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of screw dislocations in fcc metals
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We develop a model of cross-slip in face-centered cubic (fcc) metals based on an extension of the Peierls-
Nabarro representation of the dislocation core. The dissociated core is described by a group of parametric
fractional Volterra dislocations, subject to their mutual elastic interaction and a lattice-restoring force. The elastic
interaction between them is computed from a nonsingular expression, while the lattice force is derived from
the γ surface obtained directly from ab initio calculations. Using a network-based formulation of dislocation
dynamics, the dislocation core structure is not restricted to be planar, and the activation energy is determined for
a path where the core has three-dimensional equilibrium configurations. We show that the activation energy for
cross-slip in Cu is 1.9 eV when the core is represented by only two Shockley partials, while this value converges
to 1.43 eV when the core is distributed over a bundle of 20 Volterra partial fractional dislocations. The results of
the model compare favorably with the experimental value of 1.15 ± 0.37 eV [J. Bonneville and B. Escaig, Acta
Metall. 27, 1477 (1979)]. We also show that the cross-slip activation energy decreases significantly when the
core is in a particular local stress field. Results are given for a representative uniform “Escaig” stress and for the
nonuniform stress field at the head of a dislocation pileup. A local homogeneous stress field is found to result in
a significant reduction of the cross-slip energy. Additionally, for a nonhomogeneous stress field at the head of a
five-dislocation pileup compressed against a Lomer-Cottrell junction, the cross-slip energy is found to decrease
to 0.62 eV. The relatively low values of the activation energy in local stress fields predicted by the proposed
model suggest that cross-slip events are energetically more favorable in strained fcc crystals.
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I. INTRODUCTION

Cross-slip is the process by which a screw dislocation
crosses from its primary glide plane to a conjugate plane.
It is recognized as one of the most significant mechanisms
controlling the evolution of the dislocation microstructure.
The process is thus critical to fundamental macroscopic plastic
deformation phenomena, such as work hardening, fatigue, and
creep.1 For example, cross-slip is known to be responsible
for controlling the rate of dynamic recovery during stage-III
plastic deformation in fcc metals.2,3

Cross-slip is a thermally activated process, and its rate is
influenced by the local stress field. Nevertheless, determination
of the activation energy as a function of the stress state is
still an open subject in dislocation mechanics. In fcc metals,
the situation is complicated by the dissociated character of
dislocations, which raises the question of whether and how
Shockley partials recombine into an energetically unfavorable
“constricted” configuration before they disassociate again on
the conjugate plane. Because of its primary importance in
plasticity, cross-slip has been the subject of several modeling
approaches. In particular, attempts to quantify the activation
energy of cross-slip in fcc metals have proceeded along
two distinct paths. The first is based on the continuum
elasticity theory of dislocations,4–6 while the second focuses on
atomistics, and relies on molecular statics (MS) or molecular
dynamics (MD) simulations.7–9

Among the early continuum models of cross-slip in
fcc metals, two different mechanisms were proposed by
Fleischer10 and Friedel-Escaig,4 respectively. According to
Fleischer’s mechanism, cross-slip can take place without the
requirement that the stacking-fault (SF) ribbon develops in

a constricted configuration. Fleischer assumed that the SF
ribbon could simply fold over the intersection line between
primary and conjugate planes. Although this mechanism is
based on a simple energetic analysis, a more detailed version
(in the anisotropic framework11) showed that the creation of a
stair-rod dislocation, which is a by-product of the process, was
far more energetically expensive than the recombination of
the two partials. On the other hand, the Friedel-Escaig model
(developed by Escaig4 following Friedel’s idea of cross-slip12

and expanding on the work of Stroh13) involves the constriction
of the Shockley partials on the original glide plane, followed
by redissociation on the cross-slip plane (cf. Fig. 1). In this
model, the interaction among dislocations is approximated by
line tension theory, and the dislocation geometry is described
by circular segments, the radius of curvature of which is
assumed to be very large compared to the separation between
partials. Although this model results in a convenient analytical
expression for the cross-slip activation energy in the limits
of low and high stresses, its approximated nature introduces
uncertainties in the calculation of the activation energy.

Subsequent elasticity-based models attempted to address
the approximations of the original Friedel-Escaig model. The
model of Duesbery5 introduced a three-dimensional (3D)
description of dislocations which improved the accuracy in
the calculation of stress field and elastic energy. However,
the model presents uncertainties associated not only with the
size of the dislocation core (a cutoff radius was used in all
calculations), but also with the recombination distance of the
partials, especially for materials with narrow stacking-fault
ribbon, such as Cu. Additionally, the cross-slip energy for Cu
at zero stress predicted by the model is too large (3.7 eV)
compared with the measured value of 1.15 ± 0.37 eV.14,15
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FIG. 1. (Color online) The cross-slip mechanism according to the Friedel-Escaig mode. (a) The configuration stacking-fault (SF) ribbon
in the (111) primary plane (red area) is pinched to a point from its original equilibrium width d . (b) Cross-slip configuration with the stacking
fault expanding in the (111̄) conjugate plane (blue area).

Other methods have tried to address the issue of the re-
combination energy by coupling the elasticity framework
with atomistic parameters. The Püschel model16,17 explicitly
includes the dislocation core energy in the sense that the
cutoff radius and the recombination distance are obtained
from a one-dimensional (1D) Peierls-Nabarro model. Even
though this model gives more accurate results for the cross-slip
energy (1.43 for Cu), it still has uncertainties due to the
geometric discontinuity (straight dislocation segments), and
the geometric limitation of linear segments to represent simple
core configurations.

