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LPMCN, Université de Lyon, UMR 5586 Université Lyon 1 et CNRS, F-69622 Villeurbanne, France

Konstantinos Termentzidis
CETHIL-UMR5008, INSA de Lyon and CNRS, UMR 5008, F-69621 Villeurbanne, France and EM2C UPR CNRS 288,

Ecole Centrale Paris, F-92295 Châtenay-Malabry, France
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In this article, we compare the results of nonequilibrium (NEMD) and equilibrium (EMD) molecular dynamics
methods to compute the thermal conductance at the interface between solids. We propose to probe the thermal
conductance using equilibrium simulations measuring the decay of the thermally induced energy fluctuations
of each solid. We also show that NEMD and EMD give generally speaking inconsistent results for the thermal
conductance: Green-Kubo simulations probe the Landauer conductance between two solids which assumes
phonons on both sides of the interface to be at equilibrium. On the other hand, we show that NEMD give
access to the out-of-equilibrium interfacial conductance consistent with the interfacial flux describing phonon
transport in each solid. The difference may be large and reaches typically a factor 5 for interfaces between usual
semiconductors. We analyze finite size effects for the two determinations of the interfacial thermal conductance,
and show that the equilibrium simulations suffer from severe size effects as compared to NEMD. We also compare
the predictions of the two above-mentioned methods—EMD and NEMD—regarding the interfacial conductance
of a series of mass mismatched Lennard-Jones solids. We show that the Kapitza conductance obtained with EMD
can be well described using the classical diffuse mismatch model (DMM). On the other hand, NEMD simulation
results are consistent with an out-of-equilibrium generalization of the acoustic mismatch model (AMM). These
considerations are important in rationalizing previous results obtained using molecular dynamics, and help in
pinpointing the physical scattering mechanisms taking place at atomically perfect interfaces between solids,
which is a prerequisite to understand interfacial heat transfer across real interfaces.
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I. INTRODUCTION

Kapitza conductance controls heat transfer at submicronic
length scales in heterogeneous and nanostructured materials.
For instance in superlattices, which are made of an arrange-
ment of alternating solid layers, the Kapitza conductance
at the interface between the solids controls the overall
conductivity of the superlattice when the internal conductance
of the solid layers is large.1 Understanding the value of the
Kapitza conductance at the interface between solids may thus
help in defining directions to minimize or on the contrary
maximize the conductivity of the superlattice, with respec-
tive applications in energy conversion devices and thermal
management. During the last decade, ultrafast measurement
techniques have been developed so that the Kapitza conduc-
tance at the interface between a number of metal/dielectrics
and dielectrics/dielectrics solids has been characterized.2–4

Similarly, ultrafast laser spectroscopy may also be used to
measure the Kapitza conductance between a metal and a solid
matrix which can be amorphous.5 All the above-mentioned
experiments have concluded that the Kapitza conductance is
poorly described by the classical AMM and DMM models,
with sometimes a difference reaching an order of magnitude.
In addition, the temperature dependence predicted by the
classical models is wrong, with experiments and simulations
pointing at a linear increase of the conductance with the
temperature4,6–8 when the theories predict a constant value
at least if interfacial scattering is supposed to be elastic. These

discrepancies may be partly explained by the state of the
interface between real materials whose imperfections may
enhance inelastic scattering, thus creating additional energy
channels compared with the situation of an ideal interface.
In this context theoretical modeling may help in pinpointing
the physical relevant mechanisms ruling heat transfer across
ideal interfaces. To this end, different techniques have been
employed including lattice dynamics,9 Green function,10 and
molecular dynamics (MD).8,11 The latter is a promising
method as it is relatively easy to use and it makes no assumption
regarding interfacial heat transport except the classical nature
of the energy carriers, a reasonable assumption close to the
Debye temperature of the softer solid. However, even for
perfect interfaces no agreement has been found between the
MD results and the classical AMM and DMM models.8,11 As
bulk transport coefficients,12 two routes may be followed to
determine the interfacial conductance between classical solids:
Either the system is driven out-of-equilibrium by creating an
interfacial flux using two heat reservoirs on both sides of the
interface8,13 or the kinetics of thermally induced fluctuations
of the interfacial flux may be recorded around the equilibrium
situation where the two solids are at the same temperature.14–16

This latter method relies on the generalization of the Green-
Kubo formulas to interfacial transport coefficients.15 Contrary
to the case of the thermal conductivity, no agreement has
been found between these two methods even when considering
simple systems such as the interface between Lennard-Jones
solids.16 In this article, we propose a new method to determine
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the interfacial conductance in the spirit of the EMD method
using the energy autocorrelation function of each solid on
both sides of the interface. This may solve practical problems
frequently encountered in equilibrium simulations when a
plateau in the integral of the relevant correlation function
should be identified, which often leads to practical difficulties.
We explain the discrepancies between the EMD and the NEMD
simulation determination of the interfacial heat conductance.
We show that the EMD yields the Landauer conductance
which assumes phonons on both sides of the interface to have
equilibrium distribution. On the other hand, we will show that
the conductance measured in NEMD is well described by the
general expression of Simons which accounts for the out-of-
equilibrium phonon distribution consistent with the created
heat flux.17,18 Thus we conclude that the two methods give
intrinsically inconsistent values of the interfacial conductance.
The difference is important and may reach nearly an order of
magnitude for solids displaying moderate acoustic mismatch.
We analyze also the finite size effects in the two methods
and show that EMD suffers from stronger size effects than
NEMD. Finally, we analyze the interfacial conductance at the
interface between a series of mass-mismatched Lennard-Jones
solids using both methods. We show that the classical DMM
model provides a good description of the EMD data. On the
other hand, both the AMM and DMM models fail to predict
the conductance obtained in NEMD. A good agreement is
found if we extend the AMM model by accounting for the
out-of-equilibrium phonon distribution consistent with the
imposed interfacial flux. The article is structured as follows: In
Sec. II, we first review the basics of interfacial heat transport:
We discuss the difference between the Landauer conductance
which assumes the energy carriers to be described locally by
equilibrium distribution functions and the general expression
proposed by Simons. In Sec. III, we show the connection
between the Landauer conductance and the decay of the
energy autocorrelation function in each solid. This allows us
to propose an alternate expression to measure the interfacial
conductance using EMD. This methodology is applied in
Sec. IV where we analyze the case of the interface between
Lennard-Jones solids having a variable mass contrast. We also
compare the conductance obtained using the two methods with
the different theoretical predictions discussed in Sec. II. We
discuss the consequences of this work in the conclusion.

II. THEORY

In this section, we briefly review the basic definitions
of the interfacial conductance and we discuss its relation
with the phonon distribution on both sides of the interface.
The equations derived in this section are not completely
new but they are reviewed for the sake of completeness. In
particular, we review the expression first proposed by Simons17

which accounts for the out-of-equilibrium phonon distribution
consistent with the interfacial flux.

Consider the interface between two media 1 and 2 as
sketched in Fig. 1. The interfacial conductance G between
these two media is defined in terms of the ratio,

G = q/(T2 − T1), (1)

FIG. 1. (Color online) Temperature jump across the interface
between two media crossed by an interfacial flux q. The temperature
profile in each medium is schematically represented by red solid lines.

where q is the heat flux flowing across the interface from
medium 2 to 1, and Ti denotes the temperature of the medium
i in the vicinity of the interface. The interfacial conductance
Eq. (1) can be related to the phonon distribution in each
medium if the heat flux q is expressed in terms of transmitted
phonons:

q = 1

V

+∑
p,�k

v1x(p,�k)h̄ω(p,�k)f1(p,�k)t12(p,�k)

+ 1

V

−∑
p,�k

v2x(p,�k)h̄ω(p,�k)f2(p,�k)t21(p,�k), (2)

where V is the volume of each medium supposed to be equal,
vix is the group velocity in medium i projected along the
direction x normal to the interface, fi is the mode-dependent
phonon distribution function in medium i, tij (�k) is the wave-
vector-dependent transmission coefficient from medium i to
medium j , and the sums run over all polarizations indexed
by p, and over wave vectors in the first Brillouin zone
corresponding to phonons crossing the interface (i.e., those for
which v1x > 0 and v2x < 0, respectively). In the following we
will drop the variables (p,�k) indexing the phonon polarization
and wave vector to simplify the notations. We will refer to any
quantity depending on (p,�k) as mode dependent. The problem
of the determination of the interfacial conductance Eq. (1)
relies on our knowledge of the phonon distribution functions
fi at both sides of the interface. The simplest reasoning is
to assume that the phonon population can be described by
the equilibrium distribution feq given by the Bose-Einstein
distribution:

feq(ω,T ) = 1

exp (h̄ω/kBT ) − 1
, (3)

at the temperature Ti in the vicinity of the interface. The two
sums appearing in Eq. (2) can be contracted to a single sum on
the phonon population coming from medium 1 if we invoke
the principle of detailed balance in the situation where the two
media are at thermal equilibrium at the common temperature
T1 when the flux q vanishes.11 One arrives then at the Landauer
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formula for the interfacial conductance:19

