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Nonsecular resonances for the coupling between nuclear spins in solids
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Spin-spin relaxation in solid-state nuclear-magnetic resonance in strong magnetic fields is normally described
only with the help of the secular part of the full spin-spin interaction Hamiltonian. This approximation is
associated with the averaging of the spin-spin interaction over the fast motion of spins under the combined action
of the static and the radio-frequency (rf) fields. Here, we report a set of conditions (nonsecular resonances) when
the averaging over the above fast motion preserves some of the nonsecular terms entering the full interaction
Hamiltonian. These conditions relate the value of the static magnetic field with the frequency and the amplitude
of the rf field. When the above conditions are satisfied, the effective spin-spin interaction Hamiltonian has
an unconventional form with tunable parameters. This tunable Hamiltonian offers interesting possibilities to
manipulate nuclear spins in solids and can shed new light on the fundamental properties of the nuclear-spin-spin
relaxation phenomenon.
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I. INTRODUCTION

The experimental technique of nuclear magnetic resonance
(NMR) has long established itself as a versatile tool for
microscopic investigations of matter. One major source of
microscopic information in NMR is the spin-spin relaxation.
In solids, the description of NMR spin-spin relaxation requires
averaging the full Hamiltonian of the nuclear-spin-spin inter-
action over the fast spin rotations induced by strong external
magnetic fields. The present paper theoretically predicts a
set of resonant conditions for solid-state NMR experiments
leading to an unconventional form of the averaged interaction
Hamiltonians.

We consider nuclear-spin-spin interactions in the presence
of a static magnetic field and a continuously applied rotating
radio-frequency (rf) field in the regime when the two fields
have comparable values, while both of them are still much
larger than the local fields with which nuclear spins affect each
other. Such a setting is realizable experimentally. However,
it implies the use of smaller-than-typical static fields and,
therefore, a certain sacrifice in terms of the signal intensity.
In a typical NMR experiment, the rf field may be large in
comparison with the local fields, but it is still much smaller
than the static field. This typical setting for strong continuously
applied rf fields was originally considered by Redfield1 and,
subsequently, was discussed in NMR textbooks.2,3 In such a
case, the averaged interaction Hamiltonian is obtained from
the full Hamiltonian with the help of a two-step truncation
procedure.1 The first step is to eliminate all interaction terms
that do not commute with the Zeeman Hamiltonian for
the static magnetic field.4 The second step is to make the
transformation into the rotating reference frame where the rf
field appears static and then to further truncate the interaction
Hamiltonian by eliminating all the terms that do not commute
with the Zeeman Hamiltonian for the effective magnetic field
in the rotating frame.

When the static and the rf fields are comparable to each
other, the validity of the above two-step truncation becomes
questionable because the spin motions caused by both fields
fall on the same time scale. The full interaction Hamiltonian
then needs to be averaged over the above two motions

simultaneously rather than in two independent steps. In this
paper, we show that, in the case of a purely rotating rf field
(as opposed to the case of a linearly polarized rf field), such
a single-step averaging can be performed rigorously without
requiring the rf field to be smaller than the static field. We
find that such a single-step procedure generically reproduces
the results of Redfield’s two-step truncation, but the reason for
this agreement lies not in the perturbation theory but in the
ergodic character of the single-spin dynamics driven by the
static and the rf fields. We also find that, in certain special cases,
which we call “nonsecular resonances,” the averaged spin-spin
interaction Hamiltonian includes other terms in addition to the
outcome of Redfield’s truncation procedure. In the case of the
single-spin species, the nonsecular resonances appear when
the rf-field frequency is matched with certain multiples or
simple fractions of the Larmor frequency corresponding to the
effective magnetic field in the rotating reference frame. In the
case of two different spin species, the sums and the differences
of the two effective Larmor frequencies also appear in some
of the nonsecular resonance conditions. These resonances are
nonsecular in the sense that the corresponding time-averaged
interaction Hamiltonians do not conserve the total Zeeman en-
ergy associated with the external fields in either the laboratory
or the rotating reference frame. The nonsecular resonances
may have a range of applications, such as, e.g., nuclear cross
polarization or molecular structure determination.

It is worth noting that analogous selective recoupling of
the spin-spin interaction is extensively used5–9 in the context
of the magic angle spinning (MAS) technique of NMR where
it recovers a part of the standard truncated Hamiltonian after
that Hamiltonian is suppressed by the spinning of the sample.
The MAS recoupling schemes match the frequency of the
spin nutation5 or the frequency of the rf pulses7–9 with the
multiples of the sample spinning frequency. In the present
paper, recoupling takes place at a more basic level: It recovers
a part of the full spin-spin interaction Hamiltonian lost in
the standard truncation procedure. The nonsecular resonances
described below have nothing to do with sample spinning.
However, they are best observable and, probably, most useful
in combination with MAS.
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In a broader context, our results could have been obtained
in the framework of the averaged Hamiltonian theory,10 e.g.,
in its application to the low-field NMR,11 but to the best of our
knowledge, it has never been attempted, perhaps because of
the nonperturbative character of the problem. The role of the
nonsecular terms was, however, discussed in the context of the
phenomenon of nuclear-spin super-radiance.12,13

The rest of this paper is organized as follows. We give the
general formulation of the problem in Sec. II, introduce our
single-step truncation procedure in Sec. III, present the results
of this truncation with the identification of the nonsecular
resonances in Sec. IV, and then discuss a possible experimental
test and possible applications of the nonsecular resonances in
Sec. V.