Atomistic simulations carried out in order to calculate the
cross-slip activation energy were based on either finding the
cross-slip energy path (Rasmussen8), or on parametrizing
the movement of the partials (Rao7). Rasmussen’s model,
which used the nudged elastic band (NEB) method to
determine the cross-slip path, discovered several character-
istics of the cross-slip process. In particular, it was shown
that no instantaneous redissociation on the conjugate plane
takes place after a segment of the stacking-fault ribbon is
constricted in the primary plane. The model also pointed
out the configurational asymmetry between the edgelike and
the screwlike constrictions that delimit the cross-slipped
portion of a dislocation. Nevertheless, the cross-slip energy
predicted by this model (2.7 eV for Cu) is significantly higher
than elasticity-based models and experimental measurements.
Rao and co-workers18 recently reexamined these results, and
proposed a mechanism by which cross-slip rates are enhanced.
In the mechanism proposed by Rao et al., a screw dislocation
was found to spontaneously attain a low-energy cross-slipped
configuration upon intersecting a forest dislocation. The
activation energy calculated with MD simulations indicated
that the activation energy is a factor of 2–5 lower than that
for cross-slip in isolation via the Escaig process. The MS
simulations of Rao et al. (Rao7) showed that constrictions take
place over 4–6 lattice planes, and that in the center of the
critical configuration, the constriction is nearly equally spread
over both the primary and conjugate glide planes. The results
given by this model for Cu (1.07–1.28 eV) and Ni (2.35 eV)
are in reasonable agreement with the values obtained from
experimental measurements.14

Although both continuum and atomistic approaches proved
effective in revealing many significant features of cross-slip,
each one suffers from intrinsic limitations. The continuum
approach has been plagued by the somehow arbitrary quan-
tification of the dislocation core energy, which is a direct
consequence of the singular field associated with the displace-
ment discontinuity in classical dislocation theory.19 Moreover,
the 3D geometry of curved dislocations has been described
approximately by a series of straight segments, which results
in additional uncertainties related to the accuracy of the
stress field at the connections between straight segments.20

On the other hand, atomistic simulations of cross-slip have
a limited scope as a result of the empirical nature of the
interatomic potential, the difficulty of generating complex
3D configurations, and the restricted size of the system
imposed by computational constraints. In this fashion, the
influence of chemistry (impurities or solute atoms) can not
be reliably studied with MS or MD. Moreover, interactions
between the dislocation core during cross-slip and nearby
microstructures (e.g., pileups, precipitates, grain boundaries,
etc.) is not possible with atomistic simulations at the present
time.

The objective of this work is to study the energetics of
cross-slip of screw dislocations in fcc metals in a general local
stress environment, such as the environment at the head of a
dislocation pileup. The goal is to enable simulations of screw
dislocation cross-slip in an evolving and complex dislocation
microstructure. To meet this objective, we further develop
here the planar dislocation core model of Banerjee, Ghoniem,
Lu, and Kioussis (BGLK).21 This method is essentially a
two-dimensional (2D) parametrization of the original Peierls-
Nabarro (PN) model, where the dislocation core is represented
by a group of Volterra fractional dislocations. In this study, we
consider the full 3D configuration of the dislocation core that
develops during cross-slip in fcc metals. To this end, we utilize
a fundamental reformulation of the parametric dislocation
dynamics method, where we describe dislocation networks on
the basis of abstract graph theory.22 Moreover, for each of the
fractional dislocations composing the spread core, we further
improve the accuracy of energy calculations by utilizing the
nonsingular continuum formulation developed by Cai et al.23
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This application removes the uncertainty associated with the
size of the dislocation core of fractional dislocations. The
lattice-restoring force exerted on the fractional dislocations
is determined from directional derivatives of the γ surface,24

which is computed directly from ab initio methods.
In Sec. II, we first describe an extension of the BGLK

model to nonplanar dislocation cores, the nonsingular fields
of fractional dislocations composing the core, and the
equilibrium configurations of fractional dislocations with the
network dislocation dynamics method. This is followed in
Sec. III by a presentation of results of the model for cross-slip
energy and dislocation configurations in copper that show
good agreement with experimental measurements. We also
show an application of the model to calculations of cross-slip
at the head of a dislocation pileup, with the implication that
the cross-slip energy is significantly reduced for the head
dislocation in a pileup. Finally, conclusions and possible
future directions are discussed in Sec. IV.

II. MODEL FORMULATION

Current elasticity models for determination of the cross-slip
energy are deficient in a number of ways: (a) they suffer from
arbitrariness in the representation of the dislocation core, often
using an ad hoc cutoff radius to avoid singularities, (b) they
fail to accurately describe the lattice-restoring force affecting
both elastic and stacking-fault energy, (c) they neglect the
long-range contribution to the self-energy (e.g., using the line
tension approximation), and crudely approximate dislocation
interactions by discretizing dislocations with piecewise linear
segments. The model presented here removes these limitations:
(1) we apply a nonsingular PN framework for the elastic field
of fractional dislocations, (2) we use a lattice-restoring force
computed directly from ab initio methods, and (3) we take
advantage of a network-based implementation of dislocation
dynamics that guarantees continuity of the tangent vector
of dislocation lines, even in the presence of topologically
complex configurations. These concepts are now described
in detail.

A. Extension of the PN framework
to nonplanar dislocation cores

Following the BGLK model, the core of the original screw
dislocation is discretized in a set of parametric fractional
dislocations (PFDs). Thus, the displacement discontinuity
across the original dislocation core is replaced with a stepwise
distribution, the configuration of which will be determined
from equilibrium. In fcc metals, the original a/2〈011〉 screw
dislocation on the (11̄1) is dissociated in Shockley par-
tials with Burgers vector b1 = a/6〈121〉 and b2 = a/6〈1̄12〉,
respectively. Therefore, letting 2n be the total number of PFDs,
n of them are assigned a slip vector b1/n, while the remaining
n have slip vector b2/n. As n → ∞, a continuously distributed
core is achieved. However, in the present numerical implemen-
tation, each fractional dislocation has a small displacement
discontinuity that becomes infinitesimally small as n → ∞.

The overall configuration of PFDs is illustrated in Fig. 2,
where each line for a fractional dislocation can be regarded
as a contour line of equal displacement vector, in increments
of b1/n for n PFDs, and b2/n for the other half. In the initial
relaxed configuration, the density ρ of PFDs per unit length
normal to their line direction exhibits a double-peaked shape,
with each peak centered around the location of a what is
known as a Shockley partial. Conceptually, Shockley partials
can be regarded as a two-delta function approximation to the
original dislocation density (displacement gradient) within
the core of a screw dislocation. Our representation spreads
the two original Shockley delta functions to a “bundle” of
PFDs that can be regarded as an equivalent n-delta function
representation of the distributed core. As n → ∞, the n-delta
function representation yields the smoothly distributed core.