Geq = 1

V

+∑
p,�k

h̄ωv1xt12
∂feq

∂T
. (4)

Note of course that using the principle of detailed balance, the
Landauer conductance can be expressed as a function of the
transport properties characterizing the medium 2:

Geq = 1

V

−∑
p,�k

h̄ωv2xt21
∂feq

∂T
. (5)

The Landauer formula has commonly been used in the
determination of the Kapitza conductance.9,20,21 Its limita-
tions are well known:11,17,18,21,22 Eq. (4) predicts a finite
conductance when the two materials are identical [i.e., when
∀�k,t12(�k) = 1], which is of course contrary to the intuition.
For an interface between similar media, the temperature drop
should vanish whatever the flux q, leading to an infinite
conductance.23 Obviously, the problem is related to the use
of two equilibrium distribution functions in the flux Eq. (2).
The previously mentioned paradox may be solved using the
actual distribution function consistent with the interfacial
heat flow. This analysis has been done by Simons17 and
generalized by Chen22 and Landry and McGaughey.11 The out-
of-equilibrium distribution function is supposed to obey the
Boltzmann transport equation (BTE) under the relaxation time
approximation:24

∂fi

∂t
+ �vi · �∇fi = −fi − feq

τi(ω)
, (6)

where feq is the Bose-Einstein distribution given in Eq. (3) and
τi is the mode-dependent relaxation time supposed to depend
only on the frequency ω. In steady state, a solution of the BTE
equation [Eq. (6)] can be found in the form,

fi(�r) = feq[T (�r)] + δfi(�r), (7)

where T (�r) is the local value of the temperature. We assume
in this way that the temperature is defined at any point of
the material, an assumption which is reasonable if the phonon
mean free path in each medium is not too large compared to
the characteristic dimensions of the system (i.e., the distance
between the interface and the heat reservoirs). Anyway, from
a practical point of view in MD, one can always think of the
local temperature as the mean kinetic energy of the atoms
in a small volume encompassing the point �r . If, furthermore,
we assume that in each medium the temperature profile is
linear, an assumption which is again confirmed by NEMD
simulations,25 then the deviation from the local equilibrium
writes

δfi(�r) = −τi

∂feq

∂T
�vi · �∇T . (8)

Hence, the excess of phonons propagating in each medium
is proportional to the heat flux. Phonons traveling in the
direction of the flux are in excess while phonons traveling in
the opposite direction are depleted. A schematic representation
of the distribution of incident phonons across the interface is
displayed in Fig. 2. Injecting the latter distribution function
given by Eqs. (7) and (8), in the interfacial flux q [Eq. (2)],

FIG. 2. (Color online) Steady phonon distribution function on
both sides of the interface crossed by a heat flux. Red solid lines
represent the local equilibrium distribution function feq[T (x)] given
by the Bose-Einstein distribution [Eq. (3)]. We have considered clas-
sical phonons for which the Bose-Einstein distribution is proportional
to the temperature. Blue solid lines represent the out-of-equilibrium
distribution feq(T (x)) + δf of incident phonons where δf is given
by Eq. (8). We have considered a phonon mode propagating in the
direction of the temperature gradient so that δf < 0. We have also
illustrated the graphical construction inherent to the definition of the
equivalent equilibrium temperature [see Eqs. (13) and (14)]. �1 and
�2 are the phonon mean free paths of the considered phonon mode
in each medium.

one arrives at

q = Geq(T2 − T1) −
+∑

p,�k
τ1v

2
1xh̄ω

∂feq

∂T
t12

∂T

∂x

∣∣∣∣
1

−
−∑

p,�k
τ2v

2
2xh̄ω

∂feq

∂T
t21

∂T

∂x

∣∣∣∣
2

, (9)

where the temperature gradients are estimated on both sides of
the interface. The two temperature gradients can be eliminated
if we assume diffusive heat transport in each medium so
that q = −λ1

∂T
∂x

|1 = −λ2
∂T
∂x

|2 where λi denotes the thermal
conductivity of medium i. The interfacial conductance writes,
then,

Gneq = Geq

1 − β12 − β21
, (10)

where we have introduced the fractions,

β12 = 1

V

+∑
p,�k

τ1v
2
1xh̄ω

∂feq

∂T
t12/λ1, (11)

and a similar equation for β21. The physical signification of β12

is clear: It is a measure of the fraction of the energy flux flowing
across the interface that is transmitted. This coefficient varies
typically between 0 when all the phonon modes of medium
1 are reflected by the interface to 1/2 when all the modes of
medium 1 are transmitted. In particular, if we consider the
case of similar materials, it is easy to show that the interfacial
conductance [Eq. (10)] diverges to infinity using the Peierls
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expression for the thermal conductivity:24

λ1 = 1

V

∑
p,�k

τ1v
2
1xh̄ω

∂feq

∂T
→ β12(t12 = 1) = 1

2
, (12)

where the last equality applies to the case of an interface
which transmits all the phonon modes, ∀(p,�k),t12 = 1. Thus,
at least, Eq. (10) solves the paradox of the conductance of the
interface between identical materials. Note that we could have
obtained the same expression for the conductance using the
concept of equivalent equilibrium temperatures. By definition,
the equivalent equilibrium temperature may be defined in
a classical system in terms of the kinetic energy of the
incident phonons in the vicinity of the interface. This condition
is graphically illustrated in Fig. 2 and is mathematically
expressed by

feq
(
T

eq
1

) = feq(T1) + δf1, (13)

yielding

T
eq

1 = T1 − �1 cos θ
∂T

∂x
� T (x = −�1 cos θ ), (14)

where the interface is supposed to be localized at x = 0. Here
the θ is the angle of incidence and �1 is the mean free path
of the considered phonon mode. Thus, we have shown that
the equivalent equilibrium temperature is the temperature of
incident phonons at a distance of one mean free path away from
the interface as exemplified in Fig. 2. This explains why Aubry
et al. obtained an expression similar to Simon conductance
using the equilibrium distribution of phonons at a distance
one mean free path from the interface.21,26 Note that in the

previous discussion and in the formula used by Aubry et al.,
the equivalent temperature is a mode-dependent quantity, as
both θ and �1 depend on the considered mode. Using the
concept of equivalent temperatures may be dangerous because
one may be tempted to believe that the phonon population is
at equilibrium at a distance � away from the interface, which
is of course wrong. It is nevertheless not surprising to find the
same value of the interfacial conductance using the concept of
equivalent temperature at a distance �, because the effective
incident flux that may be transmitted by the interface comes
from phonons which have not been scattered by other phonons
before reaching the interface21 and as a first approximation
if temperature gradients are not too large the corresponding
phonon population may be described by feq(x = −� cos θ ).
In the following, it will be useful to express the different con-
ductances in terms of the vibrational density of states (vDOS):

gp(ω) = 1

V

∑
�k

δ(ω − ωp,�k), (15)

where the sum runs over the eigenmodes of the crystal
in the first Brillouin zone. In the common case where the
transmission coefficients depend only on the frequency ω and
on the incident angle θ , the Landauer conductance is

Geq = 1

2

∑
p

∫ ωmax

0
g1,p(ω)|v1(ω)|h̄ω

∂feq

∂T

×
∫ π/2

0
t12(ω,θ ) cos θ sin θdθdω, (16)

and the fraction β12 becomes

β12 =
1
2

∑
p

∫ ωmax

0 g1,p(ω)τ1(ω)|v1(ω)|2h̄ω
∂feq

∂T

∫ π/2
0 t12(ω,θ ) cos2 θ sin θdθdω

1
3

∑
p

∫ ωD,1

0 g1,p(ω)τ1(ω)|v1(ω)|2h̄ω
∂feq

∂T
dω

, (17)

where the factor 1/2 in the numerator comes from the
integration over the azimuthal angle φ and the integration is
carried out over the first Brillouin zone. ωmax is the maximal
frequency transmitted by the interface and its value will be
discussed later and ωD,1 is the Debye frequency in medium 1.
Again, a similar expression for the term β21 can be obtained
by permuting in the previous equation the indexes 1 and 2.
The challenge is now to specify the lifetimes τi(ω) and the
transmission coefficients. We will discuss possible expressions
for t12 based on traditional interfacial transport models in
Sec. VI when we will analyze the conductance obtained
by NEMD. So far, we have seen two formulas relating the
interfacial thermal conductance to the energy transmission
coefficient: the Landauer formula Eq. (4) which assumes that
the phonons on both sides of the interface are at equilibrium,
and the general formula Eq. (10) which accounts for the actual
out-of-equilibrium distribution of the phonons in the vicinity of
the interface. Now we want to answer the following question:
What do we measure in a molecular dynamics simulation?
Intuitively, in NEMD simulations where the system is crossed
by a flux, we should measure a conductance given by

Eq. (10) because the system is subject to a large temperature
gradient (on the order of 1 K/nm!) and the phonons cannot
be considered locally at equilibrium. On the other hand, it
seems reasonable to consider that in equilibrium simulations
where thermally induced fluctuations of the interfacial flux
are probed, one should measure the Landauer conductance
Eq. (4) rather than the nonequilibrium conductance Eq. (10).
We will make this point more quantitative in the next
section.

