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Depletion-layer-induced size effects in ferroelectric thin films: A Ginzburg-Landau model study

Nathaniel Ng, Rajeev Ahluwalia, and David J. Srolovitz
Institute of High Performance Computing, Agency for Science, Technology and Research,

1 Fusionopolis Way, 16-16 Connexis, 138632 Singapore
(Received 27 December 2010; revised manuscript received 18 May 2012; published 4 September 2012)

A Ginzburg-Landau model is used to demonstrate how depletion layers give rise to thickness-dependent
ferroelectric properties in thin films. It is shown that free charge layers at the film-electrode interface can result
in an internal electric field in the bulk of the film even when no external voltage is applied. At high values of
the donor dopant density and small thicknesses, this internal electric field can be strong enough to lead to the
formation of a domain pattern. This causes a drop in the remnant polarization, a direct demonstration of the
important role free charge plays in thin ferroelectric films.
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I. INTRODUCTION

The progressive miniaturization of devices based upon
ferroelectric phenomena has led to an increased interest
in size effects in ferroelectric thin films.1,2 An important
issue for device applications is the question of whether
a remnant state (i.e., a macroscopically polarized state in
the absence of an external electric field) exists within the
ferroelectric film as the film thickness is decreased. Such
size effects are strongly influenced by the electrical boundary
conditions that exist at the ferroelectric-electrode interface.2

A large body of research on the role of uncompensated
bound charges at the electrode3,4 and associated depolarization
fields exists,5–8 including first-principles work.9,10 Theory
suggests that because of depolarization effects, two critical
length scales exist, one below which a single-domain remnant
state splits into a multidomain state with 180◦ domains and
the second where ferroelectricity completely disappears.7,11

However, these analyses of size effects assumed that the
ferroelectric is an electrical insulator. In reality, ferroelectrics
are usually wide-band-gap semiconductors; this fact can lead
to the formation of free charge layers at the ferroelectric-
electrode interface. These charge-depleted layers arise
from the differences in the work functions between the metal
and the ferroelectric,12 and cause migration of free charges
from the ferroelectric into the metal. Depletion layers may
also form due to the accumulation of oxygen vacancies at the
ferroelectric-electrode interface after repeated cycling of the
electric field.12 Thus, in addition to the traditionally studied
bound charge effects, free charge can strongly influence the
electrostatic boundary conditions in thin-film devices. How do
these charge-depleted layers influence ferroelectric behavior?
This question becomes of central importance for thin films
where the film thickness becomes comparable to the depletion
layer thickness. An understanding of this issue is key, not
only from a fundamental standpoint, but for its important
implications for device applications.

The role of depletion layers in ferroelectric thin films
has received some attention in the literature. Xiao et al.13

demonstrated the formation of a depletion layer based on a
Ginzburg-Landau model that incorporated mobile charges.
Bratkovsky and Levanyuk14 showed that depletion charge
near the electrode also reduces the ferroelectric/paraelectric
transition temperature. Baudry and Tournier15 and Zubko

et al.16 studied the influence of depletion layers on the
remnant polarization and hysteresis loops within the Landau
theory framework. An analytical study based on a linear
approximation to this problem was performed by Tagantsev
et al.17 Recently, more sophisticated treatments of the influ-
ence of depletion layers on ferroelectrics have been made.18–20

However, the full implications of the effects of depletion layers
on size effects in thin, ferroelectric films remain unexplored.
Specifically, the following important issues have not received
adequate attention. What is the influence of the depletion layers
on the domain patterns as the film thickness is decreased? Do
depletion layers have any effect on domain nucleation and
growth during switching? In this paper, we employ Ginzburg-
Landau theory and phase field simulations to demonstrate that
depletion layers have very important consequences for size
effects in ferroelectric thin films.

The paper is organized as follows. In Sec. II, we describe the
Ginzburg-Landau model for a thin film with depletion layers
as well as the kinetic model used to simulate the polarization
dynamics. Section III describes the results on the stability of
the remnant monodomain states under short-circuit boundary
conditions. We analyze these results via a one-dimensional
(1D) analytical model in Sec. IV. The role played by depletion
layers on polarization switching is discussed in Sec. V. Lastly,
we end the paper with a summary and conclusion.

