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Treating the randomly Fe-substituted optimally hole-doped manganite La0.7Pb0.3(Mn1−yFey)O3 (y = 0.2,0.3)
as a test case, we demonstrate that a combined investigation of both odd and even harmonics of the ac magnetic
response permits an unambiguous distinction between the canonical and cluster spin glasses. As expected for a
spin glass (SG), the nonlinear ac magnetic susceptibilities χ3(T ,ω) and χ5(T ,ω) (odd harmonics) diverge at the
SG freezing temperature Tg = 80.00(3) K [Tg = 56.25(5) K] in the static limit and, like the imaginary part of the
linear susceptibility, follow dynamic scaling with the critical exponents β = 0.56(3) [β = 0.63(3)], γ = 1.80(5)
[γ = 2.0(1)], and zν = 10.1(1) [zν = 8.0(5)] in the sample with composition y = 0.2 (y = 0.3). The nonlinear
susceptibility χNL, which has contributions from both χ3 and χ5, satisfies static scaling with the same choice
of Tg , β, and γ . Irrespective of the Fe concentration, the values of the critical exponents γ , ν, and η are in
much better agreement with those theoretically predicted for a three-dimensional (d = 3) Heisenberg chiral SG
than for a d = 3 Ising SG. The true thermodynamic nature of the “zero-field” spin-glass transition is preserved
even in finite magnetic fields. Unlike odd harmonics, even harmonics χ2(T ,ω) and χ4(T ,ω) make it evident that,
apart from the macroscopic length scale of the spin-glass order in the static limit, there exists a length scale that
corresponds to the short-range ferromagnetic order.
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I. INTRODUCTION

It is well-known1 that the spin-glass (SG) state at tempera-
tures below the spin-freezing temperature Tg is characterized
by an extremely slow (logarithmic) spin dynamics, aging
and memory effects, bifurcation in the “zero-field-cooled”
(ZFC) and “field-cooled” (FC) thermomagnetic curves at
low fields, and a divergence in the nonlinear susceptibility
at Tg . These characteristic properties of SG behavior have
been observed in a wide variety of systems ranging from the
so-called canonical spin glasses2 [dilute magnetic alloys such
as Au(Fe), Cu(Mn), or Ag(Mn) with mostly individual spins
and a sparse population of minute spin clusters cooperatively
participating in the spin-freezing process] to cluster spin
glasses or mictomagnets1 [magnetic alloys with concentration
close to the percolation threshold for the onset of long-range
ferromagnetic (FM) or antiferromagnetic (AFM) ordering and
a strong tendency to form interacting spin clusters of assorted
size]. Thus, the above experimental signatures, on their own,
fail to make a clear-cut distinction between a canonical SG
and a cluster SG. The standard theoretical description of
spin glasses considers Heisenberg interactions with random
exchange coupling between the (magnetic impurity) spins
in the presence or absence of a weak Ising anisotropy and
thereby leads to d = 3 (d is the space dimension) Ising or
Heisenberg universality classes. In the latter case, the SG
transition occurs at a finite Tg only when either dipolar
(anisotropic) interactions are included3 or a weak coupling
exists between the spin and chirality (a multispin variable
describing the left- or right-handedness of the noncollinear or
noncoplanar spin structures induced by frustration) sectors.4–7

Therefore, for a meaningful comparison between theory and
experiment, the spin structure at microscopic length scales

(i.e., collinear FM or AFM or noncollinear spin order within
the clusters or correlated local regions) must be known a priori.

In this paper, we demonstrate how the nonlinear (NL)
magnetic susceptibilities unambiguously distinguish between
a cluster SG and a canonical SG, and directly probe the
magnetic order (FM or AFM) prevalent within the clusters.
To this end, we treat the randomly Fe-substituted optimally
hole-doped manganite La0.7Pb0.3(Mn1−yFey)O3 (y = 0.2,0.3)
as a test case. The rationale behind the choice of this system
is as follows. First, nanoscale phase separation, and hence
the formation of spin-correlated regions or spin clusters,
is well documented8 in manganites. Second, the nature of
magnetic order in this manganite system for y � 0.2 is highly
controversial.9–15 On the one hand, spin-polarized neutron
diffraction12,13,15 (SPND), small-angle neutron scattering13

(SANS), muon spin relaxation12 (μSR), and neutron spin-
echo14 (NSE) experiments strongly indicate that, as y in-
creases, the AFM superexchange interactions grow at the
expense of FM double-exchange interactions so that the FM
correlated regions shrink in size to the extent that the long-
range FM order ceases to exist for y � 0.2. On the other hand,
based on bulk magnetization measurements10,11 mainly, it is
claimed11 that the long-range FM order is present even up to
Fe concentrations as high as y = 0.4 and beyond this concen-
tration, a long-range AFM order sets in. These controversies
are put to rest by providing conclusive evidence for a cluster
spin-glass state in the compositions y = 0.2 and y = 0.3.

