
field approximation, and the spin and orbital dynamics are
independent of each other. Thus a spin-only Heisenberg model
can be derived by averaging over the orbital state, which suc-
cessfully explains magnetism and optical excitations in some
materials, for instance in LaMnO3.3 But in others, especially
in t2g systems,4 the orbital degeneracy plays an indispensable
role in understanding the low-energy properties in the Mott
insulators of transition metal oxides, such as LaTiO3,5 LaVO3,
and YVO3,6 and also in recently discussed RbO2.7 Of high
interest are systems with strong spin-orbit coupling which
leads to locally entangled states,8 and entanglement on the
superexchange bonds in K3Cu2F7.9 For such systems, the
mean-field-type approximation and the decoupling of com-
posite spin-orbital correlations fail and generate uncontrolled
errors, even when the orbitals are polarized.10 The strong
spin-orbital fluctuations on the exchange bonds will induce the
violation of the Goodenough-Kanamori rules,11 or measurable
consequences in transition metal oxides at finite temperature.12

Furthermore, the different flavors may form exotic composite
spin-orbital excitations.

Whereas the study of elementary spin excitations, i.e.,
the spin waves, is experimental routine, the exploration of
orbitons proved much more difficult experimentally13–15 than
theoretically.16–22 Only recently clear experimental signatures
of orbitons have been found in the quasi-one-dimensional
Mott insulator Sr2CuO3.2 The observation of pronounced
momentum dependence of their energy reflects their nature as
propagating excitations, and distinguishes them from localized
crystal-field excitations.23 Coupled spin-orbital excitations
that could shed light on the entanglement of the two distinct
degrees of freedom, i.e., spin and orbital, have so far not
been detected and explored in experiments as far as we are
aware. The aim of this paper is to study a simple spin-orbital
model24–27 which is known to feature collective spin-orbital
excitations,28–30 and to explore what can be learned from

such excitations concerning the entanglement of the different
degrees of freedom. We also address the question of which type
of spectroscopies might be useful to explore the entanglement
of such excitations.

A paradigmatic model derived for a transition metal oxide
system in the Mott-insulating limit is the one-dimensional (1D)
spin-orbital Hamiltonian,24,25 which reads

H = −J
∑

i

(�Si · �Si+1 + x)( �Ti · �Ti+1 + y), (1)

where �Si and �Ti are spin-1/2 and pseudospin-1/2 operators
representing the spin and orbital degrees of freedom located
at site i, respectively, and we set below J = 1. It is proposed
that ultracold fermions in zigzag optical lattices can reproduce
an effective spin-orbital model.31 For general {x,y}, the
model (1) has an SU(2)⊗SU(2) symmetry. An additional
Z2 bisymmetry occurs by interchanging spin and orbital
operators when x = y. In the case of x = y = 1

4 , Hamiltonian
(1) reduces to a SU(4) symmetric model, which is exactly
soluble by the Bethe ansatz.32,33 There are three Goldstone
modes corresponding to separate spin and orbital excitation, as
well as composite spin-orbital excitations in the case of J < 0,
in contrast to a quadratic dependence of the energy upon the
momentum in the long-wave limit for J > 0. The spectra
of elementary excitations are commonly not analytically
soluble away from the SU(4) point. We will, however, show
that the low-energy excitations can be analytically obtained
in some specific phases in the case when J > 0, and this
offers a platform to study the spin-orbital entanglement.
In this paper, we go beyond the ideas developed for spin
systems.34 We demonstrate that spin-orbital entanglement
entropy clearly distinguishes weakly correlated spin-orbital
excitations from bound states and resonances by its magnitude
and distinct scaling behavior. We propose how to connect
the entanglement entropy with experimentally observable
quantities of recently developed spectroscopies.