II. GENERAL FORMULATION

We consider a lattice of nuclear spins in a static magnetic
field pointing along the z axis, H0 ≡ (0,0,H0), irradiated
by an rf field rotating in the x-y plane with frequency
ω, H1(t) ≡ (H1cos ωt,H1sin ωt,0). We limit ourselves to the
case of the magnetic dipole spin-spin interaction, which is,
typically, dominant in solids. The full Hamiltonian2,3 is

H = Hz + Hrf + HD, (1)

where

Hz = −H0

N∑
i

γiIiz, (2)

Hrf = −H1(t) ·
N∑
i

γi I i , (3)

and

HD =
N∑

i<j

Jij

[
I i · I j − 3(I i · r ij )(I j · r ij )

r2
ij

]
. (4)

Here, Jij = γiγjh̄
2

r3
ij

are the coupling constants, I i ≡ (Iix,Iiy,Iiz)

are the operators of the nuclear spin of the ith lattice site, γi

is the gyromagnetic ratio of that spin, r ij ≡ (rij,x,rij,y,rij,z)
are the displacement vectors between two lattice sites i and
j , and N is the number of spins. The characteristic time of
a single-spin motion induced by the Hamiltonian HD can be
estimated as T2 = h̄(

∑
j J 2

ij )−1/2. The variable T2 is also to be
referred to as the transverse relaxation time. The time scale
of nuclear-spin relaxation due to the coupling to electrons or
phonons is to be denoted as T1 (longitudinal relaxation time).
We further introduce the Larmor frequencies �0i = γiH0 and
the nutation frequencies ω1i = γiH1. In the following, we drop
lattice index i in the gyromagnetic ratio and use the notations
γ ≡ γi, �0 = γH0, ω1 = γH1, etc., when not dealing with
the interactions of nonequivalent (unlike) spins explicitly.

This paper is limited to the regime �0,ω1 � 1/T2 � 1/T1.
The first of these inequalities implies the separation of the time
scales between the fast motion due to the external fields and
the slow motion due to the spin-spin interaction. The second
inequality allows us to consider the nuclear spins as isolated
from the environment. As mentioned in the Introduction, the
theoretical analysis in the literature,1–3 so far, was limited by

the additional inequality H1 � H0 (i.e., ω1 � �0). Our main
focus is on the regime H1 ∼ H0. However, also, for a range of
situations satisfying the inequality H1 � H0, the nonsecular
resonances obtained below will imply important observable
effects.

III. TRUNCATION PROCEDURE

We calculate the effective spin-spin interaction Hamiltonian
by averaging the full interaction Hamiltonian HD over the fast
spin motion induced by the terms Hz + Hrf . In the Heisenberg
representation, this fast motion is described by the following
equation for each of the spins:

d I i

dt
= I i × γ H(t), (5)

where H(t) = H0 + H1(t). The above equation is linear
in terms of spin operators (Iix,Iiy,Iiz) and, therefore, its
predictions are essentially the same as those for the classical
spins, in which case, (Iix,Iiy,Iiz) would be simply three
numbers. Despite the linearity of Eq. (5), it is not solvable
analytically either classically or quantum mechanically for an
arbitrary time-dependent H(t). However, for the specific time
dependence considered in this paper, the solution is facilitated
by the transformation from the laboratory reference frame into
the reference frame rotating around the z axis with frequency
ω. The equations of motion in the rotating frame have the
same form as Eq. (5) but with time-independent effective
magnetic field He = (H1,0,H0 + ω/γ ). (The x axis in the
rotating frame coincides with the direction of the rf field.)
The corresponding Larmor frequency is

�e = γHe = sgn(γ )
√

ω2
1 + (�0 + ω)2. (6)

Thus, the motion of a spin in the laboratory frame can be
characterized as the Larmor precession with frequency �e

around the direction of He, which itself rotates with frequency
ω around the z axis.

Our formal procedure for averaging HD consists of the
transformation into the reference frame that follows the fast
spin rotation induced by Eq. (5). In that reference frame, each
spin would be motionless if the full Hamiltonian included
only Hz + Hrf . Such a transformation is time-dependent.
As a result, the Hamiltonian HD expressed in the new
spin coordinates acquires some quickly oscillating interaction
coefficients, which we then average out.

The above procedure may, at first sight, appear equivalent
to the one introduced by Redfield.1–3 The difference, however,
is that Redfield did not define the entire transformation
and then average the resulting Hamiltonian over time but
rather used the Zeeman-energy-conservation criterion of Van
Vleck4 to separately average the Hamiltonians obtained at the
intermediate steps of this transformation. Such an independent
averaging of the intermediate Hamiltonians is justifiable by
the perturbation theory arguments1 only when �0 � ω1. In
general, the first transformation step makes some terms in the
interaction Hamiltonian periodically time-dependent, but since
the frequency �e is comparable with the oscillation frequency
of these time-dependent terms, one cannot straightforwardly
eliminate these terms. It turns out that, in the case of
�0 ∼ ω1, the spin motions associated with the intermediate
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(a) (b)

FIG. 1. (Color online) (a) Illustration of the transformation from
the laboratory reference frame (x,y,z) to the rotating reference frame
(xr ,yr ,zr )—Eq. (7). (b) Illustration for the transformation from the
rotating reference frame (xr ,yr ,zr ) to the tilted-rotating and then
double-rotating reference frames—Eqs. (8) and (10).

transformation steps may be correlated, and thus, the averaging
over them cannot be performed independently.