II. EXPERIMENTAL DETAILS

The La0.7Pb0.3(Mn1−yFey)O3 samples with y = 0.2 and
y = 0.3 were prepared in the nanocrystalline (average grain
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BITLA, KAUL, AND FERNÁNDEZ BARQUÍN PHYSICAL REVIEW B 86, 094405 (2012)

size � 100 nm) form by the sol-gel method and are the
same as those used previously for the SPND, SANS, μSR,
and NSE experiments.12–15 Magnetic susceptibility at a static
magnetic field of H ≡ Hdc = 10 Oe, χdc(H = 10 Oe), was
recorded over the temperature range 2 � T � 300 K in both
the ZFC and FC modes. The bifurcation, marking the onset of
magnetic irreversibility, in the ZFC and FC χdc(T ,H = 10 Oe)
curves opens up at T < Tirr = 80 K. The first five harmonics
of the ac magnetic response, χn(ω,T ,H ) = χ ′

n(ω,T ,H ) +
iχ ′′

n (ω,T ,H ) with n = 1,2,3,4,5, were measured at 0.5, 0.2,
0.1, 0.2, and 0.5 K steps in the temperature ranges 2–10 K,
10–60 K, 60–100 K, 100–120 K, and 120–150 K, respectively,
at the rms amplitudes h = 0.1,1,5,10 Oe and frequencies
10 Hz � ω � 10 kHz of the ac driving field in the absence
or presence of static fields in the range 30 Oe � H � 1 kOe.
In these measurements, dc and/or ac fields were applied after a
fixed waiting time tw of 5 min. After identifying the spin-glass
transition temperature Tg with the frequency-independent
temperature where the nonlinear susceptibilities χ3(T ) and
χ5(T ) peak, i.e., Tg = 80 K, in the next experimental run, the
dependence of χn(ω,T ,H ) on the waiting time was recorded
up to tw = 30 min (tw = 15 min) at fixed temperatures in
steps of <100 mK (0.2 K) over the temperature range 78 �
T � 82 K (down to 60 K and up to 100 K, outside this
range). We could not carry out experiments at frequencies
lower than 10 Hz for very long times since the accessible
frequency window for high-precision measurements on the
Quantum Design physical property measurement system–AC
measurement system-magnetometer is limited to the frequency
range 10 Hz–10 kHz. Since the samples with Fe concentrations
y = 0.2 and y = 0.3 yield essentially similar results, the χn

(n = 1–5) data for y = 0.2 only are presented here and the
final results for y = 0.3 are quoted at the end. Unless specified
otherwise, χn = χ ′

n since χ ′
n � χ ′′

n .

III. RESULTS AND DISCUSSION

Figure 1 shows that, as a function of temperature, the linear
susceptibility χ1 goes through a broad peak, centered at Tp �
80 K, which is reduced slightly in height and shifts to higher
temperatures with increasing ac driving-field frequency ω. By
contrast, this peak gets greatly suppressed, smeared out, and
displaced to lower temperatures as the superposed dc magnetic
field H increases in strength. The observation that Tp depends
on frequency precludes the possibility of a true thermodynamic
FM-to-PM (paramagnetic) phase transition at Tp but instead
reflects the nonergodic behavior normally associated with spin
glasses. If the peak temperature Tp is identified with the spin-
glass freezing temperature Tg , the relative variation in Tg per
decade of frequency, �Tg/{Tg�(log10 ω)}, is 3.1(2) × 10−2

[2.0(2) × 10−2] for y = 0.2 [y = 0.3]. These values compare
favourably with � 6 × 10−2 or � 2 × 10−2 reported previously
for the insulating1 (Eu,Sr)S or semiconducting16 Cd0.6Mn0.4Te
and17 Zn0.1Mn0.9In2Te4 spin glasses but are an order of mag-
nitude greater than � 5 × 10−3 observed1 in CuMn and AuMn
metallic canonical spin glasses. This finding is consistent with
the insulating or semiconducting behavior9,12 of the samples
with y = 0.2 and y = 0.3 down to 2 K. Another important
observation is that the peak at Tp is much broader and χ1(T )
is two orders of magnitude larger than that in the canonical

FIG. 1. (Color online) The variations of the linear susceptibility
χ1 with temperature (a) at different frequencies when H = 0 Oe
and h = 1 Oe [the enlarged view of the peak in χ1(T ) serves to
highlight the shift in the peak with frequency], and (b) at different
static fields H when h = 1 Oe and ω = 1 kHz. The inset (c) of (a)
testifies to the validity of the critical-slowing-down model, Eq. (1),
in the static limit, by demonstrating that the plot of log10(ω/ω0)
versus log10{[T ∗(ω) − Tg]/Tg} is linear for frequencies ω � 1 kHz
[the upward arrow marks the onset of strong deviations from Eq. (1)
at ω = 3 kHz] while the inset (d) of (b) shows that the spin-glass
temperature Tg has the same dependence on the static field H as the
Almeida-Thouless irreversibility line in the (T ,H ) plane of a d = 3
Ising spin glass or as the spin-glass phase transition line at low fields
within the chiral scenario of a d = 3 Heisenberg spin glass with weak
random magnetic anisotropy.

spin glasses.2 A broad peak at Tp and a huge enhancement in
χ1(T ) are indicative of the presence of FM clusters.