Currently, concepts from quantum information theory are
being studied with the aim to explore many-body theory from
another perspective and vice versa. A particularly fruitful
direction is using quantum entanglement to shed light on exotic

094412-11098-0121/2012/86(9)/094412(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.094412
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quantum phases.35,36 Entanglement entropy even distinguishes
phases in the absence of conventional order parameters.37 In
general, a many-body quantum system is subdivided into A

and B parts, and the entanglement entropy is the von Neumann
entropy (vNE), SvN = −Tr{ρA log2 ρA}, where ρA = TrB{ρ}
is the reduced density matrix of the subspace A and ρ is the full
density matrix. The vNE is bounded, SvN � log2 dimρA, and
easy to calculate. Experimental determination appears harder,
yet there are proposals involving transport measurements in
quantum point contacts.38

Interestingly the vNE scales proportionally to the boundary
of the subregion obtained by the spatial partitioning.39 The
dependence of the boundary or area law can be traced back to
the study of black hole physics40 and was extensively exploited
for 1D spin chains.41 If the block A is of length l in a system of
length L with periodic boundary condition, the vNE of gapped
ground states is bounded as Sl = O(1), while a logarithmic
scaling Sl = c log2 l + O(1) (L � l � 1) has been proven to
be universal property of the gapless phases in critical systems
by the underlying conformal field theory.42 A violation of the
area law is expected for the low-lying excited states of critical
chains.43 In a composite system containing spin and orbital
operators, the decomposition of different flavors retains the
real-space symmetries. To date, measurements of the vNE
for subdivision of degrees of freedom other than in spatial
segmentation have not been fully explored.44

The paper is organized as follows. First, in Sec. II, we
present the phase diagram of the 1D spin-orbital model (1),
including the exact bound on the ground state energy of
the ferro-ferro state considered here. We also analyze the
elementary excitation spectrum of this phase and introduce
the bound state (BS) and spin-orbital quasiparticle (SOQ)
state which occur in the spectra. In Sec. III we present the
vNE spectra and the scaling behavior of the SOQ state.
Next we consider possible experimental observation of the
dynamical spin-orbital correlations using resonant inelastic
x-ray scattering (RIXS) in Sec. IV. The paper is summarized
in Sec. V.

II. PHASE DIAGRAM AND EXCITATIONS

A quantum phase transition (QPT) is identified as a point of
nonanalyticity of the ground state and associated expectation
values in the thermodynamic limit. To shed light on the phase
boundaries of the 1D spin-orbital model,24,25 we first consider
two sites,

H12 = − 1
4

(�S2
12 − �S2

1 − �S2
2 + 2x

)(
T 2

12 − �T 2
1 − �T 2

2 + 2y
)
, (2)

where �S12 = �S1 + �S2 and �T12 = �T1 + �T2. A pair of spins
(orbitals) can form either a singlet with S12 = 0 (T12 = 0)
or a triplet with S12 = 1 (T12 = 1), and various combinations
of quantum numbers correspond to different phases shown
in Fig. 1. In phase I, the state with S12 = 1 = T12 has the
lowest energy, and thus the energy per bond is eI

B � exy =
−(x + 1/4)(y + 1/4). For a larger system with L bonds, we
have EI

0 (H ) � Lexy . On the other hand, taking a ferro-ferro
state |0〉 as a variational state, EI

0 (H ) � Lexy . Therefore, the
energy of phase I is exactly EI

0 (H ) = Lexy and the ferro-ferro

FIG. 1. (Color online) Spin-orbital entanglement entropy SvN in
the ground state of the spin-orbital model (1) as a function of x and
y, obtained for system size L = 8. The dashed (red) lines mark the
critical lines determined by the fidelity susceptibility (see text). The
two-site configurations in phases I-IV are shown on the left. The two
orbitals per site are degenerate (their splitting is shown only for clarity
of presentation).

state is the corresponding ground state in the thermodynamic
limit.

Without prior knowledge of order parameter, various
characterizations from the perspective of quantum information
theory can be used to identify phase boundaries. One often
used tool is the vNE.45 Tracing orbital degrees of freedom,
we obtained the spin-orbital vNE SvN for the ground state
of L = 8 chain in the Hilbert subspace of Sz = Tz = 0.45

However, here we find that the vNE of the ground state does
not distinguish phase I from phase II or IV—all three phases
having SvN = 0 (see Fig. 1). Therefore we use the quantum
fidelity to quantify the phase diagram.46 The fidelity defined
as follows, F(λ,δλ) = |〈�0(λ)|�0(λ + δλ)〉|, is taken along a
certain path {x(λ),y(λ)} and reveals all phase boundaries. The
fidelity susceptibility, χF ≡ −(2 lnF)/(δλ)2|δλ→0, exhibits a
peak at the critical point, and can be treated as a versatile order
parameter in distinguishing ground states.47 It signals the phase
boundaries shown in Fig. 1. Remarkably, the phase diagram
found from the fidelity susceptibility for larger systems is the
same as the one for L = 2.