The overall transformation into the reference frame that
follows the motion induced by Eq. (5) can be decomposed
into three simple transformations visualized in Fig. 1. The first
transformation is from the laboratory frame to the reference
frame rotating with the rf field,

Uω =

⎛
⎜⎝

cos(ωt) sin(ωt) 0

− sin(ωt) cos(ωt) 0

0 0 1

⎞
⎟⎠. (7)

The second transformation is from the rotating to the “tilted-
rotating” reference frame where the z axis coincides with the
direction of He,

Uα =

⎛
⎜⎝

cos α 0 − sin α

0 1 0

sin α 0 cos α

⎞
⎟⎠, (8)

with

α = arccot

[
�0 + ω

ω1

]
, (9)

admitting values in the range [0,π ].
Finally, the third transformation is into the “double-

rotating” reference frame precessing around He with fre-
quency −�e,

U�e
=

⎛
⎜⎝

cos(�et) − sin(�et) 0

sin(�et) cos(�et) 0

0 0 1

⎞
⎟⎠. (10)

The effective magnetic field in this reference frame is equal
to zero. The explicit implementation of transformation (10)
before performing the time averaging of HD formally dis-
criminates our treatment from that of Redfield.1–3

We denote the axes in the double-rotated reference frame
as {x ′,y ′,z′} and the corresponding spin projections as I ′

i ≡
(I ′

ix ,I
′
iy ,I

′
iz). The spin coordinates in the laboratory reference

frame can now be expressed as

I i = U−1
ω U−1

α U−1
�e

I ′
i . (11)

The substitution of Eq. (11) into Eq. (4) allows us to reexpress
the interaction Hamiltonian HD in terms of I ′

i and then to
average the interaction coefficients in the resulting expression.

The full time-dependent form of HD in the double-rotated
reference frame is rather long. It can be found in the Supple-
mental Material in Ref. 14 together with the implementation
of the time-averaging procedure. Below, we exemplify this
procedure by one typical term and then, in the next section,
present only the resulting time-averaged expressions for HD .

The term we have chosen as an example originates from
the calculation for equivalent (like) spin species discussed in
the next section. It has the form

aij (t)c(r ij )I ′
ixI

′
jx, (12)

where c(r ij ) is some function of the relative displacement
between the two nuclei, and

aij (t) = cos2(ωt) cos2(�et). (13)

The time-averaged value of the above coefficient is calculated
as follows:

〈aij 〉 = lim
τ→∞

1

2τ

∫ τ

−τ

aij (t)dt =
{

1
4 , if ω �= ±�e,
3
8 , if ω = ±�e.

(14)

In the above case, 〈aij 〉 = 1
4 is what one obtains by the standard

two-step truncation procedure outlined in the Introduction,
whereas, in the case of ω = ±�e, there is an extra contri-
bution associated with the fact that 〈cos2(ωt) cos2(�et)〉 �=
〈cos2(ωt)〉〈cos2(�et)〉.

The question then arises, what happens if, in an experiment,
the actual values of H0, H1, and ω are such that one of the non-
secular resonance conditions is satisfied approximately but not
exactly. In such a case, the Hamiltonian-averaging procedure
needs to be modified. Below, we illustrate this modification for
the resonant condition ω = − 1

2�e, but the expression for the
resulting correction to the averaged Hamiltonian is applicable
to all other nonsecular resonances.

In the chosen example, the mismatch of the resonant
condition can be parametrized with the help of the variable
��e defined by the equation ω = − 1

2 (�e + ��e). Now, we
modify the last step of the transformation to the double-
rotated reference frame [Eq. (10)] by changing the value
of the rotation frequency from �e, given by Eq. (6), to
�e + ��e. In the modified double-rotated reference frame,
the averaged interaction Hamiltonian obtained in Sec. IV A
for the nonsecular resonance ω = − 1

2�e is exactly valid, but,
in addition, since �e + ��e is different from �e, the effective
magnetic field is different from zero, which then gives rise to
the following additional term:

�H = ��e

∑
i

I ′
iz. (15)

When ��e � 1/T2, such a term suppresses the effect
of the resonant nonsecular terms given in the next section.
This is, of course, expected for a significant departure from
the nonsecular resonance conditions. When ��e ∼ 1/T2, the
above term still suppresses the effect of the nonsecular terms
but only partially, and this partial suppression is on the same
order of magnitude as the suppression caused by the secular
interaction terms (to be explained in Sec. IV A). In such a
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FIG. 2. (Color online) Examples of trajectories of a single clas-
sical spin under the combined action of the static and the rf magnetic
fields: (a) general case, open ergodic trajectory; (b) ω = −�e, closed
trajectory; (c) ω = −2�e, closed trajectory; (d) ω = 1

2 �e, closed
trajectory.

case, the term (15) should simply be included in the averaged
Hamiltonian together with the secular terms and the resonant
nonsecular terms.

The above considerations imply that, in a generic case,
when the strength of the secular terms can be estimated as
h̄/T2, the nonsecular resonance conditions cannot be resolved
experimentally with accuracy much better than ±1/T2. How-
ever, if the secular terms are suppressed by other means,
then the experimental resolution is limited by the strength
of the nonsecular terms themselves. Thus, if the strength of
the nonsecular terms is much smaller than h̄/T2, then the
nonsecular resonances can be resolved with proportionally
better accuracy.