In our model of cross-slip, we imagine that the inner pair
of the PFD bundle is allowed to recombine, and separate again
on the conjugate (111̄) slip plane with their respective Burgers
vectors a/6〈112〉 and a/6〈1̄21〉. This event locally relaxes
the bundle on the primary plane and promotes cross-slip of
subsequent pairs of PFDs until the bundle completely migrates
to the conjugate plane. In the process, the original inner PFD
pair becomes the outer pair delimiting the stacking-fault region
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FIG. 2. (Color online) The PN model of cross-slip in fcc metals. (a) Equilibrium distribution of the bundle of parametric fractional
dislocations (PFDs) composing the core of the screw dislocation, where each Shockley partial is divided in n PFDs. The density ρ(y) of PFDs
is a double-peaked distribution. The discretized displacement profile across the core is compared to the PN profile and to the Volterrra profile.
(b) PFD configuration during cross-slip. Corresponding pairs of PDFs recombine on the cross-slip line and dissociate again in the conjugate
plane. The outermost constriction points are A and B and the distance between them is L.
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in the conjugate plane. We note that in this process, a series
of constriction points are formed on the cross-slip line, the
outermost of which are labeled A and B in Fig. 2(b). Despite
the apparent overall symmetry, A and B are in locally different
configurations. PFDs on the primary plane converging at A

have edgelike character, while those departing from it on the
conjugate plane have screwlike character. The opposite situa-
tion is encountered at B. This asymmetry, which is captured
by atomistic simulations7,8 and not by elasticity models based
on the line tension approximation,4 is present in our results.

Equilibrium configurations of the system can be considered
for different values of the distance L between the constriction
points A and B. In each of these equilibrium configurations,
PFDs interact through their mutual elastic field, and are subject
to a lattice-restoring stress arising from the presence of the
stacking fault. The elastic energy of the dislocation system
is determined by calculating the mutual interaction energy
between all PFDs. Including the interaction of each line with
itself, this procedure naturally includes the self-energy without
any local approximations (i.e., the line tension approximation).
Ideally, the interaction energy between two dislocations can
be calculated as a double line integral using Blin’s formula.25

However, the determination of the dislocation self-energy
using Blin’s formula is known to diverge as a result of
idealizing the dislocation as a line with a displacement jump
condition. The issue of the singularity in the elastic solution of
the stress field and energy of the Volterra dislocation is avoided
by considering a “finite cross section” for the dislocation
line.26 Applying this concept to each PFD, and utilizing the
analytical expression derived by Cai et al.,23 the nonsingular
elastic energy of the system becomes
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where R = x − x′, R = |R|, and, for an isotropic distribution
of the core, R2

a = R2 + a2. The choice of the core spreading
parameter a is particularly important when a small number
of PFDs are used, and this aspect will be discussed further in
Sec. II B.

B. Nonsingular description of
Volterra fractional core dislocations

The treatment of the dislocation elastic energy and stress
field according to the nonsingular framework requires the
value of the dislocation core a, which can not be derived from
continuum theory. De Wit26 suggested using the Peierl’s model
to determine the distribution of infinitesimal dislocations. An
attempt to obtain a from atomic considerations was developed
by Schoeck,27 who proposed obtaining a by comparing the
nonsingular dislocation energy with one obtained from an
atomistic treatment. The original Peierls-Nabarro28 model is a

convenient way to describe the dislocation core structure due
to the planar character of the atomic misfit in crystalline solids.

Following Schoeck’s model, the energy of a dislocation EP

is the sum of the elastic energy Eel (of the two half-spaces)
and the misfit energy EA (interplanar misfit). Furthermore,
the equilibrium arrangement of the dislocation core can be
obtained by minimizing the total energy (EP = EP

el + EA)
with respect to a suitable adjustable geometrical parameter
which describes the configuration. It has been shown by
Schoeck29 that in equilibrium when the two half-spaces are
assumed to be linear elastic, the atomic misfit energy EA

is equal to the prelogarithmic elastic line energy factor. So,
using this result, the line energy of a single straight dislocation
of orientation ϕ (i.e., with screw and edge components p =
b cos ϕ and q = b sin ϕ, respectively) for an isotropic material
at equilibrium, is found to be27

EP = ÊL(ϕ)

(
ln

[
R

2w̄(ϕ)

]
+ 1

)
,

(2)

ÊL(ϕ) = μ

4π
b2

(
1

1 − ν
(sin ϕ)2 + (cos ϕ)2

)
,

where EL is the prelogarithmic elastic line energy factor, w̄

is the average between the edge and screw components for
the width. An estimate of the dislocation core width can be
obtained when a 1D γ surface is constructed by parametrizing
it with the shear modulus μ and the unstable stacking fault
(γu). So, the width w of a single dislocation in an isotropic
medium would then be

w(ϕ)

b
= cos2 ϕ + sin2 ϕ/(1 − ν)

b/c + 2π2γu/(μb)
, (3)

where c is the interplanar spacing between glide planes. Thus, a
unique value for the core width (aS and aE) can be obtained by
requesting that the energy from the continuum model [Eq. (1)]
to agree with EP at equilibrium. Then, by comparing these
results, the following values for the dislocation core width are
obtained:

aS = 2√
e

(
b

b/c + 2π2γu/(μb)

)
,

(4)

aE = 2

e

(
b/(1 − ν)

b/c + 2π2γu/(μb)

)
,

where e is the base of the natural logarithms. An averaged
value for a can be approximated as

a ≈ 2

e

(
b

b/c + 2π2γu/(μb)

)
. (5)

C. Ab initio determination of the crystal lattice
slip-resistance force

In the presence of partial dislocations, the total energy of
the system includes a contribution due to the existence of the
stacking-fault ribbon bounded by pairs of partial dislocations.
The variation in stacking-fault energy associated with a change
of width of the ribbon, on either primary or conjugate plane,
gives rise to a configurational force on partial dislocations on
that plane. The stacking-fault energy and the corresponding
lattice force can not be determined from continuum elasticity
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FIG. 3. (Color online) (a) The generalized stacking-fault energy (GSFE), or γ surface on the (11̄1) plane of Cu, plotted vs displacement
components u∗

e = ue/b and u∗
s = us/b, in the edge direction 〈211̄〉 and screw direction 〈011〉, respectively. The magenta line represents the

energy profile along the direction of the Shockley partial 1/6〈121〉. (b) Comparison of the GSFE profile of a screw dislocation and a Shockley
partial dislocation when projected on the u∗

e = 0 plane. The unstable stacking-fault (USF) energy and intrinsic stacking-fault (ISF) energy are
marked.