II. GINZBURG-LANDAU MODEL

In the Ginzburg-Landau-Devonshire framework, the total
free energy of the system, FT, is

FT =
∫

d�r[fL + fG + fel], (1)

where fL, fG, and fel represent the local Landau, gradient,
and elastic energy densities, respectively. The Landau energy
is obtained from the symmetry-allowed expansion of the
free energy as an eighth-order polynomial in the polarization
components of �P . Substrate effects are accounted for by
assuming a homogeneous in-plane biaxial strain ε that arises
from the lattice mismatch between film and substrate. Since
our focus is the role of depletion-layer-induced electrostatic
effects, we restrict our study to thin films in the region
of the phase diagram where they are, effectively, uniaxial
ferroelectrics. This is achieved when the compressive misfit
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strain is sufficiently large to suppress in-plane ferroelectric
polarization.21 We consider an effective free energy that is
nonlinear in Pz (polarization normal to the film); to eighth
order in Landau theory,22 this is expressed as

fL + fel = 1
2α∗

1

(
P 2

x + P 2
y

) + 1
2α∗

3P
2
z

+ 1
4α∗

11P
4
z + 1

6α111P
6
z + 1

8α1111P
8
z , (2)

where α∗
1 ,α

∗
3 ,α

∗
11,α111,α1111 are appropriate material

constants.21 The appropriate contribution from the polarization
gradients at domain walls is expressed as

fG = 1
2K[| �∇Px |2 + | �∇Py |2 + | �∇Pz|2]. (3)

The electric field, E, is obtained by solving Gauss’s law,

∇ · D = ∇ · (−ε0∇φ + P) = ρ, (4)

where

ρ(z) =
{

ρ0, z < w or d − z < w

0, otherwise
, (5)

the film thickness is d, the depletion layer thickness is w, and
ρ0 = qND and ND are the space charge and donor dopant den-
sity. As is well known, the depletion layer thickness depends
on the dopant density and the applied and built-in potentials.
In the present work, we describe the depletion layer width
dependence on the dopant density as w =

√
2Vbiε/NDq =

C/
√

ND ,2,13,16,17,23,24 which has been successfully used to
model the semiconducting nature of ferroelectrics in recent
works.16,17,24 Here Vbi is the built-in potential, ε is the dielectric
constant, and C =

√
2Vbiε/q is a constant that represents a

property of the ferroelectric-electrode interface. We should
remark that while there are more sophisticated calculations
which obtain the depletion layer widths in a self-consistent
manner,18 we use the current expression in the present work
to simplify the analysis.

We choose parameters appropriate for a BaTiO3 thin film
on a SrRuO3/SrTiO3 substrate with a compressive misfit strain
ε = −0.022 (Ref. 7) and gradient coefficient K = |α1|δ2,
where δ is the smallest length scale resolved in the simulation,
which is taken to be δ = 1 nm in the present simulations.
Note that we have not included a background dielectric
permittivity of the ferroelectric in Eq. (4).25 This common
assumption13,15,16 is reasonable here since the background
dielectric constant is usually much smaller than the dielectric
constant of the ferroelectric. Although there are situations
in which inclusion of the background dielectric permittivity
may be important, it has little effect on the main conclusions
presented here.

Since we are interested in simulating domain patterns
and polarization switching, a model for the dynamics of the
polarization fields is essential. The polarization kinetics is
studied within the time-dependent Ginzburg-Landau (TDGL)
framework:

∂Pi

∂t
= −�

[
δFT

δPi

− Ei

]
. (6)

Here, � is a kinetic coefficient related to the domain wall
mobility and Ei is the component of the electric field, evaluated

using Eqs. (4) and (5). We use these equations to test the stabil-
ity of a single-domain remnant state as a function of the donor
dopant density ND and the thickness d and also investigate the
effect of the depletion layers on polarization switching. We use
natural boundary conditions ∂Pz/∂z = 0 for the polarizations
at the interfaces at z = 0 and z = d, which means that the
interface energy does not depend on the polarization. Further,
we also assume that a surface charge exactly compensates the
bound surface charge due to the polarization discontinuity at
the ferroelectric-electrode interfaces.