In the present case, as in several other contexts associated
with nuclear-spin dynamics15–21 and beyond,22 the properties
of the classical limit can be exploited to gain quantitative
insight into the behavior of a quantum system, which, as such,
may be far from the classical limit. Let us, therefore, think
about the averaging procedure presented in this section in terms
of classical spin trajectories. The typical situation corresponds
to an irrational value of the ratio ω/�e. In this case, the
trajectory of a classical spin that follows Eq. (5) is open and
ergodic on the spin sphere as illustrated in Fig. 2(a). Averaging
over such trajectories leads to the standard two-step truncation
result. If ω/�e is a rational number, then the individual
spin trajectories become closed, and one can suspect that the
averaging result is different from the irrational case. In reality,
however, almost all rational values of ω/�e lead to the same

averaging results as the irrational values. In the case of like
spins, the only exceptions are ω/�e = {±1/2,−1,−2}—see
Figs. 2(b)–2(d). The fact that no other rational numbers appear
in this set is related to the fact that the interaction Hamiltonian
HD is of the second order in terms of spin variables. If
higher-order spin couplings were involved, e.g., of the form
IixIjxIky , then other ratios with absolute values, such as 1/3
or 3 may also appear in the above set.

IV. RESULTS

In this section, we present the time-averaged Hamiltonians
separately for the couplings of like spins (Sec. IV A) and unlike
spins (Sec. IV B). Like spins have the same gyromagnetic
ratios and, hence, the same Larmor frequencies. Unlike
spins have different gyromagnetic ratios and different Larmor
frequencies. The Hamiltonians referring to the above two cases
are marked by superscripts l and u, respectively. The details
of the calculations can be found in Ref. 14.

A. Like spins

Away from the nonsecular resonances, our averaging
procedure reproduces the standard truncated Hamiltonian for
like spins,3

Hl
D0 =

N∑
i<j

Jij

1

2
(3 cos2 α − 1)

(
1 − 3r2

ij,z

r2
ij

)

×
[
I ′
izI

′
jz − 1

2
(I ′

ixI
′
jx + I ′

iyI
′
jy)

]
, (16)

where α is given by Eq. (9).
As already mentioned in Sec. III, the averaged Hamiltonian

contains additional coupling terms in the case of nonsecular
resonances associated with ratios ω/�e = {±1/2,−1,−2}.
According to Eq. (6), these ratios translate into the following
expressions for ω in terms of �0 and ω1:

ω = −�e: ω = −ω2
1 + �2

0

2�0
, (17)

ω = −2�e: ω =
−4�0 ± 2

√
�2

0 − 3ω2
1

3
, (18)

ω = ±1

2
�e: ω =

�0 ±
√

4�2
0 + 3ω2

1

3
. (19)

The upper (lower) sign before the square root in Eq. (19)
corresponds to the upper (lower) sign of the resonant condition
ω = ± 1

2�e. In the case of Eq. (18), both signs before the square
root are realizable for the same condition ω = −2�e as long as
|�0| �

√
3|ω1|. When the value of ω following from Eq. (17),

(18), or (19) is negative, this indicates that frequency vector
ω is antiparallel to H0. The resonance conditions ω = �e

and ω = 2�e are absent in the above list because, after the
substitution of �e given by Eq. (6), they give no real-valued
solutions for ω.
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Now, we list the corresponding averaged Hamiltonians,

ω = −�e:Hl
D1 = Hl

D0 +
N∑

i<j

Jij

{
3

8
(cos α − 1)2

[
r2
ij,y − r2

ij,x

r2
ij

(I ′
ixI

′
jx − I ′

iyI
′
jy) + 2 rij,xrij,y

r2
ij

(I ′
ixI

′
jy + I ′

iyI
′
jx)

]

+ 3

2
(cos 2α − cos α)

[
− rij,xrij,z

r2
ij

(I ′
ixI

′
jz + I ′

izI
′
jx) + rij,yrij,z

r2
ij

(I ′
iyI

′
jz + I ′

izI
′
jy)

]}
, (20)

ω = −2�e:Hl
D2 = Hl

D0 +
N∑

i<j

Jij

3

4
[sin 2α − 2 sin α]

[
rij,xrij,z

r2
ij

(I ′
ixI

′
jx − I ′

iyI
′
jy) − rij,yrij,z

r2
ij

(I ′
ixI

′
jy + I ′

iyI
′
jx)

]
, (21)

ω = ±1

2
�e :Hl

D3 = Hl
D0 +

N∑
i<j

Jij

3

8
[sin 2α ± 2 sin α]

[
r2
ij,y − r2

ij,x

r2
ij

(I ′
ixI

′
jz + I ′

izI
′
jx) ∓ 2 rij,xrij,y

r2
ij

(I ′
iyI

′
jz + I ′

izI
′
jy)

]
. (22)

The upper (lower) sign of the resonance condition of Eq. (22)
corresponds to the upper (lower) sign in the expression for
Hl

D3.
We note that the standard truncated Hamiltonian Hl

D0
conserves the z′ projection of the total spin polarization∑

i I
′
iz in the double-rotating reference frame. This total spin

component still relaxes on the time scale on the order of T1

because of the interaction with electronic spins or phonons.
We call this “normal longitudinal relaxation.” In contrast, the
nonsecular terms appearing in Eqs. (20)–(22) do not conserve∑

i I
′
iz, which means that all three projections of the total

spin polarization decay to zero in both the double-rotating
and the laboratory reference frames on a time scale, which
is, in general, much faster than T1. We call this “anomalous
longitudinal relaxation.”

The nonsecular terms in Eqs. (20)–(22) are comparable
with Hl

D0 when H1 ∼ H0. In such a case, the time scale of
the anomalous longitudinal relaxation is expected to be on the
order of T2, which is clearly much faster than T1. Therefore,
the nonsecular resonances should be readily identifiable in an
experiment of the type proposed in Sec. V A.