A. Critical slowing down

In the case of a continuous second-order phase transition,
the spin-spin correlation length (ξ ) diverges as ξ ∼ ε−ν

[where the reduced temperature ε = (T − Tg)/Tg and ν is
the static critical exponent] when Tg is approached from
above. Assuming the conventional critical slowing down on
approaching Tg from high temperatures, the relaxation time
(τ = 2π/ω) due to the correlated dynamics is related to ξ as
τ ∝ ξz, where z is the dynamic critical exponent. This relation
for τ , when recast in terms of the measurement frequency ω,
yields

ω = ω0

[
T ∗(ω) − Tg

Tg

]zν

. (1)
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If T ∗(ω) = Tp(ω), Eq. (1) is approximately followed over
the entire frequency range with the values τ0 = 2π/ω0 =
1.25(50) × 10−12 s, zν = 10.0(10), and Tg = 70.0(10) K. This
approach yields a much lower value of Tg than that obtained
from the scaling analysis of the nonlinear susceptibilities in
Sec. III B. This is so because such an assignment defines a
set of T ∗(ω) values for which τ is not necessarily constant,
as should be the case for Eq. (1) to be applicable. To remedy
this, we use the criterion18 that T ∗(ω) is the temperature at
which the quantity tan θ = χ ′′/χ ′ = ωτav is a constant. This is
true only when the phase angle θ is so small (e.g., �0.1◦) that
tan θ ≈ θ = const. At a given frequency, T ∗ thus marks the
temperature at which θ (T ) goes through a minimum (∼0.05◦).
In accordance with Eq. (1), the plot of log10(ω/ω0) versus
log10{[T ∗(ω) − Tg]/Tg}, shown in the inset (c) of Fig. 1(a), is
linear for frequencies ω � 1 kHz with the choice of parameters
τ0 = 5.2(6) × 10−12 s, zν = 9.5(8), and Tg = 79.9(4) K. The
values of zν and Tg so obtained agree quite well with those de-
termined from the static (dynamic) scaling of χnl (χ3 and χ5) in
Sec. III B. However, the deviations from Eq. (1) progressively
grow as the driving field frequency increases beyond 3 kHz.
The source of these deviations is addressed in Sec. III E.

B. Static and dynamic scaling of nonlinear susceptibilities

In the static limit (ω → 0), magnetization of a spin-glass
system, at temperatures below or above Tg , can be expressed
in the powers of the applied dc magnetic field H as

M = χ1H + χ3H
3 + χ5H

5 + · · · . (2)

The terms with even powers of H do not appear in the above
expression for the following reason. The even harmonics in
the magnetic response, i.e., the NL susceptibilities χ2, χ4, . . .

are zero19 for an ideal SG at temperatures T ≷ Tg because
they are proportional to the spontaneous magnetization M0

or its powers, and M0 = 0 in both SG and PM phases. By
contrast, for a ferromagnet, χ2 and χ4 are (finite) negative,
diverge as Tc is approached from below, and, in the mean-field
description,20 abruptly jump to zero at T = Tc and stay at zero
for T > Tc. If the SG-PM phase transition occurs at a finite
temperature Tg , χ1 is nonsingular but the NL susceptibilities
χ3, χ5, . . . diverge19,21 at T = Tg . Again, in sharp contrast
with this behavior, in a ferromagnet, χ1 and χ5 are positive
and diverge at T = Tc whereas χ3 is positive, changes sign at
T = Tc, and diverges on both sides of Tc.20 Thus, based on
the temperature variations of χn (n = 1–5), a spin glass can
be unambiguously distinguished from a ferromagnet, or even
from an antiferromagnet.19

The NL susceptibility χnl at a static field H defined as χnl =
(M/H ) − χ1 = χ3H

2 + χ5H
4 + · · · , can, in the vicinity of

T = Tg , be expressed as a function of a single variable
H 2/εβ+γ as2

χnl = εβ G(H 2/εβ+γ ), (3)

where G(x) is the static scaling function while β and γ are
the critical exponents for the SG order parameter and χ3,
respectively. The critical exponents γ and β + 2γ characterize
the divergence2 of χ3 and χ5, respectively, as Tg is approached
from above. When, instead of a static field, a time-varying
field H (t) = H + h sin ωt with h/H � 1 is applied, the NL
susceptibility is given by the expression2,22 χ ′

nl = (∂m/∂h) −

FIG. 2. (Color online) Temperature variations of the nonlinear
susceptibilities (a) χ3 and (b) χ5 at various fixed frequencies when
H = 0 Oe and h = 1 Oe.

χ1 = 3χ3H
2 + 5χ5H

4 + · · · , where m is the ac component of
magnetization. The frequency-dependent NL susceptibilities
χ3(ε,ω) and χ5(ε,ω), in the above expression for χ ′

nl, follow
the dynamic scaling equations of state2

χn(ε,ω)/ε−γn = gn(ω/εzν) (4)

with n = 3,5, . . . , gn(x) the corresponding dynamic scaling
function, γ3 = γ , and γ5 = β + 2γ .

While the divergence of χ3 at T = Tg together with the
static scaling, Eq. (3), and dynamic scaling, Eq. (4), of the
NL susceptibility constitute a stringent test for ascertaining
whether or not a spin-glass state exists and a phase transition to
the PM state occurs at a finite temperature T = Tg , the critical
exponents β, γ , and zν decide the universality class (d = 3
Ising or Heisenberg SG) to which a given system belongs.