III. GREEN-KUBO FORMULAS: CONDUCTANCE FROM
EQUILIBRIUM FLUCTUATIONS

In this section, we derive Green-Kubo formulas for the
interfacial conductance. We will prove that the Puech formula
traditionally used in equilibrium simulations to measure the
interfacial conductance is exactly given by the Landauer
conductance Eq. (4) and thus differs from the nonequilib-
rium conductance Gneq [Eq. (10)]. We will also propose an
equivalent formula easier to evaluate in molecular simulations.
The general idea behind Green-Kubo formulas is that the
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regression of the fluctuations of an internal variable obeys
macroscopic laws. In the case of interfacial heat transfer, the
relevant variable is the interfacial flux q and the corresponding
Green-Kubo formula reads

GPuech = 1

AkBT 2

∫ +∞

0
〈q(t)q(0)〉dt. (18)

This formula has been used for solid/liquid interfaces15 and
superlattices as well.16,27 However practically in a MD simula-
tion, the expression of the heat flux q involves only atoms near
the interface15 and it is also sometimes difficult to estimate
the plateau in the heat flux correlation function in Eq. (18).
In the following, we will show that we can improve the
statistics on the determination of the interfacial conductance
by measuring the fluctuation of the mechanical energy of
each solid on both sides of the interface. In passing, we will
show that for the case of solid/solid interfaces, the Puech
formula Eq. (18) identifies with the Landauer conductance
Eq. (4). To this end, we consider two semi-infinite media
separated by an interface whose area is denoted A. The two
media are supposed to be at thermal equilibrium at the same
temperature T , and the energy in each medium can change only
because of exchange of energy with the other medium through
the interface. Generally speaking, the energy fluctuation in
each medium is as follows:28 〈δE2

i 〉 = kBT 2/(1/Cv1 + 1/Cv2)
where Ei(t) is the instantaneous mechanical energy of the
medium i, and Cv1,Cv2 are the specific heat characterizing
the two media. Note that the relevant statistical ensemble
to describe the fluctuations of Ei is neither NV E because
only the total energy E1 + E2 is conserved nor NV T because
strictly speaking each system is not in contact with a thermostat
but with a system which is comparable in size. We refer the
reader to Stephenson28 for a derivation of the fluctuations of
the different quantities in this situation. The classical NV T

formula is, however, recovered when one of the two media
(say 2) has a large number of degrees of freedom so that
Cv2 
 Cv1. In the following, we will assume that the two
media have the same specific heat so that the energy fluctuation
in each medium is 〈

δE2
i

〉 = kBT 2Cv/2. (19)

This hypothesis will not affect the final result but allows one to
simplify the notations all along the derivation. The fluctuations
of the interfacial flux q are related to the fluctuations of
the energy in medium 1 through the energy conservation
equation:

dE1

dt
= −qA, (20)

where q is the instantaneous value of the interfacial energy
flux flowing from the medium 1 towards medium 2, which in
the situation considered fluctuates around zero. This flux may
be expressed in terms of excess phonon occupation number
δni :

q = 1

V

+∑
�k

v1xh̄ωδn1t12 +
−∑
�k

v2xh̄ωδn2t21, (21)

where the excess phonon occupation number is simply related
to the fluctuation of the energy: δEi = ∑

�k h̄ωδni,�k and here �k
is a shorthand notation representing the wave vector and the
polarization. In the following, it will be useful to rewrite the
energy conservation:

dE1

dt
= − 1

V

+∑
�k

h̄ωδn1

τ�k
+ 1

V

−∑
�k

h̄ωδn2

τ�k
, (22)

where we have introduced the mode-dependent relaxation
times:

τ�k = V/Av1xt12 if v1x > 0 [first sum in the right-hand side of Eq. (22)]

= V/A|v2x |t21 if v2x < 0 (second sum). (23)

These relaxation times may be interpreted as interfacial
scattering terms and are independent of the bulk phonon
relaxation times. If we assume the different modes to be
independent and consistently with Eq. (19) characterized by a
variance,

〈
δn2

i,�k
〉 = kBT 2c̄v

2h̄ω�k
, (24)

where c̄v = h̄ω�k
∂feq

∂T
is the mode-dependent specific heat, the

energy autocorrelation function follows:

〈δE1(t)δE1(0)〉 =
∑

�k

kBT 2c̄v

2
exp(−|t |/τ�k), (25)

where we have used the total energy conservation δE1 =
−δE2. Differentiating this latter equation, one arrives

at

〈
dE1(t)

dt
δE1(0)

〉
= −

∑
�k

kBT 2c̄v

2τ�k
sgn(t) exp(−|t |/τ�k)

+
∑

�k
kBT 2c̄vδ(t), (26)

where sgn(t) is the sign function and the second term in the
right-hand side comes from the discontinuity of the derivative
of exp(−|t |/τ�k) at the origin.29 The sums over all the wave
vectors �k may be transformed in a sum running over the
modes crossing the interface if we express the detailed balance
condition:

c̄vv1xt12|v1x>0 = −c̄vv2xt21|v2x<0, (27)
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yielding for t > 0:〈
dE1(t)

dt
δE1(0)

〉
= − 1

V

+∑
�k

AkBT 2c̄vt12v1x exp(−t/τ�k)

+2
+∑
�k

kBT 2c̄vδ(t). (28)

Note that in the thermodynamic limit the first term vanishes.
For a finite system and when the time t → 0+, the second
term involving a Dirac distribution may be neglected and one
has

− 1

AkBT 2

(
dCEE

dt

)
t=0+

= 1

V

+∑
�k

c̄vt12v1x = Geq, (29)

where CEE(t) = 〈δE1(t)δE1(0)〉 is the energy autocorrelation
characterizing solid 1 and Geq is the Landauer conductance
defined in Eq. (4). The previous equation [Eq. (29)] is a new
Green-Kubo formula for the interfacial conductance which
relates the slope of the energy autocorrelation function at the
origin to the Landauer conductance. We will show in the
next section that this formula may be easier to estimate in
an MD simulation than the classical Puech formula which
requires one to identify a plateau in the running integral of
the heat flux autocorrelation function. Alternately, we can
also relate the Puech formula to the Landauer conductance in
the thermodynamic limit by remarking that 〈 dδn1,�k (t)

dt

dδn1,�k (0)
dt

〉 =
− d2

dt2 〈δn1,�k(t)δn1,�k(0)〉 to arrive at

〈
dE1(t)

dt

dE1(0)

dt

〉
= −

+∑
�k

kBT 2c̄v

τ 2
�k

exp(−|t |/τ�k)

+ 2
AkBT 2

V

+∑
�k

c̄vt12v1xδ(t). (30)

In the thermodynamic limit, in principle the first term ∝
A(A/V )30 is negligible compared with the second ∝ A, and
one has the following Green-Kubo equation:

1

AkBT 2

∫ +∞

0

〈
dE(t)

dt

dE(0)

dt

〉
dt = Geq. (31)

This equation is exactly the Puech formula used to calculate
the liquid/solid Kapitza resistance.15,31 We have shown that
for solids/solids this formula identifies with the Landauer
conductance. It is important to realize that the previous formula
has been derived for an infinite system size. For a finite system
on the other hand, the running integral,

1

AkBT 2

∫ t

0

〈
dE(t ′)

dt

dE(0)

dt

〉
dt ′

= 1

V

+∑
�k

c̄vt12v1x − 1

V

+∑
�k

c̄vt12v1x[1 − exp(−t/τ�k)],

(32)

will consist of two parts: The first term is the Landauer
conductance; the second term is negative and corresponds to
the final decay of the running integral. In the next section, we

will compare the formulas [Eqs. (29) and (18)] to the results
of NEMD simulations.