considerations. In our model, they are computed using the
concept of generalized stacking-fault energy (GSFE), or γ

surface.24 A process to construct the γ surface has been
developed by Schoeck30 and more recently by Xiao-Zhi et al.31

First, the lattice parameter a of the material is calculated by
minimizing the energy of its unit cell. Then, the γ surface is
determined as a function of the relative coordinates u∗

e = ue/b

and u∗
s = us/b, representing components of displacement

imposed to a unit cell, in the edge direction 〈211̄〉 and screw
direction 〈011〉, respectively. The γ surface has translational
periodicity equal to

√
3 in the u∗

e coordinate, and equal to 1
in the u∗

s coordinate. Taking advantage this periodicity, the γ

surface can be parametrized as

γ (u∗
s ,u

∗
e )
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(
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e√
3

)
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8πu∗

e√
3

)
+ a1
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sin
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+ sin
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s
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+ a2 sin

(
4πu∗

e√
3

)
,

(6)

where the coefficients c0, c1, c2, c3, c4, a1, and a2 are
found by fitting Eq. (6) with data obtained from ab initio
calculations. Of particular interest during the fitting process
are the values γu of the unstable stacking-fault (USF) energy
and the value γi of the intrinsic stacking-fault (ISF) energy.
These two values correspond to the local maximum and local
minimum encountered along the direction of the Shockley
partial 1/6〈21̄1̄〉 at u∗ = (1/4,

√
3/12) and u∗ = (1/2,

√
3/6),

respectively. In this work, the γ surfaces for Cu and Ni were

constructed using the VASP code.32–35 The characteristic values
γu and γi , were found to be 182 and 42 mJ/m2 for Cu,
while these values for Ni were determined to be 270.5 and
138.3 mJ/m2, respectively. The γ surface for Cu is plotted
in Fig. 3(a), where the energy curve corresponding to the
direction of the Shockley partial is highlighted. In Fig. 3(b),
this curve is projected on the plane u∗

e = 0 for comparison of
the energy profile of a pure screw dislocation.

Once the γ surface is determined, the lattice-restoring force
on a dislocation can be obtained from derivative of γ along the
direction of the slip vector of that dislocation. In particular,
if a Shockley partial having slip vector s (|s| = b/

√
3) is

discretized by n PFDs, the lattice force per unit line on the
ith PFD becomes

f L
i = −1

b

∂γ

∂u∗

∣∣∣∣
is
nb

· s
n
. (7)

We remark that this force acts in the glide plane of the
dislocation line and normal to the dislocation tangent vector.

D. Determination of equilibrium states
by network dislocation dynamics

We study the total energy of the dislocation system (elastic
plus stacking fault) for different values of the cross-slip length
L. For each value of L, the energy is computed in the
equilibrium configuration, i.e., when dislocations stop moving
and the system becomes stationary. Dislocation dynamics
(DD) is used to study dislocation motion and reach equilibrium
configurations. The configuration of the dislocation core
during cross-slip, illustrated in Fig. 2(b), suggests that the
concept of planar dislocation lines with constant Burgers
vector should be abandoned when formulating the DD
framework. On the cross-slip line, for example, not only
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PFDs give rise to a 3D configuration by changing their
glide plane, but also their Burgers vector changes (yet in a
way that their sum is constant). In order to represent this
complex geometric and topological structure, we adopt a
network-based implementation of dislocation dynamics. The
present model is based on a recent formulation of constrained
network parametric dislocation dynamics (CN-PDD).22 In
this framework, a dislocation network N is represented by
a collection of vertices (dislocation nodes) {αi}, connected by
a set of directional edges (dislocation line segments) {(αi,αj )},
each carrying a vectorial flow quantity (Burgers vector).

Based on thermodynamic considerations, it can be shown
that the equation of motion of an arbitrary dislocation network
can be cast in the following weak form:

∑
(αi ,αj )∈N

∫ αj

αi

(Bv − f ) · δv dl = 0, (8)

where B is a positive-definite tensor of dislocation mobility, v
is the velocity vector along the dislocation line, and f is the
force per unit line of dislocation. When lattice friction is taken
into account, the total force per unit line of dislocation can be
expressed as f = f E + f L, where f E is the Peach-Koehler
force induced by the total elastic stress field, and f L is
the lattice-restoring force. If the position of each dislocation
edge is prescribed in parametric form as r(u,t) = H(u)q(t),
with H(u) being a matrix of shape functions and qi(t) a
vector of nodal degrees of freedom, the velocity vector on
each dislocation lines becomes v = H(u)q̇(t) and standard
assembling techniques allow us to rewrite Eq. (8) in global
form as

K Q̇ = F, (9)

where K is the stiffness matrix of the network, Q̇ is the global
vector of vertex generalized velocities, and F is the global
vector of vertex forces. Numerical solution of Eq. (9) yields
the nodal generalized velocities, which are used to update
the dislocation network configuration at each time step of
simulation.

Hermite shape functions and degrees of freedom are typi-
cally used in dislocation dynamics. When linear Hermite shape
functions are used, the network is discretized in piecewise
straight segments and the continuity of tangent vector, Peach-
Koehler force, and lattice force at the intersection of segments
is violated (as in Ref. 5). The lack of an accurate description
of the dislocation core geometry at various stages of cross-slip
is improved by describing dislocations with cubic Hermite
splines. With this choice, the generalized degrees of freedom
of a dislocation segment (αi,αj ) are

q = [ pi t i pj tj ]T , (10)

where, in general, pk and tk are the position and parametric
tangent of the kth vertex in the network, respectively. In order
to further reduce the total number of degrees of freedom in the
network, the nodal tangents can be enslaved to nodal positions
by prescribing a linear relationship between them. In defining
this relationship, we take advantage of the network structure
and used

t i =
∑

αj ∈Oi

pj − pi

cij

+
∑
αj ∈Ii

pi − pj

cij

, (11)

where Oi is the set out-neighborhood of the vertex i (i.e., the
set of vertices connected to vertex i by links departing from i),
Ii is the set in-neighborhood of the vertex i (with analogous
definition), cij = | pi − pj |α , and α is an appropriate tension
parameter. This rule can be seen as a generalization of Catmull-
Rom curves, which, for α = 0.5, enjoy useful properties
such as smoothness and non-self-intersection.36 During the
assembly process, relationship (11) is included in the stiffness
matrix of the network, therefore the method presented here
allows the description of long curved dislocation segments
with a minimal number of degrees of freedom. Moreover, since
both position and tangent continuity are guaranteed at each
dislocation node, even in the presence of 3D configurations
and complex topological connections, dislocation elastic fields
can be computed with a high level of accuracy.20