Unlike Tp in χ1(T ), the temperature T nl
p = 80 K, at which

the |χ3(T )| and |χ5(T )| curves (taken at fixed frequencies)
peak, does not depend on the frequency of the ac driving
field, as should be the case for a true thermodynamic phase
transition. This conclusion rests on the observation that no
shift in T nl

p with ω over three decades of frequency [Figs. 2(a)
and 2(b)] could be discerned within the measurement tem-
perature interval of � 30 mK around T nl

p . To determine the
true asymptotic value of the exponent γ , we make use of the
“range-of-fit” (ROF) data analysis, detailed in Ref. 23, and
the following expression for χ3(T ):

χ−1
3 (T ) = [

χ int
3 (T )

]−1 + const

= Aeff(T ) εγeff (T ) + const (ε > 0), (5)
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FIG. 3. (Color online) (a) [χ int
3 ]−1(ε) (symbols), in a temperature

range wider than the asymptotic critical region (ACR) (ε � εco), at the
ac driving field frequencies ω = 101,102,103,104 Hz and amplitude
h = 1 Oe, along with the theoretical fits (continuous curves), based
on Eq. (5) of the text, obtained in the ACR. Note that the [χ int

3 ]−1(ε)
data corresponding to ω = 103 and 104 Hz are multiplied by a factor
of 2, in (a). (b) The temperature variations of the effective critical
exponent for χ3 yielded by the range-of-fit analysis based on Eq. (5).
For the sake of clarity, the γeff (ε) data for ω = 102,103, and 104 Hz
are shifted up by 0.1, 0.2, and 0.3, respectively, with respect to that
for ω = 101 Hz.

where χ int
3 is the intrinsic nonlinear (third harmonic or second-

order) susceptibility that diverges at Tg , and the effective
critical exponent for χ3, γeff , depends on temperature and
attains the constant limiting value γ in the asymptotic critical
region (ACR), i.e., γeff(ε) → γ as ε → 0. The constant in
Eq. (5) accounts for the fact that the finite size of the system
limits the divergence of χ3 at ε = 0 (i.e., at T = Tg). As an
illustration, Fig. 3(a) shows the theoretical fits to [χ int

3 (T )]−1

[= χ−1
3 (T ) − χ−1

3 (T = Tg)] at ω = 101,102,103,104 Hz,
h = 1 Oe, and H = 0, based on Eq. (5) with γeff = 1.80,
obtained in the ACR. The [χ int

3 (T )]−1 data deviate from such
fits (continuous curves) when the temperature exceeds the
crossover temperature εco, which marks the upper bound of
the ACR. The width of the ACR shrinks with increasing
frequency as εco reduces from 0.27 at ω = 101 Hz to 0.23
at ω = 104 Hz. The ROF analysis yields Tg = 80.00(3) K,
γeff(ε) [as depicted in Fig. 3(b)] and the frequency-independent
value γ = 1.80(3) in the ACR, which extends over the
range 1.0 × 10−3 � ε � 2.5 × 10−1 for 101 � ω � 104 Hz.
By following the same procedure as above for analyzing the

χ5(T ) data, we arrive at the value 4.16(6) for the exponent
β + 2γ , implying thereby that the exponent β = 0.56(2). Note
that the χ3(T ) and χ5(T ) data taken at h = 0.1 Oe over the
frequency range 101 � ω � 104 Hz yield exactly the same
values for the critical exponents β and γ as those for h = 1 Oe.
The frequency-independent values for the critical exponents
strongly indicate that the static critical exponents have been
determined in this work.

That the true thermodynamic nature of the zero-field spin-
glass transition is preserved even in finite magnetic fields is
corroborated by the observation that the well-defined Tg(H ),
marking the temperature at which the |χ3(T )|ω,H or |χ5(T )|ω,H

curves peak, is independent of ω over three decades of
frequency and decreases with increasing H , as shown in the
inset (d) of Fig. 1(b) at a representative frequency of 103 Hz.

In order to verify if the static scaling, Eq. (3), holds
in the present case, Tg and γ are kept fixed at the values
Tg = 80.00 K and γ = 1.80, obtained from the ROF analysis,
and the exponent β is varied so that the χnl data at different
but fixed static fields collapse onto a single universal χnl/ε

β

versus H 2/εβ+γ scaling plot. The residual freedom, if any,
in Tg , β, and γ is then used to obtain the best data collapse
over the largest possible range of the scaling argument, which
corresponds to the ε range 1.1 × 10−3–1.3 × 10−1. Figure 4
demonstrates that a very good data collapse is achieved for the
choice Tg = 80.00(8) K, β = 0.56(4), and γ = 1.80(5). Note
that the χnl data used to construct the scaling plot are obtained
by subtracting χ1(T ,h = 1 Oe,ω = 100 Hz), for fixed H ,
from the FC χdc(T ,H = 10 Oe). But for a slight increase in the
scatter in the scaling plot, results similar to those presented in
Fig. 4 are obtained when χ1(T ,h = 0.1 Oe,ω = 10 Hz) data
are used.