IV. SIMULATIONS

A. Lennard-Jones systems

We now study how the previous formulas may be used
in molecular dynamics simulations to estimate the Kapitza
conductance between two solids. All the following results
have been obtained for the case of the interface between
Lennard-Jones solids. There are numerous advantages to work
with LJ solids. The first is the simplicity of the interaction
potential as compared to many-body potentials used to model
semiconductors. This has an important practical consequence
as it allows one to run simulations with large system lengths
because of the relatively short computational times required.
In addition, from a thermal point of view there is no need to
worry about optical phonon modes.

B. Structures

We will consider systems consisting of two perfect fcc
Lennard-Jones solids whose interface is orientated along the
crystallographic [100] direction. The section of the system is
fixed to 6a0 × 6a0 where a0 is the fcc lattice constant, and
the thickness of each medium has been varied between 10
and 50 a0. A typical initial configuration is represented in
Fig. 3. All the atoms of the system interact through a Lennard-
Jones potential VLJ(r) = 4ε((σ/r)12 − (σ/r)6) truncated at
a distance 2.5σ . A single set of energy ε and diameter σ

characterizes the interatomic interaction potential. As a result,
the two solids have the same lattice constant a0, and the
interface may be considered perfect. To introduce an acoustic
mismatch between the two solids, we have considered a mass
mismatch between the masses of the atoms of the two solids,
characterized by the mass ratio mr = m2/m1, which will
take typical values between 1 and 10. From now on, we
will use real units where ε = 1.67 10−21 J; σ = 3.4 10−10 m;
and m1 = 6.63 10−26 kg, where these different values have
been chosen to represent solid argon. With this choice of
units, the unit of time is τ =

√
mσ 2/ε = 2.14 ps, the unit of

thermal conductivity is λ = kB

σ 2

√
ε/m � 18.8 10−3 W/K/m,

and the unit of interfacial conductance is G = kB/(τσ 2) �

FIG. 3. (Color online) Configuration studied as follows: interface
separating two Lennard-Jones fcc solids having the same lattice
constant but different masses.
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56 MW/K/m2. The different interfaces have been prepared as
follows: first the structures have been generated by mapping
the space with fcc structures using the lattice parameter of the
fcc LJ solid at zero temperature:32 a0(T = 0 K) = 1.5496 σ .
The structures have been then equilibrated at the final finite
temperature T = 40 K using first a Berendsen thermostat and
a barostat at 0 atm.33 Once the instantaneous temperature has
increased to a value close to the final expected temperature,
we have switched off the Berendsen thermostat and used a
Nosé Hoover thermostat. The total equilibration time lasts
one million time steps which correspond to a total time
of 4,28 ns. All the systems studied have been equilibrated
at the temperature T = 40 K, and the lattice parameter
at this temperature has been found to be a0 = 1.579σ . In
EMD, periodic boundary conditions have been applied in
all spatial directions so that the system represented is a
superlattice.27 On the other hand in NEMD we use periodic
boundary conditions only in the directions parallel to the
interface.

C. Computing the interfacial conductance with NEMD

Alternately, we will compare the results of EMD to NEMD.
The principle of these latter simulations has been already
described elsewhere11,34 and we just focus here on the details
of the technique. We impose a thermal flux perpendicular
to the interface between the two solids by thermostatting in
each medium two layers of atoms remote from the central
interface at the respective temperature TC = 40 − 3.6 K and
TH = 40 + 3.6 K, while the end atoms are maintained fixed.
The size of the cold and hot regions has been found to
have negligible effect on the measured conductance. After
a number of time steps varying between 500 000 for the
smallest system to 5 million for the largest, we monitor the
temperature profile in each medium using the kinetic energy
of the particles. A typical example of the corresponding
temperature profile is shown in Fig. 4 zooming on the vicinity
of the interface. The interfacial conductance is obtained from
the heat flux and the temperature jump across the interface,

0 50 100 150 200
z (a0)

36

38

40

42

T 
(K

)

ΔT

FIG. 4. (Color online) Stationary temperature profile across the
interface obtained by NEMD. The symbols are the simulation data
while the solid lines are the linear extrapolation used to compute
the interfacial temperature drop �T . The position of the interface is
located by the vertical dashed lines.

these latter quantities being measured using the heat power
delivered by the heat source which is monitored during several
million time steps. The temperature jump �T is obtained
by extrapolation of the linear profiles in the two media as
shown in Fig. 4. In the following, we will present results for
the interfacial conductance obtained using five independent
simulations.

D. Computing the interfacial conductance with EMD

As we have discussed in the previous section, there are
several formulas to compute the interfacial conductance from
EMD simulations probing the energy flux between the two
solids. First, we will consider the energy autocorrelation
formula in Eq. (29). To obtain the value of the Landauer
conductance, one needs to compute the time derivative of the
corresponding energy autocorrelation function. To this end,
we have recorded the instantaneous value of the mechanical
energy Em

i of each solid:

Em
i =

∑
j∈i

1

2
m�v2

j +
∑
j,k∈i

V (�rj − �rk), (33)

where the first term represents the total kinetic energy of
the solid i and the second is the potential energy between
atoms belonging to the solid i. Note that this definition is
somewhat a little bit arbitrary and we could have chosen
to include in the mechanical energy the cross-interaction
term

∑
j∈i;k∈j V (�rj − �rk). We have not observed significant

differences in the value of the Landauer conductance as
compared to the first definition. To determine the value of Geq,
we have computed the energy autocorrelation function (EACF)
in each medium. The instantaneous value of the mechanical
energy of each solid has been recorded every two time steps
in the course of long NVE simulations corresponding to a
total of 1 million time steps. The EACFs have been obtained
by averaging over 10 initial independent configurations. An
example of the averaged EACFs is shown in Fig. 5. The EACFs
relative to the two solids are practically indistinguishable. Note

0 20 40 60 80 100 120 140
Time (ps)

0.01

0.1

C
EE

 (e
V

2 )

ACF medium 1
ACF medium 2
G=60+-12 MW K  m-2-1

FIG. 5. (Color online) Energy autocorrelation functions of the
two fcc Lennard-Jones crystals separated by a planar interface
obtained with molecular dynamics simulations. Dashed lines show
the exponential fit. The parameters are as follows: total length = 40
a0; T = 40 K; mass ratio mr = 2.
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the existence of very small oscillations of the EACFs at long
correlation times. Given the value of the mean sound velocity
in the system c � 1.2 nm ps−1, these oscillations should
probably correspond to long-wavelength phonons which have
traveled ballistically across the system several times, thus
creating “echoes” in the correlation functions. To estimate
the value of the time derivative at time t = 0+ appearing in
Eq. (29), we have fit the EACFs with a single exponential
function between a time t ∼ 5 ps and up to a time where
the EACF has decreased by a factor 10 as compared to the
initial value. Using the fit CEE(t) = CEE(0) exp(−t/τ ), the
conductance is G = CEE (0)

2τAkBT 2 where CEE(0) is found to be

kBT 2Vρc̄v/4 to a good approximation and the factor 2 in
G comes from the fact that there are two interfaces due
to the periodic boundary conditions. The uncertainty in the
determination of the value of G is found to be typically 20%
for 10 independent configurations and of course it decreases
with the number of realizations of the system. Finally, we want
to emphasize that we have observed that for large systems,
the EACF decreases very slowly in good agreement with the
previous mode analysis Eq. (23) which predicts that the mode
relaxation times scale as the system length. Alternatively, we
have also analyzed the conductance using the Puech formula
Eq. (18) where the instantaneous value of the flux may be
estimated in the course of an MD simulation using the power
of the interfacial forces:15

q =
∑

i∈1;j∈2

�vi · �Fij . (34)

Note that this expression of the flux q involves only atoms in
the vicinity of the interface, while all the atoms of the system
contribute to the expression based on Eqs. (29) and (33).
Figure 6 displays the running integral in the Puech formula
Eq. (18) calculated using simulations for the same system
considered in Fig. 5. The two curves correspond to the two
interfaces of the system (remember the periodic boundary
conditions). The running integrals display first a peak and then
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FIG. 6. (Color online) Interfacial conductance of the same in-
terface as Fig. 5 calculated using the Puech Green-Kubo formula
Eq. (18). The two curves correspond to the two interfaces of the
system. Each curve is an average over 30 independent trajectories.
Same parameters as Fig. 5.

slowly decrease. Note the echoes in the upper curve. We have
found that it was difficult to define unambiguously a plateau
even though we have considered here an average over 30
independent configurations. The slow decrease has been also
observed in the determination of liquid/solid conductance15

and is predicted in Eq. (32). Indeed it is a common problem
for a finite ergodic system that the Green-Kubo formula
predicts a vanishing transport coefficient35 and in practice
the running integral should be estimated at an intermediate
time τ0 where the integral has not yet significantly decreased.
The problem in heat transfer simulations of solids is that
the spectrum of relaxation times τ�k spans several decades
and defining an intermediate time τ0 is not obvious in
this situation. This difficulty is somewhat circumvent in the
formula Eq. (29) as it does not require one to estimate a
plateau.