III. RESULTS FOR THE INFLUENCE OF DISTRIBUTED
DISLOCATION CORES AND THE LOCAL STRESS

We now present results of calculations of the activation
energy of cross-slip using the extended Peierls-Nabarro model
described above. The formation energy of the system can be
expressed as the difference between the total elastic energy
and the total stacking-fault energy:

E = Eel − ESF. (12)

The total stacking-fault energy can be computed approximat-
ing the area integral of the γ surface. In particular, splitting
the contributions from the primary and conjugate planes, we
write

ESF =
∫

γ dA ≈
n∑

k=1

γ (u∗
k)

(
A

p

k + Ac
k

)
(13)

with n being the number of PFDs composing a Shockley
partial, u∗

k = ks/(nb) the coordinate of the slip vector at
the kth PFD, and A

p

k and Ac
k the area enclosed between

the kth and (k − 1)th pair of partials in the primary and
conjugate planes, respectively. The change in formation energy
during the cross-slip process is calculated with respect to the
final configuration, illustrated in Fig. 2(b), and the reference
configuration of Fig. 2(a). Different final configurations are
obtained as equilibrium states of the system for different values
of the cross-slip length L = AB [Fig. 2(b)]. The change in
energy therefore becomes


E(L) = 
Eel − 
ESF = 
Eel −
n∑

k=1

γ (u∗
k)

(

A

p

k + 
Ac
k

)

= 
Eel +
n∑

k=1

γ (u∗
k)

(
S

p

k − Sc
k

)
. (14)

In Eq. (14) we introduced the areas S
p

k = −
A
p

k swept by
PFDs on the primary plane and the corresponding areas Sc

k =

A

p

k swept on the conjugate plane. We note that when only two
Shockley partials are used, Eq. (14) simplifies to the expression
found in Ref. 37:


E = 
Eel + γi(S
p − Sc), (15)

where γi is the intrinsic stacking-fault energy of the material.
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FIG. 4. Comparison of the energy of the unstressed configuration
as a function of the relative cross-slip length L/bp, where bp = b/

√
3:

the dashed line represents the result obtained with only two partials
(n = 1), while the solid line represents the result for the PN model
with 20 fractional dislocations.

Figure 4 shows the energy 
E as a function of the parameter
L for two limiting cases of the model: (a) a simplified case
including only two Shockley partials (n = 1), corresponding to
the compact cross-slip mechanism,4 and (b) a generalization of
the model with 20 PFDs (n = 10) participating in the cross-slip
process. In either case, the value 
E(0) represents the energy
of the 2D constricted configuration in the primary plane. As L

increases, the energy experiences a rapid increase, which finds
its physical origin in the extra energy required to separate the
two constriction points and expand the PFDs in the cross-slip
plane. However, the mutual interaction between the two
constricted regions decays rapidly with L, therefore leading
to the plateau observed in the energy curve for sufficiently
large L. This dependence of the cross-slip energy on the
separation between the two constrictions on the cross-slip
plane is well documented and has been observed in other
elasticity4,5 and atomistic models as well8,9 and Ref. 16. The
plateau is reached at L ≈ 45bp and the corresponding energy
is 
E = 0.34[μb3] ≈ 1.9 eV. This value, which corresponds
to the activation energy computed by the proposed model for
n = 1, is significantly lower than a value of ≈3.7 eV estimated
by Duesbery,5 2.7 eV determined by Rasmussen, and close to
the range of values calculated by Püschl and Schoeck16 (see
Ref. 17 for a critical review). However, this result is higher than
the experimental measurement obtained by Bonneville and
Escaig: 
E = 1.15 ± 0.37 eV. We also observe that the energy
value at the plateau is approximately twice the constriction
energy 
E(0), therefore suggesting that each of the two 3D
constrictions is energetically equivalent to the 2D constriction
at L = 0.

The improvement in the accuracy of the cross-slip energy
of the present model is attributed to two factors: (1) a very
accurate representation of the cross-slip configuration with
smoothly curved lines, and (2) the utilization of atomistically
informed nonsingular elastic fields with less ambiguity on the
contribution of Shockley partial cores. However, the value
determined here (1.9 eV) is outside the range of experimental
observations of Bonneville and Escaig, and indicates that the
rate of cross-slip through thermal fluctuations alone will be
insignificant.

To address this discrepancy, we investigate here a mech-
anism in which cross-slip does not take place through the
constriction of two Shockley partials on the primary slip
plane to an infinitesimally small screw segment, followed by
its dissociation into two equivalent Shockley partials on the
conjugate plane. An energetically more favorable mechanism
is proposed such that cross-slip is a gradual process by
which small parts of the dislocation core are sequentially
transferred and assembled on the cross-slip plane. A study
of this mechanism requires that the dislocation core should
have a distributed displacement field on both primary and
conjugate planes. To represent such distributed cores, we use
bundles of PFDs, as described earlier. Calculations of the
dislocation core structure are complex because of the truly 3D
nature of PFDs during the cross-slip process. Numerical tests
indicated that convergence in core configuration and calculated
activation energy are obtained with n � 10 (i.e., 20 PFDs).
The energy values obtained from our simulations (cf. Fig. 4)
show a constriction energy of E0 = 0.125[μb3] = 0.7 eV,
which is lower than what is obtained for n = 1, and that
the activation energy is slightly more than twice the initial
constriction energy. Moreover, it can be observed in Fig. 5 that
the dislocation configuration near the two constriction regions
is asymmetric, due to an asymmetric rotation of the dislocation
lines in order to minimize the energy by lengthening the screw
component and shortening the edge component. This aspect
was previously observed by Rasmussen8 using atomistic
simulations. In the mechanism described here, the innermost
PFD constricts first, then the constricted fractional screw
segment dissociates into two partials and those expand on
the conjugate slip plane as the outermost PFDs there. The
process continues, where the second to the innermost PFD
cross-slips to the second outermost on the conjugate plane.
This gradual process continues until all PFDs are transferred
to the conjugate plane. The energy cost of this gradual
process is lower than the traditional two-Shockley partial
model because PFDs can quickly separate apart, leading to a
corresponding reduction in the overall energy. Thus, cross-slip
of a distributed core is energetically more favorable than
that of the two-Shockley core with concentrated displacement
jumps across the Shockley partial dislocation lines. The