In phase I of Fig. 1, with boundaries given by x + y = 1
2 ,

x = − 1
4 and y = − 1

4 , the spins and orbitals are fully polarized,
and the ferro-ferro ground state |0〉 is disentangled, i.e., can
be factorized into spin and orbital sectors. It is now interesting
to ask whether: (i) the vanishing spin-orbital entanglement
in the ground state implies a suppression of joint spin-
orbital quantum fluctuations, and (ii) collective spin-orbital
excitations can form. Using the equation of motion method
one finds spin (magnon) excitations with dispersion

ωs(Q) = (
1
4 + y

)
(1 − cos Q), (3)

and orbital (orbiton) excitations,30

ωt (Q) = (
1
4 + x

)
(1 − cos Q). (4)
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The stability of the orbitons (magnons) implies that x > − 1
4

(y > − 1
4 ), and determines the QPT between phases I and

II (IV), respectively, while the spin-orbital coupling only
renormalizes the spectra.

For our purpose, it is straightforward to consider the
propagation of a magnon-orbiton pair excitation along the
ferro-ferro chain, by simultaneously exciting a single spin and
a single orbital. The translation symmetry imposes that total
momentum Q = 2mπ/L (m = 0, . . . ,L − 1) is conserved
during scattering. The scattering of magnon and orbiton with
initial (final) momenta {Q

2 − q,Q

2 + q} ({Q

2 − q ′,Q

2 + q ′}) and
total momentum Q is represented by the Green’s function,48

G(Q,ω) = 1

L

∑
q,q ′

〈〈
S+

Q

2 −q ′T
+
Q

2 +q ′

∣∣∣S−
Q

2 −q
T −

Q

2 +q

〉〉
, (5)

for a combined spin (S−
Q

2 −q
) and orbital (T −

Q

2 +q
) excitation. The

spin-orbital continuum is given by

	(Q,q) = ωs

(
Q

2
− q

)
+ ωt

(
Q

2
+ q

)
. (6)

In the noninteracting case, the Green’s function exhibits
square-root singularities at the edges of the continuum.49 Due
to residual, attractive interactions spin-orbital BSs are shifted
outside the continuum,24,29,50 see Fig. 2(a). The collective
mode is determined by

1 + 1

2π

∫ π

−π

dq

(
cos Q

2 − cos q
)2

ωBS − 	(Q,q)
= 0. (7)

The analytic solution of this equation is tedious but straight-
forward. The collective BS with dispersion ωBS(Q) is well
separated from the magnon-orbiton continuum [Fig. 2(a)] at
large Q. In the long-wave limit the BS energy coincides with
the Arovas-Auerbach line x + y = 1

2 ,51 which represents the
boundary of the ferro-ferro phase (see Fig. 1), yet the BS
remains undamped for x + y > 1

2 .

FIG. 2. (Color online) (a) Energy spectra of 40-site spin-orbital
system at x = y = 1/4 as function of momentum Q. Dashed lines
inside the spin-orbital continuum 	(Q,q) denote the spin, orbital,
and SOQ excitations, i.e., ωs(Q), ωt (Q) and ωSOQ(Q), respectively,
that are all degenerate at the SU(4) point. The (red) solid line below
the continuum corresponds to the spin-orbital BS. (b) The decay
rate 
(Q) of the SOQ for different momenta Q = 0.2,0.6,0.8π as a
function of x, where y = x and L → ∞.