Finally, we compare the value of the interfacial conductance
to the expression proposed by Rajabpour and Volz14 for a
classical system:

1

G
= 1

AkB

∫ +∞

0

〈δT (t)δT (0)〉
〈δT (0)2〉 dt

(
1

N1
+ 1

N2

)
, (35)

where N1 and N2 are the number of degrees of freedom
characterizing each medium. Practically, the interfacial resis-
tance is obtained by fitting the kinetic energy autocorrelation
function with a single exponential having a decay time τ . The
conductance is then given by G = AkBρV/(2τ ). Figure 7
displays the kinetic energy autocorrelation function obtained
by averaging over 10 independent simulations for the same
system as considered before. As noted before,14 the kinetic
energy displays a first fast decrease followed by a longer
decrease, which is fitted with a single exponential with a re-
laxation time τ . This latter time is used to obtain the interfacial
conductance G = AkBρV/(2τ ). Note the oscillations in Fig. 7
due to the conversion between kinetic and potential energy.
These oscillations occur with the same period as the period of
echoes observed in the energy correlation function Fig. 5. The
value of the interfacial conductance obtained G = 47 ± 12
MW/K/m2 is smaller than the value obtained with the energy
correlation function G = 60 ± 12 MW/K/m2 but within the
error bars. Hence, the two methods give consistent results and

0 20 40 60 80 100
Time (ps)

0.001

0.01

C
K

EK
E (e

V
2 )

ACF medium 1
ACF medium 2
G =47+-12 MW K  m-2-1

FIG. 7. (Color online) Kinetic energy autocorrelation function for
the same system as Fig. 5.
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comparable error bars. We conclude by saying that compared
to the Puech formula Eq. (18), the new Green-Kubo formula
Eq. (29) is easier to evaluate in an MD simulation because (1)
we do not need to estimate a plateau in a running integral and
(2) the new formula involves all the atoms of the system while
the Puech formula involves only atoms in the vicinity of the
interface. As a result, the statistics is improved.

V. FINITE SIZE EFFECTS

In this section, we compare the finite size effects in
the determination of the conductance using both EMD and
NEMD. Figure 8(a) displays the length dependence of the
Kapitza conductance obtained with equilibrium simulations
GEMD. It is found that GEMD decreases with the system length.
We have not studied the conductance of systems longer than
100 a0 because as explained above it leads to very long
relaxation times τ�k [see Eq. (23)] and the determination of
the equilibrium conductance becomes costly. In Fig. 8(b), we
quantify the finite size effects on the conductance obtained with
NEMD. The values obtained are consistent with the results of
Stevens et al.8 Note the values of the NEMD conductances
which are larger than the EMD conductance by a factor
5! This discrepancy will be analyzed in detail in the next
section. We focus our attention here on the less severe size
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FIG. 8. (Color online) Interfacial conductance obtained by EMD
(top figure) and NEMD (bottom figure) as a function of the length of
the system in units of the crystal monolayer a0. The solid red line on
the top figure displays the theoretical formula [Eq. (36)]. Same other
parameters as Fig. 5.

FIG. 9. (Color online) Postulated origin of the length dependence
of the conductance GEMD measured in EMD: Long-wavelength
phonons may travel ballistically between the two interfaces A and A′

thus creating thermal cross-correlations as measured by 〈qA(t)qA′ (0)〉.
This figure displays also the notations used in Appendix A to quantify
this effect.

effects displayed by the NEMD conductance as compared
with the EMD. The finite size effects in the EMD method
are quantitatively analyzed in Appendix A.

The general idea is the following: In the EMD simulations,
there are two interfaces between the two media to be
considered because of the periodic boundary conditions as
sketched in Fig. 9. These two interfaces are not necessarily
independent from a thermal point of view: long-wavelength
phonons having a long mean free path can create correlations
between the instantaneous value of the thermally induced
flux at two adjacent interfaces. More precisely, if we denote
by A and A′ the two interfaces, the energy conservation
writes dE1

dt
= qA + qA′ and the calculation of the equilibrium

conductance involves cross terms of the form 〈qA(t)qA′(0)〉 and
〈qA′ (t)qA(0)〉, while the “intrinsic” interfacial conductance is
given by the following term: 〈qA(t)qA(0)〉 = 〈qA′ (t)qA′(0)〉.
Clearly, the cross terms will be relatively important at small
interfacial separation L/2 because a majority of phonon
modes will have a mean free path larger than L, while they
should vanish in the limit L → ∞. These cross terms are
quantified in the appendix, under the assumptions of the
interface between Debye solids with a constant transmission
coefficient t12, an assumption assessed a posteriori as shown
in Sec. VI E where we will show that the EMD results are well
described by the DMM model. We have also assumed that
the phonon relaxation times are described by the Callaway
model that we will discuss in the next section [cf Eq. (50)].
The prediction derived in Appendix A may be written as
follows:

G(L) = G∞

(
1 + c

(
ξ

L

)3/2)
, (36)

where G∞ is the conductance characterizing the interface
between semi-infinite media, c is a numerical constant, and

ξ = λi

Gii

(37)

is the phonon correlation length in medium i where Gii =
3
8nikBci is the EMD conductance between two identical media
having the properties of medium i (see also the next section).
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In principle, one should define two phonon correlation lengths
characterizing the two media, but in the case of mass-mismatch
Lennard-Jones solids, the correlation length is the same for the
two media and is ξ � 6.3a0 at T = 40 K where we have used
the value of the thermal conductivity obtained by Green-Kubo
simulations by McGaughey and Kaviany.36 Figure 8(a)
compares the EMD data to the theoretical expression Eq. (36)
where we have obtained that the constant c � 5 above the
predicted value c = 2.75 (see Appendix A). The disagreement
may be due to the use of the DMM model which as we will
see in the next section tends to overestimate the conductance
obtained in EMD thus underestimating the constant c. Note,
however, that we could have fit with the same accuracy the
EMD data using a functional form G(L) = G∞(1 + c(ξ/L))
and that the G(L) ∼ L−3/2 scaling comes in our analysis from
the Callaway assumption. What is important to remember
is that the EMD conductance decays algebraically with the
system length with a characteristic length proportional to the
phonon correlation length ξ . On the other hand in NEMD
the length dependence is smaller because the distribution of
phonon mean free paths is cut due to the presence of heat
reservoirs.

VI. COMPARISON BETWEEN THE EMD AND NEMD
CONDUCTANCES AND THEORETICAL MODELS

In this section, we will compare the values of the interfacial
conductance obtained either by EMD and NEMD (and
extrapolated to infinite system lengths) to the expression of
the conductance Eqs. (4) and (10) where we should specify the
value of the phonon transmission coefficient t12. To this end,
we will consider two classical models for interfacial phonon
scattering: the AMM and the DMM. We will generalize
these two models to describe the nonequilibrium conductance
Eq. (10). We will present in passing useful approximate
analytical expression to estimate both the Landauer conduc-
tance and the general conductance combined with the AMM
model.

A. Debye approximation

All along this section,we will make the assumption of
Debye solids. In the Debye approximation, the solids are
assumed to have a constant group velocity which depends on
the polarization mode.37 Most often an additional assumption
is made consisting of assuming the same acoustic velocity for
each polarization.38 For a three-dimensional crystal, this latter
is defined as

ceff = 2cT + cL

3
, (38)

where the indexes T and L refer to the transverse and longi-
tudinal polarizations, respectively. Under this assumption, the
vDOS is

gp(ω) = g(ω) = ω2

2π2c3
eff

. (39)

In the following we will drop the subscript “eff” and
characterize the averaged sound velocity in medium i by ci .