FIG. 5. (Color online) Cross-slip configuration with 20 PFDs
corresponding to L = 5bp .
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cross-slip activation energy in this case is calculated to be
Ecs = 0.256[μb3] = 1.43 eV for Cu, corresponding to a
critical length of 11.5[b]. This value for the activation energy
falls between Rasmussen’s result (2.7 eV) and Rao’s (1.07–
1.28 eV) for the unstressed configuration and within the range
of experimental measurements obtained by Bonneville and
Escaig14 (
E = 1.15 ± 0.37 eV).

To understand the general discrepancy between cross-
slip models and experimental observations, which show a
greater ease by which cross-slip takes place, locally favorable
stress states have been proposed.4,7,38,39 Earlier proposals
by Seeger38 invoked unrealistically large dislocation pileups,
while a more recent investigation by Rao et al.7 used atom-
istic simulations to show that cross-slip close to dislocation
junctions in Cu requires an activation energy of only 1.28 eV.
More recently, Rao et al.18,40 evaluated the cross-slip activation
barrier for a screw dislocation when intersecting a forest
dislocation in both Ni and Cu. The calculated activation
energies for Ni and Cu from the fully cross-slip plane state
to the partially cross-slipped state forming a Lomer-Cottrel
(LC) junction are found to be 0.68 and 0.67 eV, respectively.
The activation energies for cross-slip were found to be a factor
of 2–6 lower than the activation energy for cross-slip in Cu
estimated by Friedel-Escaig analysis. Escaig et al.14 indicated
that the heterogeneity of the cross-slip nucleation process (i.e.,
it occurs at favorable sites in the crystal) might result in a
lower cross-slip energy. This observation is consistent with
the idea of introducing jogs (preexisting constriction points)
along the dislocation line to lower the energy.41 In the recent
work of Bonneville et al., even lower activation energy was
measured.42 These overall conclusions are also consistent with

the work of Rao et al.,7 in which further assistance from a
nearby dislocation junction reduces the energy of an activated
state.

In order to determine the effects of an applied stress
on cross-slip, we recall that Shockley partials have Burgers
vector with the same screw components and opposite edge
components. It follows that any uniform applied stress acting
on the screw components causes the stacking-fault ribbon to
translate rigidly, while a stress acting on the edge components
compresses or expands the ribbon. Therefore, only τe, the
resolved shear stress on the dipolar component of the partials
(or Escaig stress4,39), affects the activation energy of cross-slip.
The effect of Escaig stress is equivalent to a contribution
γe = −bτeu

∗
e to the γ surface and, according to Eq. (7),

results in an additional force fe = ±bτe/(2n
√

3) on each pair
of PFDs. The case that most favors cross-slip is achieved
when the applied load increases the width of the ribbon in
the cross-slip plane while decreasing it on the original plane.
For the active slip system (11̄1)[011], this can be obtained by
applying a uniaxial stress state σ = σ0m̂ ⊗ m̂ with direction
of stress m̂ falling in region B in Fig. 6(a), and for an
appropriate sign of σ0. Letting n̂′ be the plane normal and
ê′ and the dipolar direction on the primary plane, and n̂′′

and ê′′ the corresponding quantities on the conjugate plane,
Escaig stresses on these planes are τ ′

e = σ0(m̂ · n̂′)(m̂ · ŝ′) and
τ ′′
e = σ0(m̂ · n̂′′)(m̂ · ŝ′′), respectively. Choosing m̂ in region B

as shown in Fig. 6(a), σ0 was varied such that an Escaig stress
τ ′′
e in the range 0.0001[μ] � τ ′′

e � 0.004[μ] was produced in
the cross-slipped plane (for m̂ = [225]), which is the direction
shown in-between [112] and [113] in Fig. 6(a), this becomes
τ ′
e = −0.7143τ ′′

e . The dependence of the activation energy

001

111

101

112

m̂

113

102

m

A

B

C

(a)

0 10 20 30 40 50 60 70 80 90 100
-0.500
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0.250
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3
]

H [µb3]

(b)

FIG. 6. (Color online) Effects of applied stress on activation energy. (a) Stereographic projection of the (11̄1)[011] slip system showing the
regions where the Escaig stresses on primary and conjugate planes change sign. (b) Parametric plot of 
E vs L for different values of Escaig
stress (τe): τe/10−4 = 40 μ (solid line), τe/10−4 = 3 μ (close dotted line), τe/10−4 = 2 μ (close dashed line), τe/10−4 = 1 μ (sparse dotted
line), and τe/10−4 = 0 μ (sparse dashed line).
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(a)Cross-slip detail
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(b)Cross-slip activation energy

FIG. 7. (Color online) Effects of dislocation pileups on cross-slip activation energy in Cu. (a) A simulation detail showing the head of a
configuration with five pairs of Shockley partials piled up against a Lomer-Cottrell dislocation. (b) Corresponding energy curve 
E(L).

on the reaction coordinate L, 
E(L), was determined for
different values of τ ′′

e , and the results are shown in Fig. 6(b).
The results indicate that increasing the applied stress on the
complex reduces not only the activation energy, but also the
activation length required for the process. For τ = 0.004[μ],
we obtained an activation energy of Ecs = 0.17μb3 = 0.95 eV
and an activation length of 12b when two partials were used.
In this case, it is also shown that 
E becomes negative at
L ≈ 52b, indicating that when the partials are separated by
this value on the cross-slip plane, the dislocation core will
expand spontaneously at this value of the Escaig stress.