Equation (6) is discretized using finite differences. The
lengths are measured in the units of the smallest length scale
δ and a scaled time step of 	t ′ = �|α1|	t .

III. STABILITY OF THE MONODOMAIN
REMNANT STATE

We first address the technologically important question:
How stable is a single-domain remnant state when depletion
layers with free charge are present? To address this issue,
we initialize the entire film in a monodomain state by setting
the polarization at each point in space to Px = Py = 0 and
Pz = Ps (Ps is the spontaneous polarization) plus an initial
noise chosen at random from the interval ± Pi , where Pi =
0.001Ps. The TDGL equations are integrated with short-circuit
boundary conditions to study the stability of this remnant
state. As discussed earlier, the depletion layer width w is
described by w = C/

√
ND ,17,23 where C is a property of the

ferroelectric-electrode interface that depends on the built-in
potential and the dielectric constant. In the present simulations,
we set C = 1.02 × 105 m−0.5 which corresponds to a depletion
layer width of w = 16 nm for a dopant density ND = 4.11 ×
1025 m−3. We confirmed that choosing a larger value of C

did not qualitatively change the nature of the monodomain to
multidomain transitions shown in Fig. 1. We note, however,
that the value of ND at which the transition occurs does depend
on the value of C. This effect is captured by the analytical
solutions shown below. The TDGL simulations are performed
for a series of ND values and film thicknesses d.

At small donor dopant densities (ND � 5.48 × 1025 m−3),
the initial single-domain state is found to be stable for all
thicknesses [Figs. 1(a), 1(d), 1(g), and 1(j)]. However, for
ND = 9.59 × 1025 m−3, the single-domain state is stable for
large thicknesses [Figs. 1(b), 1(e), and 1(h)] and unstable at
small thicknesses [see Fig. 1(k) for d � 48 nm where the
film splits into a multidomain state with the formation of
reverse polarization domains]. At higher values of ND (ND =
11.0 × 1025 m−3), the film splits into domains at smaller
thicknesses (d � 96 nm) [Figs. 1(f), 1(i), and 1(l)]. This shows
that the monodomain to multidomain transition predicted by
the present simulations can become crucial when the dopant
densities are high. The appearance of this domain pattern
may have important consequences for remnant polarization in
ferroelectric thin films as it implies a reduction in the remnant
polarization. While these results show that the remnant state
is unstable with respect to the formation of reverse domains in
the presence of free charge, a similar splitting of the remnant
state into striped 180◦ domains has been predicted for films
with uncompensated bound charge at electrodes.7 However,
unlike in the bound charge case, the transition observed here
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FIG. 1. (Color online) Final equilibrated domain structures from the TDGL simulation as a function of thickness (vertical axis d = 48,
64, 96, and 128 grid points) and donor dopant density (horizontal axis ND = 5.48, 9.59, and 11.0 × 1025 m−3). The depletion layer width is
chosen as w = CN

−1/2
D , rounded to the nearest grid point.

is not sharp and the domain formation is localized. Depending
on the value of ND , domain formation due to depletion layer
effects can be seen for thicknesses as large as ∼10 times the
width of the depletion layer [see Fig. 1(f)].

It is interesting to analyze the shapes of the domains
observed in Fig. 1. There are two distinct kinds of domains:
(i) cylindrical domains that stretch from the bottom to the
top interface, expanding (flaring) into the bottom depletion
layer and tapering in the top layer [Figs. 1(f), 1(i), 1(l), and
1(k)]; and (ii) domains that stretch from the bottom interface,
terminating within the bulk of the film Figs. 1(f), 1(i), and
1(k)]. These domains take these shapes in order to minimize
the electrostatic energy associated with charged domain walls
(polarization vectors that are head to head or tail to tail).
The formation of these shapes lead to rotated polarization
vectors in the interfacial regions to avoid charged domain
walls.