B. Acoustic mismatch model

In the AMM, the phonons traveling towards the interface
are assumed to see the interface as a sharp discontinuity of
acoustic impedance Zi where

Zi = ρici (40)

is given by the product of the mass density ρi by the acoustic
velocity in the medium i. As a result, phonons may be reflected
by the interface or refracted on the other side of the interface
following the equivalent of Snell laws:

sin θ1

c1
= sin θ2

c2
, (41)

which strictly speaking holds as long as the incident angle
is smaller than the critical angle θc = arcsin(c2/c1). Here θ1

and θ2 are the incident and refraction angles, respectively.
Above the critical angle, as for the electromagnetic waves,
internal reflection occurs and the incident phonons are totally
reflected. For the Si/Ge interface for which the ratio of the
acoustic velocities is approximately 1.5, the critical angle
is θc � 40 deg and a significant fraction of phonons are
totally reflected by the interface. We have also assumed that
a phonon conserves its polarization (i.e., there is no mode
conversion and c1 and c2 denote the acoustic velocities in
media 1 and 2 corresponding to the same polarization state).
Another assumption behind Eq. (41) is that the scattering is
elastic (i.e., refracted and reflected phonons conserve their
frequency). As a consequence, phonons having frequency
above the Debye frequency of the softer solid are confined
in the hard solid and not transmitted by the interface (i.e., the
transmission coefficient is supposed to vanish). For phonons
having frequencies smaller than the Debye frequency of the
softer solid, the transmission coefficient is derived from the
Snell law39 Eq. (41):

t12(ω,μ1) = 4Z1Z2μ1μ2

(Z1μ1 + Z2μ2)2
ω < min(ωD1,ωD2),

(42)
t12(ω,μ1) = 0 otherwise,

where we have introduced μi = cos θi , and again it is implied
that the incident angle is smaller than the critical angle. At
high temperatures, the regime relevant to classical molecular
simulations where the equilibrium Bose-Einstein distribution
feq(ω) → kBT /h̄ω, the AMM conductance which is calcu-
lated using the Landauer expression Eq. (4) may be written:

GAMM
eq = 3

2
n1kBc1

(
c2

c1

)3 ∫ 1

0
t12(μ1)μ1dμ1, (43)

where n1 denotes the number density of medium 1. We have
supposed without loss of generality that the medium denoted
2 has the lowest Debye frequency. The factor ( c2

c1
)3 comes

from the phonon confinement of high frequency phonons
in medium 1. The AMM conductance Eq. (43) should be
evaluated numerically. Alternatively, one can obtain tractable
analytical expressions for the AMM conductance if we assume
that when the acoustic contrast between the two solids is
large, the transmission coefficient t12 is dominated by phonons
propagating with a small refraction angle (i.e., μ2 � 1). Under
this approximation, the AMM conductance is given by the
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approximate form:

GAMM
eq � GAMM,appx

eq = 3

2
n1kBc1

(
c2

c1

)3

I
appx
1 , (44)

where I
appx
1 depends on the acoustic ratio β = Z2/Z1:

I
appx
1 = 4β

(
1 − β2

1 + β
+ β − 2β log

(
1 + β

β

))
. (45)

As shown in Appendix B, the approximation Eq. (44) gives a
very good description of the AMM conductance over a wide
range of acoustic contrast.

C. Diffuse mismatch model

The previously described AMM model is supposed to
predict the transmission of phonons of large wavelengths
which behave as plane waves experiencing specular reflection
or refraction at the interface. This model is commonly thought
to apply at low temperatures where only long-wavelength
phonons are populated. At higher temperatures, interfacial
scattering is thought to be diffuselike essentially because a
majority of phonons have wavelengths comparable or even
smaller than the interfacial roughness. This idea motivated the
development of the DMM introduced by Swartz and Pohl20,40

which assumes that the phonons experiencing scattering at the
interface lose totally the information about the medium where
they come from. As a result, the probability that a phonon
experiences a reflection in medium 2 is equal to the probability
that a phonon is transmitted from medium 1 towards 2:

t12 = 1 − t21, (46)

for the particular mode considered. Writing the total flux in
medium 2 together with the previous amnesia condition yields
the transmission coefficient:

t12(ω) = c2g2(ω)

c1g1(ω) + c2g2(ω)
, (47)

and, as for the AMM model, it is implicitly assumed that high
frequency phonons are confined in the harder material:

t12(ω) = 0 if ω > min(ωD,1,ωD,2). (48)

Since the transmission coefficient does not depend on the
incident angle, the DMM conductance has a simple expression:

GDMM
eq = 3

4
n1kB

c3
2

c2
1 + c2

2

. (49)

D. Generalized conductances

To obtain tractable expressions for the nonequilibrium
conductance Eq. (10) which depends on the fractions βij

Eq. (11), we need to do a hypothesis regarding the frequency
dependence of the phonon lifetime τi(ω). The simplest is to
assume that the phonon lifetime τi is controlled by Umklapp
processes obeying the Callaway model41:

τi(ω) = Aiω
−2, (50)

where Ai is a material parameter which depends on the
temperature. Under this assumption and if interfacial scattering
is supposed to be specular, the nonequilibrium conductance

takes the form,

GAMM
neq

= GAMM
eq

1 − 3
2

(
c2
c1

)( ∫ 1
0 μ2

1t12(μ1)dμ1 + c2
c1

∫ 1
0 μ1μ2t12(μ1)dμ1

) ,

(51)

where μ2 denotes the cosine of the refracted angle:42 μ2 =√
1 − (c2/c1)2(1 − μ2

1). Again, the conductance Eq. (51) can
be approximated:

GAMM
neq � G

AMM,appx
eq

1 − 3
2

(
c2
c1

)(
I

appx
2 + c2

c1
I

appx
3

) , (52)

where I
appx
3 = I

appx
1 is defined in Eq. (45) and

I
appx
2 = 4β

(
1

2
− 2β − β2 + β3

(1 + β)
+ 3β2 log

(
1 + β

β

))
.

(53)

The accuracy of the approximation Eq. (52) and a finer
approximation are presented in Appendix B. The conductance
obtained using the DMM transmission coefficient is

GDMM
neq = 3

4
n1kB

c3
2

c2
1 + (c1 − c2)2

. (54)

Again we note that when the two media are similar, c1 = c2,
and the previous equation for the conductance predicts a finite
conductance G(c1 = c2) = 3

4n1kBc1. This new paradox can be
traced back to the use of the DMM transmission coefficient
Eq. (47) which tends towards 1/2 when c1 → c1. This problem
disappears using the AMM transmission coefficient because
the denominator of Eq. (51) tends towards 0 when the two
media are identical.

E. Interfacial conductance of a series of mass-mismatched
Lennard-Jones solids

In this subsection, we compare the conductances obtained
using both EMD and NEMD simulations to the previous
equations for the interfacial conductance, respectively, given
by the AMM model Eq. (43), the DMM model Eq. (49), and
the generalizations Eqs. (51) and (54). In evaluating these
different expressions for the case of the interface between
Lennard-Jones solids, we have used the values of argon:
c1 = 1250 m s−1 for the average sound velocity of the harder
medium and a number density n = 2.57 1028 m−1.

In Fig. 10, we have reported the values obtained using
EMD and NEMD simulations for the interfacial conductance
characterizing the interface between LJ solids having a
variable mass ratio. This ratio has been varied between
1 and 10 so as to change the acoustic impedance ratio
Z1/Z2 = √

m1/m2 between the two media between 1 and
0.3. The EMD values have been obtained using the finite
size scaling analysis described before and the extrapolation
to infinite system length as described in the previous section.
On the other hand the NEMD values have been obtained
using a total system length of 200 a0. The trend displayed
by the NEMD data is very similar to the NEMD simu-
lation results of Landry and McGaughey for the Si/heavy
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FIG. 10. (Color online) Interfacial conductance determined by
EMD and NEMD as a function of the mass mismatch between the
two solids. The simulation results are compared with the different
theoretical expression AMM [Eq. (43)], DMM [Eq. (49)], and the
generalizations Eqs. (51) and (54). The temperature is T = 40 K.

Si interface.11 Strikingly and as already mentioned in the
previous section, the EMD and NEMD values may differ sig-
nificantly depending on the acoustic contrast between the two
solids. In particular, when the dissimilarity between the two
solids is small, the NEMD conductance is larger than the EMD
value by more than one order of magnitude! Note that the
corresponding impedance ratio � 1.5 is typical of AlAs/GaAs
interface.43 Even for dissimilar solids like Si/Ge for which the
impedance ratio is ∼1.8, the difference may reach a factor 3!
This discrepancy may be simply explained: As we showed,
the EMD conductance yields the Landauer expression of the
conductance Eq. (4) while the NEMD value should be akin to
the Simon conductance Eq. (10). The difference between the
two values of the conductance is quantified by the fractions
of “out-of-equilibrium” phonons β12 and β21 [Eq. (11)] which
tend to make the denominator of Eq. (10) vanishing when
the acoustic properties of the two solids become comparable.
In this limit, the difference between the general expression
Eq. (10) and the Landauer conductance may be very large,
yielding the divergence of the NEMD conductance when the
two solids are similar. In Fig. 10, we have also compared
the EMD values to the AMM and DMM models which are
consistent with Landauer formalism. Based on the analysis
of the conductance at the interface between similar solids,
we conclude that the DMM model gives a relatively good
description of the EMD conductance, while the AMM model
overpredicts the EMD values by a factor 2. Note, however, that
the difference between the AMM and DMM models is not that
large for dissimilar materials. The small discrepancy between
the simulation values and the DMM model may come from our
assumption of Debye solids in a situation where a fine descrip-
tion of high frequency modes is required, as the DOS of the two
solids strongly overlap and the maximal frequency transmitted
by the interface ωmax tends towards the Debye frequency of
the harder solid. Regarding the NEMD values, it is clear that
the generalization Eq. (51) based on the acoustic transmission
coefficient describes quite satisfactorily the divergence of the
NEMD conductance. Equation (54) which relies on a diffusive