As stated earlier by Seeger,38 pileups may provide a
mechanism that enhances the rate of the cross-slip by reducing
the width of the stacking-fault ribbon on the primary glide
plane. Although the idea of requiring a large number of pileup
dislocations to increase cross-slip rates (Seeger suggested
about 100 dislocations) has been challenged by experimental
data (Mughrabi43), it may not be necessary to require such
large pileups.

The influence of an applied stress on cross-slip has been
studied by Lu, Bulatov, and Kioussis using an ab initio method.
Their results indicate that the critical stress for cross-slip
to be 1.68 and 0.32 GPa Ag and Al, respectively.44 To
determine the effects of an inhomogeneous stress state on
cross-slip, we assume that a representative pileup is composed
of five pairs of Shockley partials, and is piled up against an
obstacle. It is noteworthy that dislocation pileups containing as
large as 20 dislocations have been experimentally observed.43

We also use a modest applied shear stress of 0.0001μ

(≈5 MPa) to investigate the feasibility of cross-slip under
this scenario. A series of relaxed configurations describing
the cross-slip process were determined, and their energy
calculated. An equilibrium configuration of the two leading
dislocations in the Shockley partial pileup, and the LC lock is
displayed in Fig. 7(a). The first dislocation at the top of the
figure is a LC dislocation, which is sessile and has a Burgers
vector of 〈110〉. The dislocation at the head of the pileup
(second from top) is a screw dislocation, dissociated into two
Shockley partials. The stress acting on this head dislocation

is a result of the applied stress, the stress generated by the
trailing four dislocations in the pileup, and the LC dislocation.
It is thus a spatially varying stress field (inhomogeneous),
which causes the head screw dislocation to cross slip, as
shown in the figure. The results of the activation energy,
shown in Fig. 7(b), indicate that the constriction energy was
reduced by ≈ 50% compared with the unstressed case. It
is interesting to note that the energy associated with the
constriction configuration is the highest of all configurations.
The activation energy for cross-slip is only the energy required
to form the constriction configuration alone (≈0.62 eV), and
once this configuration is formed in the pileup stress field,
the expansion of the Shockley partials on the conjugate plan
is spontaneous. The implication of investigating this scenario
is that cross-slip of screw dislocations is very common in
fcc metals, as a result of homogeneous or inhomogeneous
stress fields that are inevitable as dislocations move through
an evolving microstructure.

IV. SUMMARY AND CONCLUSIONS

The main purpose of this investigation is to theoretically
determine the influence of local stress fields on the activation
energy for cross-slip in fcc metals and compare the results
with experiments. Strong variations in the local stress field
are common in strained crystals, where the externally applied
stress is shielded and substantially modified by the internal
microstructure. Models that are based on atomistic or ab
initio simulations alone may have difficulties accessing this
mesoscopic regime of physics because of computational
limitations on the simulation size. Previous elasticity-based
calculations of the activation energy have been limited by
two essential problems: (1) uncertainty of the contribution of
Shockley partial dislocation cores to the calculated energy,
and (2) utilization of linear segments, which inevitably leads
to numerical error associated with tangent discontinuities at
connections between linear segments. On the other hand,
atomistic simulations suffer from the uncertainty in quan-
tifying the effect of the empirical potential on calculated
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energies. Empirical potentials, by their nature, rely on fitting
equilibrium parameters that do not include the energetics of
interplanar slip, which is a key parameter that determines
the dislocation core structure. Estimates of elastic models
for the cross-slip activation energy are typically high, and
questions on the influence of the two factors described above
remain lingering. Atomistic simulations for thermal cross-slip
energy (without stress) have also given values as high as
2.7 eV for Cu, implying that cross-slip rates in the range
of 1

3Tm– 1
2Tm would be negligibly small. However, strong

experimental evidence suggests that cross-slip rates in copper
are high, leading to dislocation network recovery in stage
III of single-crystal hardening.15 In earlier atomistic models,8

the large difference between atomistic results and experiment
may be due to unrealistic boundary conditions, where image
interactions complicate interpretation of the results, and where
constrictions distort the lattice when they exit the atomistic
simulation box. Also, empirical potentials may have difficul-
ties in accurately determining the resistance to slip or the γ

surface, as accurately done here with ab initio calculations.
In a complex local stress environment, for example at the

head or a dislocation pileup, in the vicinity of an external
or an internal interface, or near a sessile junction, a model
that can capture such strong stress variations and accurately
evaluate the activation energy for cross-slip is developed. A
cross-slip model within the framework of the nonsingular
continuum dislocation theory has been implemented to avoid
the effects of the dislocation core cutoff radius on the activation
energy. Thus, the interaction energy between partial fractional
dislocations is calculated without local approximations (e.g.,
line tension), and with a core parameter that is calibrated with
the ab initio determined gamma surface.

Accurate description of 3D dislocation configurations has
been accomplished by decomposing dislocation networks
in piecewise parametric splines with position and tangent
continuity at the nodes. This description allows accurate
determination of relaxed dislocation configurations, and does

not require an ad hoc decomposition of interdislocation
forces into self and interaction types. Consequently, this
description not only provides a unique method for calculation
of interaction forces, but it also gives the capability of
describing complex 3D dislocation core configurations. This
feature allows the model the potential of simulating the
activation energy of cross-slip in real environments that are
difficult to capture with purely ab initio, atomistic, or elasticity
calculations.

The introduction of physically realistic values for the
dislocation core width a using the PN model and a 1D
generalized stacking-fault energy surface was implemented for
the two-Shockley partials model. When PFDs are introduced,
the dislocation core parameter a was scaled with the PFD
Burgers vector, thus endowing the model with atomistic (ab
initio) level fidelity. The present model with smooth, 3D partial
fractional Volterra dislocations of arbitrarily small Burgers
vector overcomes several difficulties that have persisted in
elasticity-based models, yet provides a description of a more
gradual mechanism of cross-slip, where smaller parts of
the core are transferred in a way that minimizes the core
energy over and beyond what can be achieved with Shockley
partials alone. Ab initio fidelity is maintained where needed,
and that is in evaluating the interplanar shear resistance
during a complex core transformation. The consistency of the
model with experimental measurements, while reasonable for
unstressed cross-slip events, underscores the importance of
local stress states on substantially enhancing cross-slip rates
in fcc crystals. The present results on the effects of local
stress states, obtained within the framework of the BGLK
extended PN model, are consistent with recent evaluations
of Rao and co-workers18 using MD simulations. In addition
to the ab initio level of calculational fidelity, the present
model can be directly incorporated into dislocation dynamics
descriptions of microscale plasticity, where local stress states
are routinely determined for complex dislocation topologies,
close to precipitates, interfaces, and external crystal surfaces.
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17W. Püschl, Prog. Mater. Sci. 7, 415 (2002).