In the case of H1 � H0, the nonsecular terms can still
induce the anomalously fast longitudinal relaxation, but this
case requires a more detailed discussion. We first note that
all nonsecular terms in Eqs. (20)–(22) are equal to zero when
α = 0, which, according to Eq. (9), corresponds to H1 = 0.
When H1 � H0, the nonsecular terms are much smaller than
the terms in Hl

D0 in agreement with the standard truncation
result of Redfield.1–3 The values of the α-dependent prefactors
of the nonsecular terms in the Hamiltonians (20)–(22) are
plotted as functions of H1/H0 in Fig. 3 for H1/H0 � 0.5.
The strongest of these terms are on the order of H1/H0. They
correspond to the resonances ω ≈ �0 and ω ≈ −2�0 obtained
from Eq. (18) with a plus sign and Eq. (19) with a minus sign,
respectively, in the limit H1/H0 → 0. (In our sign convention,
the usual single-spin NMR resonance is located at ω ≈ −�0.)

In general, the nonsecular terms linear in H1/H0 should
induce a longitudinal relaxation on the time scale on the order
of T2(H0/H1)2, which can still be much shorter than T1 and,
thus, can represent a clear indication of a nonsecular resonance.
The above estimate is of the second order in terms of H0/H1

because the first-order effect of the nonsecular terms should
be averaged out by the spin motions due to the much stronger
secular terms. In view of this consideration, the observability

of the nonsecular resonances can be significantly improved by
suppressing the secular Hamiltonian Hl

D0. If this is performed,
the time scale of the longitudinal relaxation induced by the
nonsecular terms can be estimated as T2(H0/H1), i.e., it
becomes much faster.

The suppression of Hl
D0 makes the observable effects of

the nonsecular resonances more dramatic not only in the limit
of H1 � H0, but also in the general case of H1 ∼ H0. It can
be realized, for example, as follows.

A given nonsecular resonance imposes a constraint on the
three parameters H0, H1, and ω, which leaves the freedom
to impose one additional relationship. This freedom can be
used to impose the magic angle condition 1 − 3 cos2 α = 0.
However, this condition together with any of the like-spin
nonsecular resonances fixes the ratio H1/H0 to be on the order
of 1, which means that it cannot be used if the experiment is
limited to the regime H1 � H0.

Another resource for suppressing Hl
D0 is to exploit the

spatially dependent factor 1 − 3r2
ij,z

r2
ij

. For example, if the

e 1 2 0

3 4 cos 1 2

e 1 2 0

3 2 cos2 cos sin2

Ω 2 e 2 3 0

3 4 sin 2 2 sin

Ω 2 e 2 0

3 4 sin 2 2 sin

1 2 e 1 3 0

3 4 sin 2 2 sin

1 2 e 0

3 4 sin 2 2 sin
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P
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FIG. 3. (Color online) Plots of the α-dependent prefactors of the
nonsecular terms in the like-spin Hamiltonians (20)–(22) as functions
of the ratio H1/H0 for H1 < 0.5H0. The legend for each line indicates
the corresponding resonant condition and the α dependence of the
prefactor being plotted. Each resonant condition is given both in its
exact form, Eqs. (17)–(19), and in the approximate form for the case
H1 � H0. The conditions ω+ = −2�e and ω− = −2�e correspond
to the nonsecular resonances (18) with signs (+) or (−), respectively.
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nonsecular resonances are to be investigated in CaF2, where
19F nuclei form a simple cubic lattice, it is better to use the
static field along the [111] direction of that lattice. In such a

case, 1 − 3r2
ij,z

r2
ij

= 0 for all six nearest neighbors of each spin,

i.e., the secular interaction with these neighbors is suppressed,
whereas, the nonsecular terms remain large.

Of course, the most effective way to suppress the secular
interactions for all pairs of interacting spins is to use the
MAS technique.3 This technique completely averages out all

factors 1 − 3r2
ij,z

r2
ij

when cos2 	 = 1/3, where 	 is the magic

angle between the spinning axis and the static magnetic field.
Spinning at the magic angle, however, does not completely
average out the factors r2

ij,y − r2
ij,x, rij,xrij,y , or rij,xrij,z that

enter the nonsecular interaction terms.

B. Unlike spins

In this subsection, we consider coupling between two
unlike spin species. We will use lattice index i to label
one of these species and index j to label the other. We
reintroduce the labeling of gyromagnetic ratios γi and γj

and the corresponding Larmor frequencies �0i = γiH0 and
�0j = γjH0. The two spin species are now to be described in
two different double-rotated reference frames. The effective
Larmor frequencies �ei, �ej and the corresponding tilting
angles αi, αj are then defined by adding the indices i or j

to variables �e, �0, ω1, and α in Eqs. (6) and (9).
As in the case of like spins, our averaging procedure for

unlike spins recovers the standard truncated Hamiltonian3

away from the nonsecular resonances,

Hu
D0 =

∑
〈i,j〉

Jij

1

2
[3 cos αi cos αj − cos(αi − αj )]

×
(

1 − 3r2
ij,z

r2
ij

)
I ′
izI

′
jz, (23)

where the sum
∑

〈i,j〉 includes all pairs of unlike spins.
It should be mentioned here, that, in the very special cases of

γi = −γj and ω = 0, the secular HamiltonianHu
D0 should also

include the so-called “double-flip” terms I ′
i+I ′

j+ and I ′
i−I ′

j−,
where I ′

i± = I ′
ix ± I ′

iy , etc. These terms are preserved by the
averaging because their counterparts Ii+Ij+ and Ii−Ij− in
the original full Hamiltonian (1) now conserve the Zeeman
energy. This case can be mapped onto a somewhat unusual
problem of like spins by changing the sign of all y- and z-spin

projections for one of the two spin species, e.g., Ijy → −Ijy

and Ijz → −Ijz. However, when ω �= 0, the two spin species
in the transformed problem will experience rf fields rotating
in the opposite directions, which means that the transformed
problem is not equivalent to the problem of like spins in a
single-rotating field.