What causes the monodomain to multidomain transition?
To understand this, we examined the distribution of electric
fields in the film and found that a nonzero electric field,
opposite to the polarization direction, exists in the bulk of the
film where there is no free charge. Moreover, the magnitude
of this internal electric field increases with increasing ND

and decreasing film thickness. The existence of this internal
electric field and its dependence on the film thickness and
the dopant density is explicitly shown in the analytical

solution presented in Sec. IV. For moderate values of ND ,
the internal electric field everywhere in the film is lower than
the thermodynamic coercive field (Ez > −Ec). No domain
formation occurs for these cases. However, as we consider
films with higher ND , the electric field in the bottom depletion
layer approaches the thermodynamic coercive field. At a finite
value of ND , the magnitude of the electric field inside the layer
exceeds the thermodynamic coercive field and domains are
nucleated within the bottom depletion layers. This situation
is schematically depicted in Fig. 2. Note that at the tip of
these domains (for example, at point A in Fig. 2), there
will be an electric field concentration (see Fig. 7) due to
the depolarization fields. As ND is increased further, the
electric field concentration at the tip becomes larger than the
thermodynamic coercive field (although the average electric
field in the bulk regions may still be smaller). When this
happens, a domain will nucleate in the bulk regions, leading
to the formation of a multidomain state, similar to those in
Figs. 1(f), 1(i), 1(k), and 1(l).

At this stage, some remarks on the experimental validity
of this monodomain to multidomain transition are in order.
The internal electric fields in perovskites for typical doping
densities are much lower than the thermodynamic coercive
fields. The monodomain to multidomain transition will be
important when the dopant density is very high and/or for
materials for which the thermodynamic coercive field is low
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FIG. 2. (Color online) 2D schematic depicting the appearance
of reversed domains inside the bottom depletion layer. Electric field
concentrations at the tip of these domains (Fig. 7) can cause nucleation
of domains inside the bulk of the film where there is no depletion
charge.

(e.g., at temperatures close to the second-order transition
points). Even for the cases where the built-in electric field
is low, the presence of defects may still lead to the nucleation
of reverse domains.

IV. ONE-DIMENSIONAL ANALYTICAL SOLUTION

The basic physics associated with three-dimensional (3D)
simulation results can be deduced from a simplified one-
dimensional model. An analytical solution for the electric field
distribution inside films with depletion layers was obtained by
Tagantsev et al.17 for the special case of a linear dielectric
material. Here we derive an analytical solution that takes
into account the nonlinearity of the dielectric constant—an
important feature of ferroelectrics. We start with the Landau
free energy (to fourth order in the polarization):

FT = 1
2α1P

2
z + 1

4α11P
4
z , (7)

and the appropriate electric field,

Ez = ∂FT

∂Pz

= α1Pz + α11P
3
z . (8)

Next, we rewrite Gauss’s Law as ε0
∂Ez

∂Pz

∂Pz

∂z
+ ∂Pz

∂z
= ρ(z),

or ∂Pz

∂z
= ρ(z)[1 + ε0

∂Ez

∂Pz
]−1. Since χ is large in ferro-

electrics, 1/χ = ε0(∂Ez/∂Pz) = ε0[α1 + 3α11P
2
z ] is small.

Taylor-expanding to first order in ε0(∂Ez/∂Pz) we can
write

∂Pz

∂z
= ρ(z)

[
1 − ε0

∂Ez

∂Pz

]
. (9)

Integrating Eq. (9) in the depletion layers and setting
Pz = Pb for w < z < d – w, we find

Pz =

⎧⎪⎨
⎪⎩

a tanh{bρ0(z − w)} + Pb, z < w

Pb, w < z < d − w

a tanh{bρ0[z − (d − w)]} + Pb, z > d − w

,

(10)

FIG. 3. (Color online) Polarization and electric field profiles:
Pz/Ps and Ez/Ec versus z (ND = 2.74 × 1025 m−3) obtained from
the analytical solution as compared to the 3D simulation with the
same fourth-order Landau parameters.

Where a =
√

(1 − α1ε0)/(3α11ε0), b =
√

3α11ε0(1−α1ε0),
and Pb represents the polarization in the bulk of the film where
there is no free charge. Pb can be computed by applying the
boundary condition, −U = ∫ d

0 Ezdz, where −U/d = Eext is
the contribution from the external electric field. Using (8) and
(10) we obtain the renormalized equations from which the
effective hysteresis loop for the film can be expressed as

Eext = α̃1Pb + α11P
3
b , (11)

where

α̃1 =
{
α1 + 2

w

d

(
1

ε0
− α1

) [
1 − tanh(bρ0w)

bρ0w

]}
.