FIG. 4. (Color online) The reduced nonlinear susceptibility
χnl/ε

β plotted against the reduced conjugate static field H 2/εβ+γ

for the composition y = 0.2. The validity of the static scaling
Eq. (3) is demonstrated by an optimum collapse of the data, taken
at different static fields, onto a single universal scaling curve for
the choice Tg = 80.00(8) K, β = 0.56(4), and γ = 1.80(5). The
inset compares the linear susceptibilities of the samples y = 0.2
and y = 0.3, measured, in the absence of static field, at the ac field
amplitude of h = 1 Oe and frequency ω = 1 kHz.
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FIG. 5. (Color online) Dynamic scaling of the nonlinear suscep-
tibility χ3, based on Eq. (4) of the text, for temperatures below
(ε < 0) and above (ε > 0) Tg . Vertical arrows mark the bifurcation
temperatures (see text).

Similarly, at first, we set Tg = 80.00 K, γ = 1.80, and
β = 0.56 and vary the exponent zν in the dynamic scaling
plots for χ3(ε,ω) and χ5(ε,ω), based on Eq. (4), to accomplish
a good data collapse separately for temperatures below (ε < 0)
and above (ε > 0) Tg . In the next step, the parameters Tg ,
β, γ , and zν are fine tuned to optimize the data collapse
over as large a range of ω/|ε|zν as possible while aiming
at achieving the best data collapse in the vicinity of ε = 0.
Since the quality of data collapse cannot be directly assessed
from the scaling plots, presented in Figs. 5 and 6, because of
the insensitive nature of logarithmic scales, a blow-up of these
scaling plots over every decade of the scaling argument ω/|ε|zν
reveals that, for the choice Tg = 80.00(8) K, γ = 1.80(3),
β = 0.56(3), and zν = 10.1(2), the SG dynamic scaling,

FIG. 6. (Color online) Dynamic scaling of the nonlinear suscep-
tibility χ5, based on Eq. (4) of the text, for temperatures below
(ε < 0) and above (ε > 0) Tg . Vertical arrows mark the bifurcation
temperatures (see text).

Eq. (4), holds (scatter <5%) in the range 108 � ω/|ε|zν �
3.7 × 1033 for ε > 0 and 1010 � ω/|ε|zν � 3.7 × 1033 for ε <

0 over three decades of frequency 101 � ω � 104 Hz. These
ranges of the scaling argument correspond to the reduced
temperature ranges 1.0 × 10−3 � ε � 2.3 × 10−1 and 1.0 ×
10−3 � (−ε) � 1.3 × 10−1, respectively. While the χ3(ε,ω)
and χ5(ε,ω) data for the frequencies 3, 5, and 10 kHz, like those
taken at frequencies ω � 1 kHz, obey dynamic scaling in the
above temperature ranges below and above Tg , the former set
of data starts deviating from the latter set at ε = −1.05 × 10−2

for ε < 0 and ε = 1.25 × 10−2 for ε > 0. The bifurcation in
the two sets of data is all the more pronounced in the scaling
plots for χ5(ε,ω) in Fig. 6. Although higher values of zν, β,
and/or γ get rid of this bifurcation, they spoil the agreement
between the two sets of data at temperatures close to Tg

where the dynamic scaling should be valid at all frequencies
if the SG transition at Tg is a thermodynamic phase transition.
Since the dynamic spin-spin correlation length is related to
the frequency as ω ∝ ξ−z, the contribution to χ3(ε,ω), and
more so to χ5(ε,ω), from the FM clusters becomes important
when the frequency exceeds a threshold value, because at
such frequencies ξ becomes comparable to the sizes of such
clusters. Another important point to note is that the deviations
from the dynamic scaling are observed when the temperature
approaches Tg more closely than ε = 1.0 × 10−3 or when the
temperature falls outside the ACR on either side of Tg . While
the deviations as ε → 0 could be a consequence of the well-
known fact that the waiting time of 30 min is not sufficient for
the spin system to attain complete thermodynamic equilibrium,
those outside the ACR may reflect either the increasing
importance of the “correction-to-scaling” terms or magnetic
aging, particularly for T � Tg (the SG aging effects become
apparent at temperatures below T � 0.8Tg). At this stage, it
should be emphasized that the present manganite system marks
the only spin-glass system for which the dynamic scaling
of χ5(ε,ω) has been demonstrated so far and Tg could be
approached as closely as ε = 1.0 × 10−3.

C. Dynamic scaling of χ ′′
1 (ω,T )

For an independent determination of the exponents zν and
β, we use the dynamic scaling equation for χ ′′

1 (ω,T ), proposed
by Geschwind et al.,24

T χ ′′
1 (ω,T )/εβ = g1(ω/εzν). (6)

Setting Tg = 80.0 K and varying β and zν, a nearly perfect
data collapse (scatter <4%), as witnessed in Fig. 7, is obtained
for the χ ′′

1 (ω,T ) data taken over three decades of frequency
in the reduced temperature range −0.13 � ε � εco(ω) [where
εco(ω) decreases from 0.27 at ω = 101 Hz to 0.23 at ω =
104 Hz] for the choice β = 0.56(2) and zν = 9.9(5). These
values for β and zν as well as the temperature ranges over
which the dynamic scaling of χ ′′

1 (ω,T ) holds are in excellent
agreement with those determined earlier from the static and
dynamic scaling of the NL susceptibilities. Consistent with the
observations made based on the dynamic scaling of χ3(ε,ω)
and χ5(ε,ω), the quality of data collapse deteriorates greatly
when ε > εco(ω).