transmission coefficient underpredicts the NEMD conduc-
tance by a factor larger than 5 for typical values of the acoustic
impedance ratio. This is not completely surprising since as we
discussed before, if interfacial scattering is diffuse, the interfa-
cial conductance does not diverge when the two solids become
similar. Also, importantly, we have seen that interfacial phonon
transmission in EMD simulations is controlled by diffuse
events, while it becomes determined by the acoustic properties
of the two solids when a thermal flux is imposed. Hence, we
conclude that the energy transmission coefficient is not an
intrinsic property of an interface, and it may depend on the na-
ture of the source of thermal flux (i.e., external heat reservoirs
vs internal fluctuations). Given the results of the simulations,
we are tempted to conclude that in equilibrium simulations,
thermal fluctuations destroy the correlations between incident
and transmitted phonons so that the amnesia condition Eq. (46)
is verified and the conductance is well predicted by the DMM
model. In particular when the two media are similar, one recov-
ers the fact that a phonon in excess will have a probability 1/2
to be transmitted and 1/2 to be reflected, which is consistent
with the EMD values obtained in this limit. On the other hand,
in a NEMD simulation the situation is quite different: Indeed
phonons traveling across the interface see the interface as a
sharp discontinuity which creates strong correlations between
incident and transmitted phonons. Because the thickness of the
interface is smaller than the phonon wavelengths, the trans-
mission and reflection coefficients will be in these conditions
controlled by the acoustic impedances of the two media, and in
the limit of similar solids the transmission coefficient should
approach 1. This may explain the difference in transmission
coefficients between EMD and NEMD simulations.

VII. CONCLUSION

In conclusion, we have analyzed two methods to measure
the thermal Kapitza conductance between dielectrics using
molecular dynamics. We have proposed a new Green-Kubo
formula [Eq. (29)] to measure the interfacial conductance
using equilibrium EMD simulations. This formula is easier
to evaluate in a molecular dynamics simulation as compared
to the classical formula Eq. (18) because it avoids estimating
a plateau in the running integral of a correlation function. In
addition, the statistics is improved because the new formula
involves all the atoms of the system when the Puech formula
considers only the atoms in the vicinity of the interface. We
have also analyzed finite size effects in EMD and showed that
their origin is the correlation between the interfaces created
by long-wavelength phonons which travel ballistically across
the periodic simulation cell. On the other hand, in NEMD
the distribution of phonon mean free paths is cut due to
the presence of the heat reservoirs. This effect explains why
finite size effects are less severe in NEMD than in EMD. We
have also shown that the interfacial conductance measured
in an EMD simulation whether using the Puech formula or
the energy correlation function identifies with the Landauer
conductance which assumes phonons on both sides of the
interface to be at equilibrium. This explains why in EMD
a finite conductance is measured when the two solids are
similar. On the other hand, we have explained that in NEMD
simulations, we measure a conductance given by the general
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expression Eq. (10) inspired by Simons, and which accounts
for the out-of-equilibrium distribution of phonons consistent
with the imposed heat flux. Hence, we conclude that the two
methods give intrinsically different values of the interfacial
conductance. For impedance ratios typical of real interfaces,
the difference in conductances is large corresponding typically
to a factor between 4 and 10. On the other hand, when
the impedance ratio is large the difference in conductances
is small. This explains why Barrat found good agreement
between EMD and NEMD in the case of solid/liquid interfaces.
In addition, we have shown that the two methods probe
different energy transmission coefficients: EMD conductance
is consistent with transmission describing diffuse events whose
rates are governed primarily by the density-of-state mismatch
between the two solids. On the other hand, in NEMD the
transmission of phonons probed is specular in nature at least
in the case analyzed here of atomically perfect interfaces.
This difference stems from the different origin of the flux
instantaneously flowing across the interface. An important
question that we have to answer is which technique should be
used—NEMD or EMD—to access a conductance measured
experimentally. Intuitively, NEMD should be used to compute
the value of the conductance measured experimentally using
a steady-state technique such as the 3 omega method. On the
other hand, EMD should be more akin to laser pump-probe
experiments where the transient response to an initial heating
is recorded.5 This needs further theoretical analysis and will be
the subject of future investigation. Another interesting question
deals with the role of ballistic phonons in the derivation of the
nonequilibrium conductance [Eq. (10)]. Indeed, Landry and
McGaughey observed that the nonequilibrium conductance
overestimates the conductance measured at the interface
between Si and Ge. We think that this discrepancy stems from
the large value of the dominant mean free path in Si which is
comparable with the system size considered. All these results
have been obtained for the case of the perfect interfaces. This
may allow one to disentangle effects related to the contrast
between the vibrational properties of the bulk media from the
effect arising from the interface. In particular, at the interface
between real materials even though the interface may be treated
to become atomically sharp, there is always a lattice mismatch
which may enhance diffuse phonon scattering. The use of MD
models allows one, then, to measure each effect separately thus
opening the way to a fundamental understanding of interfacial
heat transfer between solids.
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APPENDIX A: FINITE SIZE EFFECTS IN THE
DETERMINATION OF THE EMD CONDUCTANCE

In this Appendix, we derive the length-dependent con-
ductance Eq. (36) measured in the EMD simulation. Please
refer to Fig. 9 for the relevant notations to be used here. As
explained in the main body of the text, the length dependence

of the conductance measured in EMD simulations is assumed
to be caused by cross-correlations between the fluxes across
the two interfaces of the system. We focus then on the
cross-correlation term 〈qA(t)qA′(0)〉. We write the interfacial
fluxes in terms of the phonon distribution functions in medium
i: fi,�k(�r,t) = f

eq

i,�k (�r) + δfi,�k(�r,t) where we have omitted the
index designating the polarization to simplify the discussion.
Hence, we have

qA′ (t = 0) =
∫

A′

1

V

∑
v2x>0

t21δf2,�k(0,�r ′
//,t = 0)h̄ωv2xd�r ′

//

+
∫

A′

1

V

∑
v1x<0

t12δf1,�k(0,�r ′
//,t = 0)h̄ωv1xd�r ′

//.

(A1)

A similar equation holds for qA(t) but in the following, we will
use the following equation which derives from the continuity
of the interfacial flux:

qA(t) =
∫

A

1

V

∑
�k

δf2,�k(L/2,�r//,t)h̄ωv2xd�r//

=
∫

A

1

V

∑
�k

δf1,�k(L/2,�r//,t)h̄ωv1xd�r//. (A2)

The cross-correlation 〈qA(t)qA′(0)〉 will thus involve cor-
relation of the phonon distribution function of the form
〈δfi,�k(0,�r,t = 0)δfi,�k′(L/2,�r ′

,t)〉. We assume the thermally
induced phonon modes propagating in the medium i to be
incoherent and characterized by a mean free path �i,�k . Under
these conditions, the phonon correlation writes

〈δfi,�k(�r ′
,t)δfi,�k′(�r,0)〉

= V
〈
δf 2

2,�k
〉
δ(�r ′ − �r − �vit) exp

(
−|�vit |

�i,�k

)
δ�k,�k′ , (A3)

where

〈
δf 2

i,�k
〉 = c̄vkBT 2

2V (h̄ω)2
. (A4)

The cross-correlation flux writes, then,

〈qA′ (t)qA(0)〉 =
∑
v2x>0

AkBT 2c̄v

2V
t21v

2
2xδ

(
L

2
− v2xt

)

× exp (−|�v2|t/�2) , (A5)

and the contribution to the conductance is

1

AkBT 2

∫ +∞

0
〈qA′ (t)qA(0)〉dt

=
∑
v2x>0

c̄vt21v2x

2V
exp (−L/2 cos θ�2) . (A6)

To evaluate this latter conductance, we transform the discrete
sum in an integral over the frequency:

1

AkBT 2

∫ +∞

0
〈qA′ (t)qA(0)〉dt

= 3

4

∫ ωmax

0
g2(ω)c̄vt21(ω)|v2|I2(L,ω)dω, (A7)
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where we have supposed that the transmission coefficient t21

is independent on the incidence angle and we have introduced
the integral,

I2(L,ω) =
∫ +∞

1
u−3 exp

(
− Lu

2�2(ω)

)
du. (A8)