Another special case is γj → 0. It implies that the terms
of type IizIj± in the full Hamiltonian (1) become secular,
and, as a result, terms I ′

izI
′
j± may appear in Hu

D0. Such a
limit is not realizable physically in the case of magnetic
dipole interaction because γj = 0 simultaneously suppresses
the interaction itself.

The above special cases should be kept in mind in the
analysis of the parameter dependence of the nonsecular
resonances.

There exist two kinds of unlike nonsecular resonances,
namely, the resonances involving the motion of only one spin
species and the resonances involving both spin species. The
resonances of the first kind are the following:

ω = −�ei : ω = −ω2
1i + �2

0i

2�0i

, (24)

ω = ±1

2
�ei : ω =

−�0i ±
√

4�2
0i + 3ω2

1i

3
, (25)

and those obtained from Eqs. (24) and (25) by replacing index
i with index j . The resonances of the second kind are

ω = (−1)n 1
2 (�ei ± �ej ), (26)

ω = (−1)n(�ei ± �ej ), (27)

where variable n takes values 0 or 1 and, thus, controls the
sign in front of the entire expression. Resonant conditions
(26) and (27) lead to fourth-order polynomial equations with
respect to ω, which, in principle, can be solved analytically.
However, in view of the cumbersome character of the resulting
formulas, we chose to investigate the solutions numerically.
Several plots illustrating the character of these solutions are
presented in Fig. 4 and further in Fig. 5 of the Appendix. As
evident from these plots, it cannot be guaranteed that each
of the eight conditions envisioned by Eqs. (26) and (27) is
realizable for a given set of values of γi, γj , H0, and H1. For
example, if γi,γj > 0, then no value of ω exists that would
satisfy the condition ω = 1/2(�ei + �ej ).

The time-averaged Hamiltonians corresponding to the
nonsecular resonances (26) and (27) are the following:

ω = −�ei :Hu
D1 = Hu

D0 +
∑
〈i,j〉

Jij

3

2
[cos(αi + αj ) − cos αj ]

[
− rij,xrij,z

r2
ij

I ′
ixI

′
jz + rij,yrij,z

r2
ij

I ′
iyI

′
jz

]
, (28)

ω = ±1

2
�ei :Hu

D2 = Hu
D0 +

∑
〈i,j〉

Jij

3

4
[sin αj (cos αi ± 1)]

[
r2
ij,y − r2

ij,x

r2
ij

I ′
ixI

′
jz ∓ 2rij,xrij,y

r2
ij

I ′
iyI

′
jz

]
, (29)

ω = (−1)n(�ei ± �ej ):Hu
D3 = Hu

D0 +
∑
〈i,j〉

Jij

3

4
[sin(αi + αj ) ± (−1)n sin αi + (−1)n sin αj ]

×
[
rij,xrij,z

r2
ij

(I ′
ixI

′
jx ∓ I ′

iyI
′
jy) + (−1)n

rij,yrij,z

r2
ij

(±I ′
ixI

′
jy + I ′

iyI
′
jx)

]
, (30)
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ω = (−1)n
1

2
(�ei ± �ej ):Hu

D4 = Hu
D0 +

∑
〈i,j〉

Jij

3

8
[cos αi + (−1)n][cos αj ± (−1)n]

×
[
r2
ij,y − r2

ij,x

r2
ij

(I ′
ixI

′
jx ∓ I ′

iyI
′
jy) − (−1)n

2rij,xrij,y

r2
ij

(±I ′
ixI

′
jy + I ′

iyI
′
jx)

]
. (31)

The upper (lower) sign of the nonsecular resonances of
Eqs. (30) and (31) corresponds to the upper (lower) signs in the
corresponding Hamiltonians. In the case of a small mismatch
of the above resonant conditions, the additional term (15) for
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FIG. 4. (Color online) Examples of nonsecular resonances for
unlike spins. Plots of the resonant values of ω and the prefactors
in the nonsecular Hamiltonians (30) and (31) as functions of γj/γi

for two resonant conditions indicated above the respective plots. All
examples presented are obtained numerically for either H1/H0 = 0.9
or H1/H0 = 0.1. Each column of plots corresponds to the ratio H1/H0

indicated above it. The plot lines consist of the actual computed
points and, thus, in some cases, have the appearance of dotted
lines. The results for H1/H0 = 0.1 are qualitatively representative
of the limit H1 � H0. The analogous plots for the six remaining
resonant conditions associated with Eqs. (30) and (31) are given in
the Appendix.

one or both spin species should be included. In the case of
resonances (30) and (31), one, in fact, has the freedom of
distributing the mismatch between the two spin species.

The standard truncated Hamiltonian (23) conserves both∑
i I

′
iz and

∑
j I ′

jz, whereas, each of the nonsecular Hamilto-
nians (28)–(31) violates the above conservation for at least one
of the two spin species. We observe, however, that the total z′
polarization of both spin species, i.e.,

∑
i I

′
iz + ∑

j I ′
jz, is still

conserved by the nonsecular Hamiltonians given by Eq. (30)
for ω = ±(�ei − �ej ) and by Eq. (31) for ω = ± 1

2 (�ei − �ej )
because the terms in these Hamiltonians have the character of
the so-called “flip-flops.”