In addition, a collective mode of spin-orbital resonances,

|�(Q)〉 = 1√
L

∑
m,l

al(Q)eiQmS−
mT −

m+l|0〉, (8)

occurs inside the continuum. Here 0 � l � L − 1 denotes
the distance between spin and orbital flips. Remarkably, the
spin and orbital flips are glued together at the same site with
al(Q) = δl,0 at the SU(4) point.30 This exact eigenstate of H

Eq. (1) has been dubbed on-site BS. In order to distinguish
it better from the typical collective BS’s that lie below the
continuum of spin-orbital excitations, and to account for the
damping of this state away from the SU(4) point, we call it
here the SOQ state. The SOQ has the dispersion

ωSOQ(Q) = x + y − 1
2 cos Q, (9)

that is degenerate with both ωs(Q) and ωt (Q) at x = y = 1
4 ,

see Fig. 2(a). This is reminiscent of the degeneracy of the three
Goldstone modes at the SU(4) point of the antiferromagnetic
version of Hamiltonian (1), i.e., for J = −1.32,33 Moving
away from the SU(4) point, the SOQ decays due to residual
interactions into magnon-orbiton pairs; simultaneously the
mean separation ξ of spin and orbital excitations increases, i.e.,
al(Q) ∼ exp(−l/ξ ). This leads in the thermodynamic limit to a
finite linewidth defined by 
 = Im{G−1(Q,ω)}.52 The decay
rate of the SOQ increases with growing x > 1

4 and also for
decreasing momenta Q, as seen in Fig. 2(b).

III. VON NEUMANN ENTROPY SPECTRA

To investigate the degree of entanglement of spin-orbital
excited states, we introduce the vNE spectral function in the
Lehmann representation,

SvN(Q,ω) = −
∑

n

Tr
{
ρ(μ)

s log2 ρ(μ)
s

}
δ{ω − ωn(Q)}, (10)

where (μ) = (Q,ωn) denote momentum and excitation energy,
and the spin density matrix, ρ

(μ)
s = Tro|�n(Q)〉〈�n(Q)|, is

obtained by tracing the orbital degrees of freedom. Our focus
in the following are the elementary excitations of the system.
Typically in solid state physics the elementary excitations
are the excitations that characterize the system. Since these
states are in the vicinity of the ground state they are also
more easily accessible by experiment than highly excited
states. Nevertheless, the definition in Eq. (10) holds for the
full excitation spectrum, i.e., with a proper labeling μ for
the excitations. For the elementary spin-orbital excitation the
entanglement properties are encoded in the set of Schmidt
coefficients {al(Q)} in Eq. (8), and thus it follows from it that
the diagonal form is

ρ(μ)
s =

∑
q

|aq |2S−
Q

2 −q
|0〉〈0| S+

Q

2 −q
, (11)

where

aq = 1√
L

∑
l

al(Q)e−i( Q

2 −q)l . (12)

The eigenvalue spectrum of ρ
(μ)
s shows the basic entangle-

ment feature between magnon and orbiton, and ln |aq |2 has
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been termed “entanglement spectrum” introduced by Li and
Haldane.35

Let us consider first the symmetric case in Eq. (1),
i.e., x = y. The Hilbert space can be divided into two
subspaces characterized by the parity PST of the interchange
of S ↔ T , which is either odd or even. Translation symmetry
allows us to express the reduced density matrix ρs in a
block-diagonal form, where each block corresponds to an
irreducible representation labeled by total momentum Q and
parity of exchange symmetry PST. The vNE can be obtained
by diagonalizing these blocks separately. In particular, the
nondegenerate eigenstates with odd parity can be explicitly
cast in the form 1√

2
(S−

Q/2−qT
−
Q/2+q − S−

Q/2+qT
−
Q/2−q)|0〉. Con-

sequently, the singletlike pair leads to SvN = 1. For other
spin-orbital eigenstates with PST = 1, SvN � 1, except the
pure spin or pure orbital waves. Interestingly, we find that
the parity is still conserved in subspace Q = 0 for x �= y. The
strongly entangled spin-orbital BSs are reflected by peaks in
the von Neumann spectra SvN(Q,ω), shown in Fig. 3. At the

FIG. 3. (Color online) The vNE spectral function SvN(Q,ω) (10)
as obtained for 400-site spin-orbital system in subspace PST = 1 for
different momenta Q, and for: (a) x = y = 1/4, (b) x = y = 1/2.
Isolated vertical lines below the continuum indicate the BS, with
dispersion given by the dashed (red) line. The SOQ in the center of
spectra is undamped for case (a) while it is damped for case (b).