18S. Rao, D. Dimiduk, T. Parthasarathy, J. El-Awady, C. Woodward,
and M. Uchic, Acta Mater. 59, 7135 (2011).

19J. M. Burgers, Proc. Kon. Ned. Akad. Wetenschap 42, 293 (1939).
20N. M. Ghoniem, S. H. Tong, and L. Z. Sun, Phys. Rev. B 61, 913

(2000).
21S. Banerjee, N. Ghoniem, G. Lu, and N. Kioussis, Philos. Mag. 87,

4131 (2007).
22G. Po and N. Ghoniem (unpublished).
23W. Cai, A. Arsenlis, C. R. Weinberger, and V. V. Bulatov, J. Mech.

Phys. Solids 54, 561 (2006).
24V. Vitek, Philos. Mag. 18, 773 (1969).
25J. Blin, Acta Metall. Mater. 3, 199 (1955).
26R. deWit, in Solid State Physics, edited by F. S. Turnbull and David

(Academic, New York, 1960), pp. 249–292.
27G. Schoeck, Phys. Status Solidi B 247, 265 (2010).
28F. R. N. Nabarro, Proc. Phys. Soc., London 59, 256 (1947).
29G. Schoeck, Acta Metall. Mater. 43, 3679 (1995).
30G. Schoeck, Philos. Mag. A 69, 1085 (1994).
31X.-Z. Wu, R. Wang, S.-F. Wang, and Q.-Y. Wei, Appl. Surf. Sci.

256, 6345 (2010).

094115-10

http://dx.doi.org/10.1051/rphysap:01976001106073100
http://dx.doi.org/10.1016/0001-6160(53)90080-7
http://dx.doi.org/10.1016/0025-5416(83)90025-3
http://dx.doi.org/10.1051/jphys:01968002902-3022500
http://dx.doi.org/10.1016/0956-7151(92)90208-V
http://dx.doi.org/10.1016/0921-5093(91)90333-I
http://dx.doi.org/10.1080/01418619908210354
http://dx.doi.org/10.1080/01418619908210354
http://dx.doi.org/10.1103/PhysRevLett.79.3676
http://dx.doi.org/10.1080/14786430903286201
http://dx.doi.org/10.1016/0001-6160(59)90122-1
http://dx.doi.org/10.1016/0001-6160(55)90036-5
http://dx.doi.org/10.1088/0370-1301/67/5/307
http://dx.doi.org/10.1016/0001-6160(79)90170-6
http://dx.doi.org/10.1016/0001-6160(88)90301-X
http://dx.doi.org/10.1016/0921-5093(93)90679-9
http://dx.doi.org/10.1016/S0079-6425(01)00003-2
http://dx.doi.org/10.1016/j.actamat.2011.08.029
http://dx.doi.org/10.1103/PhysRevB.61.913
http://dx.doi.org/10.1103/PhysRevB.61.913
http://dx.doi.org/10.1080/14786430701528739
http://dx.doi.org/10.1080/14786430701528739
http://dx.doi.org/10.1016/j.jmps.2005.09.005
http://dx.doi.org/10.1016/j.jmps.2005.09.005
http://dx.doi.org/10.1080/14786436808227500
http://dx.doi.org/10.1016/0001-6160(55)90092-4
http://dx.doi.org/10.1002/pssb.200945379
http://dx.doi.org/10.1088/0959-5309/59/2/309
http://dx.doi.org/10.1016/0956-7151(95)90151-5
http://dx.doi.org/10.1080/01418619408242240
http://dx.doi.org/10.1016/j.apsusc.2010.04.014
http://dx.doi.org/10.1016/j.apsusc.2010.04.014


Ab INITIO CONTINUUM MODEL FOR THE . . . PHYSICAL REVIEW B 86, 094115 (2012)

32G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
33G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
34G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15

(1996).
35G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
36C. Yuksel, S. Schaefer, and J. Keyser, Computer-Aided Design 43,

747 (2011).
37D. Caillard and J. Martin, Thermally Activated Mechanisms in

Crystal Plasticity, Chap. 5 (Pergamon, New York, 2003).
38A. Seeger, in The Mechanism of Glide and Work Hardening in

Face-centered Cubic and Hexagonal Closed-pack Metals, edited
by J. C. Fisher (Wiley, New York, 1957), pp. 243–332.

39B. Escaig, in Cross-slipping Process in the f.c.c. Structure, edited
by A. Rosenfield, G. Hahn, A. Bement Jr., and R. Jaffee (McGraw-
Hill, New York, 1968), pp. 655–677.

40S. Rao, D. Dimiduk, J. El-Awady, T. Parthasarathy, M. Uchic, and
C. Woodward, Acta Mater. 58, 5547 (2010).

41T. Vegge and K. W. Jacobsen, J. Phys.: Condens. Matter 14, 2929
(2002).

42T. Rasmussen, T. Vegge, T. Leffers, O. B. Pedersen, and K. W.
Jacobsen, Philos. Mag. A 80, 1273 (2000).

43H. Mughrabi, Philos. Mag. 18, 1211 (1968).
44G. Lu, V. Bulatov, and N. Kioussis, Phys. Rev. B 66, 144103(5)

(2002).

094115-11

http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.49.14251
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1016/j.cad.2010.08.008
http://dx.doi.org/10.1016/j.cad.2010.08.008
http://dx.doi.org/10.1016/j.actamat.2010.06.005
http://dx.doi.org/10.1088/0953-8984/14/11/309
http://dx.doi.org/10.1088/0953-8984/14/11/309
http://dx.doi.org/10.1080/01418610008212115
http://dx.doi.org/10.1080/14786436808227751
http://dx.doi.org/10.1103/PhysRevB.66.144103
http://dx.doi.org/10.1103/PhysRevB.66.144103