For thick media, L 
 � and one can approximate the inte-
gral I (L,ω) ∼ 2�

L
exp(− L

2�
).44 To evaluate the conductance

Eq. (A7), we assume as stated in the main body of the text that
the vDOS is described by the Debye model and the frequency
dependence of the mean free path is given by Callaway law:41

�2(ω) = A2|v2|/ω2, (A9)

where v2 is assumed to be constant consistently with our
hypothesis of Debye solid. The constant A2 is related to the
thermal conductivity λ2 through

λ2 = kBA2ωD,2

2π2|v2| . (A10)

If we suppose furthermore that the transmission coefficient t12

is independent on the frequency ω as in the DMM model, it
becomes

1

AkBT 2

∫ +∞

0
〈qA′ (t)qA(0)〉dt

= 3

8
kBn2t21v2

(
21/3˜A2

n
2/3
2 πv2L

)3/2

, (A11)

where we have assumed that ωmax 
 √
v2A2/L, which phys-

ically means that the phonon mean free path of the mode with
a frequency ωmax is smaller than the system length. This latter
contribution may be rewritten:

δG(L) = 3n2kBt21v2

8

√
9π

8

(
λ2

G22L

)3/2

, (A12)

where we have introduced the conductance G22 = 3n2kBv2/8.
Similar calculations allow one to express the total contribution
of the cross fluxes as

δG(L) = 3

8
kB

√
9π

8

×
(

n2t21v2

(
λ2

G22L

)3/2

+ n1t12v1

(
λ1

G11L

)3/2)
.

Note that for Lennard-Jones solids differing only by their mass,
the length ξ = λi/Gii = Ai/(n2/3

i vi) is constant independent
on the mass. Again anticipating the results of Sec. VI E, we
can assume that the infinite length conductance G12 is given
by G12 = 3

4kBn2v2t21 and the transmission coefficient obeys:
t12 = m2t21/m1 where we have introduced the masses of the
two solids. Hence for the interface considered in Fig. 5 for
which m2/m1 = 2, the correction to the conductance writes

δG(L) = cG12

(
ξ

L

)3/2

, (A13)

where c = √
π
6 (1 + 2

√
2) � 2.75.

APPENDIX B: APPROXIMATIONS OF THE AMM
CONDUCTANCES

In this Appendix, we assess the accuracy of different
approximations used to estimate the conductance appearing in
Eqs. (43) and (51). More specifically, one needs to approximate
the three geometrical integrals which depend on the Rayleigh
transmission coefficient Eq. (42):

I1 =
∫ 1

0
μ1t12(μ1)dμ1, (B1)

I2 =
∫ 1

0
μ2

1t12(μ1)dμ1, (B2)

I3 =
∫ 1

0
μ1μ2t12(μ1)dμ1. (B3)

The general idea is to assume that the geometric integrals are
dominated by phonons propagating in the soft material with
a small angle θ2 � 0 when the acoustic mismatch between
the two solids is large. This leads to use the following
approximations:

μ2 � 1, (B4)

μ2 � 1 − α2

2
, (B5)

μ2 � 1 − α2

2

(
1 − μ2

1

)
, (B6)

where we have denoted by α the ratio of the sound veloc-
ities: α = c2/c1 < 1. The first approximation Eq. (B4) has
been already discussed in the text and the corresponding
approximate integrals are given in Eqs. (45) and (53). In
the second approximation Eq. (B5), the three approximated
integrals depend on the parameter γ = β(1 − α2

2 ):

I
appx
1 = 4γ

(
1 − γ 2

1 + γ
+ γ − 2γ log

(
1 + γ

γ

))
,

I
appx
2 = 4γ

(
1

2
− 2γ − γ 2 + γ 3

(1 + γ )
+ 3γ 2 log

(
1 + γ

γ

))
,

(B7)

I
appx
3 =

(
1 − α2

2

)
I

appx
1 . (B8)

The third approximation Eq. (B6) yields calculations a little
bit more involved. Within this approximation, one obtains the
following expressions for the three integrals:

I
appx
1 = 4β

∫ 1

0

μ2
(
1 − α2

2 (1 − μ2)
)

(
μ + β

(
1 − α2

2 (1 − μ2)
))2 dμ; (B9)

I
appx
2 = 4β

∫ 1

0

μ3
(
1 − α2

2 (1 − μ2)
)

(
μ + β

(
1 − α2

2 (1 − μ2)
))2 dμ; (B10)

I
appx
3 = 4β

∫ 1

0

μ2
(
1 − α2

2 (1 − μ2)
)2

(
μ + β

(
1 − α2

2 (1 − μ2)
))2 dμ. (B11)

The denominator appearing in the three integrals has
two poles r1/2 having multiplicity two and which are
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given by

r1 =
−1 +

√
1 − 2α2β

(
1 − α2

2

)
α2β

, (B12)

r2 =
−1 −

√
1 − 2α2β2

(
1 − α2

2

)
α2β

, (B13)

and the approximated integral I
appx
j are given by

I
appx
j = 4β

(
Ej + a1j

r1(r1 − 1)
+ b1j log ((1 − r1)/(−r1))

+ a2j

r2(r2 − 1)
+ b2j log ((1 − r2)/(−r2))

)
(B14)

j ∈ 1,2,3,

with

E1 = 2

β2α2
, (B15)

E2 = 1

β2α2
− 8

β3α4
, (B16)

E3 = 1

3β2
− 2

β3α2
+ 12

β5α4
, (B17)

and

ai1 = − 4ri
3

β3α4(r1 − r2)2
, (B18)

bi1 = ri(1 − ri)

ri − ri+1

(
1 − ri+1

(1 + β)2
− 2

β2α2

− ai1

(
1 − ri+1

(1 − ri)2
+ ri+1

ri
2

)
− ai+1,1

ri+1(1 − ri+1)

)
, (B19)

ai2 = − 4ri
4

β3α4(r1 − r2)2
, (B20)

bi2 = ri(1 − ri)

ri − ri+1

(
1 − ri+1

(1 + β)2
+ 8

β3α4
− 2(1 − ri+1)

β2α2

− ai2

(
1 − ri+1

(1 − ri)2
+ ri+1

ri
2

)
− ai+1,2

ri+1(1 − ri+1)

)
, (B21)

ai3 = 4ri
4

β4α4(r1 − r2)2
, (B22)

bi3 = ri(1 − ri)

ri − ri+1

(
1 − ri+1

(1 + β)2
− (βα2 − 4)(1 − ri+1)

β3α2
− 12

β4α4

− ai3

(
1 − ri+1

(1 − ri)2
+ ri+1

ri
2

)
− ai+1,3

ri+1(1 − ri+1)

)
, (B23)

where i ∈ 1,2 and we have noted i + 1 = 1 + (i mod (2)) (i.e,
1 + 1 ≡ 2; 2 + 1 ≡ 1). We can now study the accuracy of the
previous approximations by comparing the exact expressions
for the conductance Eqs. (43) and (51) with the approximate
equations involving the three approximations discussed above.
The comparison is shown in Figs. 11 and 12 for the series
of mass mismatched Lennard-Jones solids analyzed in the
simulations. Strikingly the different approximations seem to
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FIG. 11. (Color online) Comparison between the exact Landauer
AMM conductance Eq. (43) with the approximate solution Eq. (44)
for the series of mass-mismatched Lennard-Jones crystals considered
in the simulations. The mean acoustic velocity is taken to be that of
the Lennard-Jones argon.

work quite well over a broad range of acoustic impendance ra-
tios. The first approximation Eq. (B4) slightly underestimates
the Landauer AMM conductance when the impedance ratio
tends towards 1, but the two other approximations describe
accurately the Landauer conductance for the whole range
of ratio. As for the nonequilibrium conductance, the three
approximations work quite well when the impedance ratio is
smaller than 0.8. Above 0.8, the approximations Eqs. (B4)
and (B5), respectively, overestimate and underestimate the
conductance. In particular, Eq. (B4) predicts the divergence
of the conductance at a value of the impedance ratio < 1. On
the other hand the approximation Eq. (B6) predicts accurately
the final divergence of the conductance up to ratios ∼ 0.9.
None of the approximation presented predicts the divergence
of the conductance when the impedance ratio tends towards 1,
but in practice it is not common to work with such large ratios.

0.2 0.4 0.6 0.8 1

 (m1/m2)
1/2

10

100

1000

G
 (M

W
 m

-2
 K

-1
)

Gneq
AMM

μ2=1

μ2=1−α2/2

μ2=1−α2/2(1−μ1
2)

FIG. 12. (Color online) Comparison between the exact nonequi-
librium conductance Eq. (51) with the approximate solution Eq. (52)
for the series of mass-mismatched Lennard-Jones crystals considered
in the simulations. The mean acoustic velocity is taken to be that of
the Lennard-Jones argon.
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