FIG. 4. (Color online) (a) Scaling behavior of entanglement
entropy SvN of the spin-orbital BSs for Q = 0.8π . Lines represent
logarithmic fits to Eq. (13), with c0 = −0.659, −1.059, −1.251,
respectively. (b) The scaling behavior of entanglement entropy of the
SOQ for x = y = 1/2. Lines are fitted by SvN = c1/L + c0, with c0

(c1) = 3.69 (380.5), 3.37 (138.4) and 3.31 (47.6) for Q = 0.8π , 0.6π

and 0.2π . The inset shows the logarithmic behavior of SvN for the
SOQ with Q = 0.8π and x = y = 1/4.

SU(4) point, the entanglement of the SOQ is larger than that
of BS and is noted to be independent of momentum Q, as is
displayed in Fig. 3(a). However, as momentum Q decreases,
the SOQ peak in the center of the spectra gets broader in Fig.
3(b), implying a shorter lifetime.

Inspection of the vNE spectra shows that the entanglement
reaches a local maximum at the BSs. Finite size scaling of vNE
of spin-orbital BSs reveals the asymptotic logarithmic scaling,

SvN = log2 L + c0, (13)

shown in Fig. 4(a). The same logarithmic scaling is found for
the SOQ at the SU(4) point x = y = 1

4 , as seen in the inset
of Fig. 4(b). In this case, aq = L−1/2 and the equal weight for
each q gives rise to the maximal entanglement, SvN = log2 L.
However, far away from the SU(4) point the scaling is entirely
different and the entropy of the SOQ scales as a power law,
SvN = c1/L + c0, as seen in Fig. 4(b). This change of scaling
from logarithmic to power law in 1/L is controlled by the
correlation length ξ measuring the average distance of spin
and orbital excitations in the SOQ wave function (8). From
Eq. (8) and al(Q) ∼ exp(−l/ξ ) we obtain

|aq |2 � 2πξ

L arctan(2πξ )

1

1 + q2ξ 2
. (14)

The vNE can be cast in the asymptotic form by a little
algebra,

SvN � log2

{
L

(1 + ξ )

}
, (15)

which yields log2 L at x = y = 1/4 where ξ = 0. As ξ

increases the correction to the vNE is ∝ − log2(1 + ξ ). Far
away from the SU(4) point, the SOQ is damped and ξ becomes
extensive, i.e., ξ/L ≈ c̃0 − c̃1/L, and the vNE approaches a
finite value with a correction ∝ 1/L as shown in Fig. 4(b).
In other words for weak spin-orbital correlation, which
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corresponds to large spin-orbital correlation length ξ , the
entanglement entropy approaches a value of O(1). We note that
this dependence of the vNE in a spin-orbital system is distinct
from the dependence of the vNE on the spin-correlation length
in a pure spin system, as for example in the case of the quantum
Ising model.53 This close correspondence of the vNE of BSs
and the correlation length ξ suggests to use the dynamic
spin-orbital correlation function as a probe of spin-orbital
entanglement and as a qualitative measure of the vNE spectra.

IV. RIXS SPECTRAL FUNCTIONS

Returning to transition metal oxides, one realizes that
joint spin-orbital excitations are not created in the ferro-ferro
ground state in photoemission spectroscopy because of spin
conservation. On the contrary, the recently developed RIXS
method2,14,54–56 is in principle capable of measuring the
spectral function of the coupled spin-orbital excitations at
distance l,

Al(Q,ω) = 1

π
lim
η→0

Im〈0|
(l)†
Q

1

ω + E0 − H − iη



(l)
Q |0〉.