In order to ensure that departures from perfect scaling,
Eq. (6), that are considerably larger than the experimental error
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FIG. 7. (Color online) Dynamic scaling of the imaginary part of
the linear susceptibility χ ′′

1 (T ) based on Eq. (6).

are not concealed by the log10-log10 plot in Fig. 7, the data
used in Fig. 7, with exactly the same parameter values Tg =
80.00(6) K, β = 0.56(2), and zν = 9.9(5) as those obtained
using Eq. (6), are replotted according to the alternative form
of the dynamic scaling equation,24

T χ ′′
1 (ω,T )/ωβ/zν = f1(ε/ω1/zν), (7)

which is expected to bring out clearly any such departures due
to the high sensitivity of the ordinate and abscissa scales. With
the parameter values stated above, the same observations about
the validity or otherwise of the dynamic scaling of χ ′′

1 (ω,T )
are made regardless of whether the scaling equation (6)
or (7) is used, as is evident from Fig. 8. However, the use
of Eq. (7) clearly demonstrates that the overall scatter in
the scaling plots within the temperature ranges where the

FIG. 8. (Color online) Dynamic scaling of the imaginary part
of the linear susceptibility χ ′′

1 (T ) based on Eq. (7). The linear plot
of log10[χ ′′

p (ω)Tp(ω)] against log10 ω with slope β/zν = 0.056(2)
in the inset demonstrates the validity of the scaling relation
χ ′′

p (ω)Tp(ω) ∼ ωβ/zν .

χ ′′
1 (ω,T ) data follow dynamic scaling over three decades of

frequency does not exceed 3%, which is comparable to the
typical scatter in the low-frequency (ω � 300 Hz) data. The
main advantage in employing Eq. (7) instead of Eq. (6) is
that it provides an independent estimate of the ratio β/zν

as follows. According to Eq. (7), the peaks in T χ ′′
1 (ω,T )

at Tp(ω), where χ ′′
1 (ω) = (χ ′′

1 )p(ω) ≡ χ ′′
p(ω), must collapse

onto a single point on the scaling plot with the result that
χ ′′

p(ω)Tp(ω) ∼ ωβ/zν . The inset of Fig. 8 demonstrates that the
plot of log10[χ ′′

p(ω)Tp(ω)] against log10 ω is indeed a straight
line with slope β/zν = 0.056(2). This ratio conforms well with
the values determined for β and zν individually throughout this
work from different forms of scaling, static or dynamic, and
from the critical slowing down. Considering that a tw of 15 min
(30 min) amounts to ∼104 τχ ′′ (∼ 2 × 104 τχ ′′ ), where τχ ′′ is
the characteristic time for χ ′′

1 at ω = 10 Hz (τχ ′′ ∼ 1/ω) for
temperatures not very far from Tg (in the immediate vicinity
of Tg), the spin system presumably attains equilibrium even
for the lowest frequency ω = 10 Hz.

D. Comparison with theory

The above self-consistent method of data analysis yields
Tg = 56.25(5) K, β = 0.63(3), γ = 2.0(1), and zν = 8.0(5)
for the composition y = 0.3. These values of β, γ , and zν,
like those for y = 0.2, fall within the ranges 0.5 � β � 0.9,
2 � γ � 4, and 7 � zν � 11, reported for a wide variety
of spin-glass systems.1,2,16,17,22,25–28 For a recent compilation
of the experimental values of critical exponents for d = 3
Heisenberg spin-glass materials with weak anisotropy, we
refer the reader to the recent review by Campbell and Petit.29

In Table I, the presently determined values for the critical
exponents are compared with the best theoretical estimates,
yielded hitherto by Monte Carlo simulations, for d = 3
bimodal (±J ) or Gaussian Heisenberg chiral spin glasses
(HCSGs) with weak random magnetic anisotropy6,7,30 and
d = 3 bimodal or Gaussian Ising spin-glass (ISG) systems.31,32

To put such a comparison between theory and experiment
in a proper perspective, one has to recognize that the theory
calculates the critical exponents ν and η and uses the scaling
and hyperscaling relations β = ν(1 + η)/2, γ = (2 − η)ν, and
δ = (d + 2 − η)/(d − 2 + η) to obtain the exponents β, γ , and
δ whereas the experiments determine β, γ , and occasionally δ,
and deduce ν and η via the hyperscaling relations dν = 2β + γ