In general, the nonsecular Hamiltonians (24)–(27) are
comparable to the standard truncated Hamiltonian (23) when
H1 is comparable to H0—see the plots in Fig. 4 for H1/H0 =
0.9. If H1 � H0, then the nonsecular terms are normally small
because Eq. (9) gives the values of αi and αj either close to 0
or to π—Figs. 5(c), 5(d), and 5(f) for H1/H0 = 0.1.

However, as the plots in Figs. 4 and 5(a), 5(b), and 5(e)
for H1/H0 = 0.1 indicate and our approximate calculations
confirm, there are interesting and potentially useful excep-
tions when the angle-dependent prefactors of the nonsecular
Hamiltonians remain comparable to 1, even though H1 � H0.
The first exception corresponds to the condition γj/γi ≈ −1
for the nonsecular resonances ω = ±1/2(�ei − �ej ) and ω =
1/2(�ei + �ej ). In these cases, the nonsecular terms in Hamil-
tonians (31) remain large as long as |γj/γi + 1| � H1/H0.
[In the case of resonance ω = 1/2(�ei + �ej ), one should
also be mindful of adding the secular double-flip contribution
mentioned after Eq. (23).] This group of resonances can,
thus, be exploited for pairs of nuclei satisfying the condition
γi ≈ −γj , such as, e.g., 129Xe and 23Na. The second exception
corresponds to the condition of γj/γi ≈ 0 (or γi/γj ≈ 0)
for the resonances ω = ±(�ei + �ej ). The corresponding
nonsecular Hamiltonians (30) are large as long as |γj/γi | �
H1/H0. These nonsecular resonances can be very useful for
the purposes of cross polarization when the gyromagnetic ratio
of one of the two nuclei is much smaller than the other.

Finally, we mention that, as in the case of like spins,
the suppression of the secular interaction terms between
unlike spins by matching the magic angle condition or by
the MAS technique is an additional resource for observing
the nonsecular resonances. The only difference in the present
case is that the magic angle condition involves two angles:
3 cos αi cos αj − cos(αi − αj ) = 0.

V. DISCUSSION

A. Experimental realizability

The standard truncated Hamiltonians (16) and (23) con-
serve the z′ projection of the total spin polarization for each
of the available spin species in their respective double-rotated
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reference frames. The most obvious qualitative effect of the
nonsecular Hamiltonians is that they do not conserve this total
z′ projection for at least one of the spin species. This difference
can be tested experimentally. In the case of like spins, it leads
to the anomalously fast longitudinal relaxation discussed in
Sec. IV A. In the case of unlike spins, it may, in addition, lead
to an anomalous cross-polarization effect.

To be specific, a possible way to observe the anoma-
lous longitudinal relaxation can consist of the following
steps: (i) polarizing the system in the static magnetic field,
(ii) turning on the rf field (preferably, adiabatically) to match
one of the nonsecular resonance conditions, (iii) waiting
enough time for the additional interaction terms to relax

∑
i I

′
iz

(the waiting time should still be much shorter than T1), and
finally, (iv) suddenly turning off the rf field. No free-induction
decay signal should be observable in this case. In contrast,
away from the nonsecular resonances, a free-induction decay
signal of finite intensity should always be observable for
waiting times on the order of T1.

The requirements for the above kind of experiments are the
following: (1) The static and the rf fields should be strong
enough to ensure �0,ω1 � 1/T2. (2) As discussed in the
context of Eq. (15), the nonsecular resonances should be
matched to an accuracy of roughly 1

T2
. (3) The static and the rf

magnetic fields should be relatively homogeneous, otherwise,
the non-secular-resonance conditions cannot be satisfied over
the entire sample. (4) The strength of the resonantly coupled
terms must be such that the time scale associated with the
anomalous relaxation of the longitudinal magnetization is
faster than T1 (see the end of Sec. IV A). (5) Finally, in the
case of H1 ∼ H0, a real circularly polarized rf field should be
used, as performed, e.g., in Ref. 23.

Now, we discuss the observability of the nonsecular
resonances in the NMR setting that uses a linearly polarized rf
field in the regime of H1 � H0. The latter condition extends
to the experiments in larger static fields, which means stronger
NMR signals.

The Hamiltonian averaging procedure used in this paper
cannot be straightforwardly extended to linearly polarized
rf fields because a closed analytical solution for the spin
motion is not available in such a case. In particular, the usual
assumption that one can neglect one of the two counter-rotating
components contributing to the linearly polarized rf field is not
justified when H1 ∼ H0. However, when H1 � H0, the case of
the linearly polarized rf field should be treatable by combining
our truncation procedure with the perturbation expansion.2,24

In this limit, the presence of two rotating components may
lead to additional nonsecular resonances, but the resonances
obtained in the present paper for a single-rotating component
of the same frequency should also be present. We further
expect that the same nonsecular resonance in the rotating
and the linearly polarized settings is generically characterized
by the same nonsecular Hamiltonian when the leading order
of the expansion of this Hamiltonian in terms of H1/H0 is
linear (see the discussion in Sec. IV A). At small values
of H1/H0, the nonsecular resonances, satisfying the above
linearity requirement, are also the strongest and, thus, the
most promising in terms of experimental observation. In
fact, the low-field NMR relaxation study of protons in ice
reported in Ref. 25 may have observed such a nonsecular

resonance as a secondary peak, appearing in that paper
in Fig. 7(a).