(16)
Here



(0)
Q = 1√

L

∑
j

eiQjS−
j T −

j (17)

is the local excitation operator for an on-site spin-orbital
excitation. We employ as well the even and odd parity
operators,



(1±)
Q = 1√

2L

∑
j

eiQj (S−
j+1 ± S−

j−1)T −
j , (18)

to probe the nearest-neighbor spin-orbital excitations. In the
RIXS process an electron with spin up is excited by the
incoming x rays from a deep-lying core level into the valence
shell. For the time of its existence the core hole generates a
Coulomb potential and a strong spin-orbit coupling that allows
for the nonconservation of spin. Next the hole is filled by an
electron from the occupied valence band under the emission
of an x ray. This RIXS process creates a joint spin-valence
excitation with momentum Qin-Qout and energy ωin-ωout,
which can unveil the spectral function of the spin-orbital
excitation.

The on-site spectral function A0(Q,ω) shown in Figs. 5(a)
and 5(b) highlights the SOQ. At the SU(4) point [Fig. 5(a)] it
appears as a δ function, A0(Q,ω) = δ{ω − ωSOQ(Q)}, whereas
in Fig. 5(b) the SOQ is damped and its intensity decreases
strongly with Q. The decrease of peak heights is a consequence
of the increasing line width 
(Q) of the SOQ for Q → 0. In
the latter figure the BS at the low energy side of the continuum
appears as a weak additional feature, while it is absent in (a),
i.e., at the SU(4) point. The nearest neighbor spectral functions,
A1+(Q,ω) in Fig. 5(c) and A1−(Q,ω) in Fig. 5(d), show both
the spin-orbital continuum and the BS below the continuum.
Notably, comparing with the vNE spectral function in Fig. 3,
we find the same characteristic energies and similar intensity
features as in the RIXS spectra. The spectral function provides
information of various correlations which could serve to derive
the reduced density matrices.57

FIG. 5. (Color online) Upper part—the spectral function of the
on-site excitation A0(Q,ω) for: (a) x = y = 1/4, (b) x = y = 1/2.
Lower part—the nearest-neighbor spectral functions for x = y =
1/2: (c) A1+(Q,ω) and (d) A1−(Q,ω). The momentum range in each
panel from π/10 (bottom) to 9π/10 (top); the peak broadening is
η = 0.01. Dashed (red) and dotted (green) lines correspond to the BS
and to the SOQ, while gray dash-dot lines indicate the boundaries of
the continuum.

V. SUMMARY AND OUTLOOK

In this paper, we study a spin-orbital system and extend
the analysis of entanglement to elementary excited states by
introducing the vNE spectral function. The vNE is calculated
from the reduced density matrix describing the spin sector
of the individual energy eigenstate which is obtained after
performing the trace over the orbital sector, or vice versa. Our
study demonstrates that even in cases where the ground state of
a spin-orbital chain is fully disentangled, e.g., in the ferro-ferro
state, (i) the spin-orbital excitations are in general entangled,
and (ii) maximal spin-orbital entanglement occurs for bound
states which appear as sharp peaks in the vNE spectra.

Furthermore, we have shown that the vNE of undamped
bound states exhibits a logarithmic dependence on the chain
length L. At the SU(4) point the vNE of the spin-orbital
quasiparticle excitations, which are eigenstates formed by
Bloch states of local pairs of spin and orbital flips, emerge
as sharp peaks of size log2 L in the center of the spin-
orbital excitation continuum with a dispersion ωSOQ(Q). Away
from the SU(4) point the spin-orbital quasiparticle acquires
finite quasiparticle lifetime and the spin-orbital correlations
are controlled by a correlation length ξ , increasing with the
distance from the SU(4) point. It turns out that the vNE of this
state is controlled by the spin-orbital correlation length and
decays logarithmically with ξ .

Guided by the close relationship of the vNE and the degree
of spin-orbital correlations in the wave functions, we have
addressed the question whether there is direct experimental
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access to these correlations and therefore a way to explore the
von Neumann spectral functions by some sort of spectroscopy.
Here we propose to study the dynamic spin-orbital correlation
functions as a qualitative measure of the vNE spectra, and
suggest to use resonant inelastic x-ray scattering as a promising
technique. We have shown that this method would allow us to
highlight particular states via selection rules.
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