and η = 2 − d(δ − 1)/(δ + 1). We have used the scaling and
hyperscaling relations δ = 1 + (γ /β) and dν = 2β + γ with
d = 3 and η = 2 − (γ /ν) to arrive at the values of δ, ν, and
η displayed in Table I. With the exception of the exponent
β, all the exponents for the samples y = 0.2 and y = 0.3
possess values that are closer to those predicted by the HCSG
model. Apart from the widely different exponent values for
the HCSG and ISG models, the main distinguishing feature
is the opposite sign of the exponent η. In the present case,
η has the same magnitude (within the uncertainty limits)
and sign as predicted by the HCSG model. Consistent with
this observation, the SG transition temperature Tg follows the
H 2/3 [inset (d) of Fig. 1(b)] variation with the static field that
the HCSG model (which considers a weak coupling between
the chiral and spin degrees of freedom induced by magnetic
anisotropy) yields for the chiral-glass transition at low fields in
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TABLE I. Comparison of the critical exponents determined in this work for the manganite system La0.7Pb0.3(Mn1−yFey)O3 (y = 0.2,0.3)
with those reported for the canonical spin glass AgMn and with the best theoretical estimates (currently available) for the bimodal (±J )
Heisenberg chiral spin glass (HCSG), the Gaussian (G)HCSG, the ±J Ising spin glass (ISG), and the GISG.

Exponent AgMn (Ref. 2) y = 0.2 y = 0.3 ± J HCSG (Ref. 30) GHCSG (Refs. 6,7) ±J ISG (Ref. 31) GISG (Ref. 32)

β 0.9(2) 0.56(3) 0.63(3) 1.2(7) 1.1(3) 0.77(5) 0.77(5)
γ 2.3(2) 1.80(5) 2.0(1) 1.5(4) 2.0(5) 5.8(4) 5.8(3)
δ 3.3(3) 4.2(3) 4.2(3) 2.3(4) 2.75(4) 8.6(1) 8.5(8)
η 0.23(32) 0.14(13) 0.2(2) 0.8(2) 0.6(2) −0.375(10) −0.37(5)
ν 1.30(15) 0.97(4) 1.1(1) 1.2(2) 1.4(2) 2.45(15) 2.44(9)
z 5.3(8) 10.4(10) 7.3(12)

a d = 3 Heisenberg spin glass with weak random anisotropy.7

Incidentally, the Edwards-Anderson mean-field model also
predicts the H 2/3 power-law dependence of Tg (Ref. 33)
along the Almeida-Thouless irreversibility line in the (T ,H )
plane for a d = 3 ISG but no thermodynamic spin-glass phase
transition in finite fields occurs in ISGs.34 In contradiction with
the above agreement between our results and the predictions of
the HCSG model, the SG order-parameter critical exponent β

turns out to be a factor of 2 smaller in magnitude. Instead, the
numerical estimate given by the ISG model for β is closer to the
observed value. The coexistence of ferromagnetic short-range
order with SG order for T � Tg (Sec. III E) may have a direct
bearing on this discrepancy in the value of β. Note that in
view of the scaling identity δ = 1 + (γ /β), the lower value
of β is basically responsible for the value of δ higher than
that predicted by the HCSG model. The present results thus
favor the thesis that the randomly Fe-substituted optimally
hole-doped manganite La0.7Pb0.3(Mn1−yFey)O3 (y = 0.2,0.3)
behaves as a d = 3 (localized-spin) Heisenberg spin glass with
weak random magnetic anisotropy in the critical region and
that the observed phase transition at Tg basically reflects the
chiral-glass transition of the isotropic Heisenberg SG.7

E. Ferromagnetic short-range order

Had it not been for the presence of the characteristic exper-
imental signatures of FM short-range order in the temperature
variations of the NL susceptibilities χ2 and χ4, displayed in
Fig. 9 for y = 0.2, the results presented so far would have
strongly indicated that the manganite system in question is,
at best, a spin glass. At this stage, it should be recalled that
χ2(T ) and χ4(T ) are better suited for a clear-cut distinction
between a SG and a ferromagnet than χ3(T ) and χ5(T ). This
is so because the divergences in χ3(T ) and χ5(T ) at Tg in a SG
and at Tc in a ferromagnet are not radically different unless the
long-range FM order is fully developed. In comparison, χ2(T )
and χ4(T ) are zero at all temperatures including those close to
Tg in an ideal or canonical SG whereas they are negative and
diverge at Tc in a ferromagnet. Based on these considerations,
the χ2(T ) and χ4(T ) data, presented in Fig. 9, provide direct
evidence for the existence of two different time (and hence
length) scales for the SG and FM order: the long-range
(global) SG order and the short-range FM order observed at
the experimental time scales τexpt � 1 ms (in the static limit)
and τexpt � 10−4 s, respectively. The short-range nature of
FM order is inferred from the considerably broad negative
peaks centered at Tc � 80 K that result when the spin-spin

correlation length ξ does not diverge, but remains finite, at Tc.
Obviously, at a shorter time scale (high frequencies), smaller
FM clusters (regions with ferromagnetically ordered spins)
essentially dictate the magnetic response whereas in the static
limit t → ∞, global cluster SG order at T � Tg (brought
about by the competing interactions between the finite FM
clusters) governs the thermal behavior of NL susceptibilities.
The existence of two distinct time (or length) scales for SG
and short-range FM order (Fig. 9) also explains the strong
departures observed from the SG critical slowing down in the
inset (c) of Fig. 1(a) and from the SG dynamic scaling of
nonlinear susceptibilities and linear susceptibility in Figs. 5–8
at frequencies ω � 3 kHz. For the sample with y = 0.3, a