In the above context, we finally note that an experiment
with small linearly polarized fields should avoid the inter-
play with the secondary single-spin resonances described by
Winter.2,26

In addition to the possibility of using stronger static fields
and linearly polarized rf fields, the regime of H1 � H0 has two
other advantages. First, the rf-field homogeneity requirement
is less stringent when H1 � H0 because what matters is the
homogeneity of the effective frequencies �ei for which the
leading rf-field contribution is only on the order of (H1/H0)2.
Second, in the case when the secular part of the interaction is
externally suppressed, the smallness of H1/H0 implies that the
nonsecular resonances can be resolved with higher accuracy
(see the discussion in Sec. III).

B. Possible applications

1. Fundamental studies of spin-spin relaxation

Perhaps, the most direct use of the tunable Hamiltonians
(20)–(22) and (28)–(31) is to conduct fundamental experi-
mental studies of nuclear-spin-spin relaxation in solids, which
is still not completely understood, in a much broader range of
parameters than those accessible with the standard truncated
Hamiltonians.

2. Cross polarization

In the case of unlike spins, the nonsecular Hamiltonians
(30) and (31) for the resonances ω = ±(�ei − �ej ) and
ω = ± 1

2 (�ei − �ej ) can be used to cross polarize different
spin species. As mentioned in Sec IV B, these Hamiltonians
contain flip-flop terms I ′

ixI
′
jy − I ′

iyI
′
jx and I ′

ixI
′
jx + I ′

iyI
′
jy ,

which can transfer polarization from one spin species to the
other. Such a transfer would require an rf field rotating with
a single frequency as opposed to the standard Hartmann-
Hahn cross-polarization routine,27 which involves two rf-
field frequencies. The two spin species can also be cross
polarized, albeit less efficiently, using the transient effect of
the double-flip terms I ′

ixI
′
jy + I ′

iyI
′
jx and I ′

ixI
′
jx − I ′

iyI
′
jy for

resonances ω = ±(�ei + �ej ) and ω = ± 1
2 (�ei + �ej ). The

suppression of the secular terms by either the magic angle
condition or the MAS technique as discussed in Sec. IV B,
can enhance the efficiency of both the flip-flop-based and the
double-flip-based cross-polarization processes. In the latter
case, this enhancement should be particularly significant.

3. Structure determination

The use of solid-state NMR for determining the structures
of complex molecules involves MAS decoupling between
nuclear spins followed by selective recoupling.28,29 The
nonsecular resonances obtained in this paper can, possibly,
be used at the latter stage. As discussed in Sec. V A, the
regime H1 � H0 may provide both the sufficient intensity
and the sufficient frequency resolution for such experiments.
If successful, such a method will not require the recoupling
sequence to be adjusted to the sample spinning frequency.
It will also have an added benefit of the nontrivial spatial
dependence in the nonsecular Hamiltonians as compared to the
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FIG. 5. (Color online) Examples of nonsecular resonances for unlike spins. Plots of the resonant values of ω and the prefactors in the
nonsecular Hamiltonians (30) and (31) as functions of γj/γi for the resonant conditions indicated above the respective plots. All examples
presented are obtained numerically for either H1/H0 = 0.9 or H1/H0 = 0.1. Each column of plots corresponds to the ratio H1/H0 indicated
above it. The plot lines consist of the actual computed points and, thus, in some cases, have the appearance of dotted lines. The results for
H1/H0 = 0.1 are qualitatively representative of the limit H1 � H0. The content of this figure together with Fig. 4 covers all eight resonant
conditions associated with Eqs. (30) and (31).

usual secular interactions. This dependence can be converted
into additional structure information for oriented samples.

To summarize, the nonsecular resonances for like and
unlike spins amount to a new resource for manipulating

094401-9



CHAHAN M. KROPF AND BORIS V. FINE PHYSICAL REVIEW B 86, 094401 (2012)

nuclear spins, and, therefore, are likely to be useful for various
NMR applications. However, the condition of applying a high-
amplitude rf field for a rather long time may be challenging to
realize in practice.

VI. CONCLUSION

In this paper, we theoretically described the properties
of nonsecular resonances associated with the appearance
of nonsecular terms in the time-averaged Hamiltonians of
nuclear-spin-spin interactions in solids in the presence of
strong rotating rf fields. Our analysis indicates that, under
certain conditions, the effect of the nonsecular interaction
terms should be particularly well observable. We have
also discussed the extension of our findings for the case
of linearly polarized rf fields. Finally, we discussed how
the nonsecular resonances considered in this paper can
be used for manipulating nuclear spins in various NMR
applications.

Beyond NMR, the results of this paper apply to the
mathematically equivalent problems, involving two interacting
two-level systems, e.g., q bits, driven by an external rotating
field.

Note added. After submitting this paper, we became aware
of the preprint of a closely related paper30 where a similar
nonsecular resonance phenomenon was discovered under the
name of “entanglement resonances.” The analysis in Ref. 30
is based on the numerical solution of a two-spin-1/2 Floquet
problem with a linearly polarized periodic magnetic field. As
we expected, the leading resonances reported in Ref. 30 for
the case of small linearly polarized oscillating fields agree with
the like-spin resonances obtained in the present paper for the
case of small-rotating rf fields [cf. Eqs. (17)–(19) of this paper
and Fig. 2(b) of Ref. 30].
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APPENDIX: PLOTS OF NONSECULAR RESONANCES
FOR UNLIKE SPINS

This appendix contains the collection of plots (Fig. 5) for the
six-out-of-eight nonsecular resonances described by Eqs. (30)
and (31) that were not included in Fig. 4.
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