FIG. 9. (Color online) Temperature variations of the nonlinear
susceptibilities χ2 and χ4 at different frequencies when H = 0 Oe
and h = 1 Oe, revealing that the magnetic response is dominated by
the long-range spin-glass order (short-range ferromagnetic order) at
frequencies ω � 1 kHz (ω � 3 kHz).
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broad negative peak centered at Tc � 56 K in χ2(T ) and χ4(T )
first appears at ω = 10 kHz, implying thereby that the FM
order is prevalent over much shorter length scales than in
the y = 0.2 sample. This inference is also supported by the
observation that χ1(T ) is lower by an order of magnitude and
exhibits a much sharper peak at Tg � 56 K for y = 0.3 than for
y = 0.2 (inset of Fig. 4). In conformity with this observation,
the SANS data13 corroborate that the FM-correlated regions
shrink in size as the Fe concentration increases, such that
the FM correlations do not grow beyond � 3 nm in the
y = 0.2 sample even at T = Tc � 80 K, where ξ (T ) peaks.
Note that for both samples with y = 0.2 and y = 0.3, Tg

practically coincides with Tc, whereas the samples with lower
Fe concentration (e.g., y = 0.1) exhibit two transitions: the
high-temperature FM-PM transition followed, at much lower
temperatures, by a reentrant transition.

IV. CONCLUDING REMARKS

The final picture that emerges from our results in the
Fe concentration regime 0.2 � y � 0.3 is the one in which
completely isolated finite metallic FM clusters coexist with
an infinite insulating SG (PM) matrix for T � Tg (T > Tg).
The double-exchange interactions between the spins of Mn3+

and Mn4+ nearest neighbors give rise to finite metallic FM
clusters, whereas the insulating matrix is a consequence of
the localization of eg electrons on both Fe3+ and Mn3+ ions,
because the high-spin states of Fe3+ and Mn3+ ions block
the eg-electron hopping9 between them and also between
Fe3+ and Fe3+ and between Mn3+ and Mn3+. Random
substitution of Mn3+ ions by Fe3+ ions and the competing
FM and AFM interactions respectively cause the quenched
random-exchange disorder and spin frustration that constitute
the necessary ingredients for the cluster spin-glass state. The
FM coupling between the magnetic moments of FM clusters is
presumably due to the intercluster dipole-dipole interactions
whereas the AFM coupling arises from the M3+

1 - O2−- M3+
2

superexchange interactions, where M1 and M2 stand for either
Fe or Mn. As elucidated in Ref. 23, the above percolation
picture, applicable to all those hole-doped manganites with
quenched random-exchange disorder that are below, but
close to, the threshold for long-range FM or AFM order, is
strikingly similar to the percolation model proposed earlier35

for amorphous ferromagnets. According to this picture,23,35 the
crossover temperature εco above which γeff (ε) in Fig. 3(b) starts
increasing from the asymptotic value of γ = 1.8 corresponds
to the temperature at which the SG spin-spin correlation
length ξ equals the caliper dimension Dc of the largest FM
spin cluster. Thus, an estimate of the size of FM clusters
can be made from the relation ξ (ε = εco) = Dc = rav ε−ν

co ,
where rav is the average nearest-neighbor distance between the

M3+
1 and M3+

2 ions. Inserting rav = 0.3925 nm (0.3928 nm),9

εco = 0.25(2) [εco = 0.45(5)], and ν = 0.97(4) [ν = 1.1(1)]
in the above relation yields an average FM spin cluster size
of 2.0(5) nm [1.0(2) nm] for y = 0.2 [y = 0.3]. The average
FM cluster size for y = 0.2, so determined, compares well
with that deduced from the SANS data.13 Furthermore, the
considerably smaller value of the exponent β compared to
that theoretically predicted for a d = 3 Heisenberg chiral
spin glass with weak random magnetic anisotropy indicates
that a meaningful comparison between theory and experiment
is possible only when the probability of finding magnetic
impurity atoms as nearest neighbors, in a nonmagnetic host,
is extremely low or when the theory takes into account the
influence of magnetic short-range order on the critical behavior
of spin-glass systems. The existence of magnetic short-range
order could also be a root cause for a wide dispersion in the
exponent values reported for spin-glass systems.

At this stage, it should be mentioned that the nuclear
magnetic resonance (NMR) technique has been widely used
to detect FM clusters (the FM cluster spin-glass phase) in
an AFM (PM) matrix in manganites36–41 and AFM clusters
constituting the cluster spin-glass phase that coexists with su-
perconductivity in underdoped La-based cuprates.42,43 Unlike
nonlinear susceptibility, which provides a direct experimental
evidence for both FM or AFM short-range order (clusters) and
the spin-glass state, NMR indirectly infers the existence of a
SG state through the appearance of the critical-slowing-down
features in the temperature dependence of the nuclear-spin–
lattice relaxation rate.

To summarize, a combined investigation of both odd
and even harmonics of the ac magnetic response enables
one to unambiguously distinguish between a canonical and
a cluster spin glass. While the odd harmonics yield true
asymptotic values of the critical exponents (that characterize
the universality class of the spin-glass system in question),
the even harmonics not only confirm the presence or absence
of correlated-spin regions (spin clusters) but also reveal the
nature of the intracluster magnetic order.
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