(12)

The combined effects of space charge and thickness are to
simply shift the effective value of α1. Here, Pb can be obtained
using the standard solution for a cubic equation. Under zero
external field, Pb = ±

√
−α̃1/α11, i.e.,

Pb

Ps

= r = ±
√

1−2
w

d

[
1− 1

α1ε0

] [
1 − tanh(bρ0w)

bρ0w

]
(13)

where Ps =
√

−α1/α11 is the spontaneous polarization for the
film without depletion layers. The corresponding bulk electric
field, Eb, is calculated using Eb = α1Pb + α11P

3
b as

Eb/Ec = ∓3
√

3

2
r(1 − r2), (14)

where Ec is the intrinsic (thermodynamic) coercive field of the
film without depletion layers.

Combining Eqs. (10) and (13), we obtain a closed form
expression for the polarization profile, Pz(z), that includes
the effects of both space charge and thickness dependence.
Substitution into Eq. (8), Ez = α1Pz + α11P

3
z , yields an

explicit formula for the electric field profile.
The profiles of Pz and Ez have been validated against the

3D TDGL simulations as shown in Fig. 3. This agreement
holds even though the analytical solution ignores the value
of the gradient coefficient, K . Since the length scale of our

094104-4



DEPLETION-LAYER-INDUCED SIZE EFFECTS IN . . . PHYSICAL REVIEW B 86, 094104 (2012)

0.0

0.2

0.4

0.6

0.8

1.0

1 10

-E
b/

E
c

d' = d/[b2w3q2ND
2(1-(α1ε0)-1)]

-Eb/Ec = 0.5*3√3 r(1-r2), r = √[1-2/(3d')]

FIG. 4. (Color online) Rescaled internal electric field, −Eb/Ec,
versus rescaled film thickness d ′.

simulation is set by our choice: K ′ = K/(|α|δ2) = 1.0, where
K ′ is inversely proportional to δ2, it is believed that this
agreement will hold even if the length scale δ = 1 nm is
changed, meaning that our results should hold if we rescale
our simulation (by changing δ) within reasonable limits. Note
also that since the analytical solution has been obtained using
fourth-order Landau theory, we have appropriately chosen
the parameters such that the equilibrium polarization is the
same as the full eighth-order expansion considered in the 3D
simulations of Fig. 1. For typical values of ND (such as those
used by Zubko et al.16), we can expand the hyperbolic tangent
term in Eq. (13) in a Taylor series. Truncating at fourth order
gives

Pb

Ps

= r ∼= ±
√

1 − 2

3

b2w3q2N2
D

d

[
1 − 1

α1ε0

]
. (15)

From this analysis, we see that a nonzero electric field Eb

exists (except in the w/d → 0 or ρ0 → 0 limits where |Pb| =
Ps) even for short-circuit boundary conditions (Eext = 0). The
nonzero Eb explains the internal electric field observed in the
3D simulations (Fig. 3). Examination of Eqs. (14) and (15)
suggests that it is useful to introduce a dimensionless distance:

d ′ = d

b2w3q2N2
D[1 − (α1ε0)−1]

. (16)

By substituting w = C/
√

ND into Eq. (16), we see that
the key parameter that determines the scaling of the bulk
polarization Pb/Ps or the bulk electric field Eb/Ec is d/N

1/2
D

or dw.
How does the internal electric field, Eb, vary with the film

thickness and the dopant density? To address this, we plot (see
Fig. 4) Eb versus the rescaled thickness, d ′, obtained from the
analytical solution [Eqs. (14) and (15)]. Clearly, the magnitude
of the internal electric field increases with decreasing d ′ until
d ′ = 1, where the bulk electric field, Eb, becomes equal to
the intrinsic coercive field. In a full 3D simulation, this large
internal field in the bulk and depletion layers leads to the
monodomain to multidomain transition that was observed in
Figs. 1(f), 1(i), 1(k), and 1(l). Note that the film actually splits
into a multidomain state well before |Eb/Ec| = 1, as |Ez/Ec|
at z = 0 reaches the coercive field for switching earlier than
|Eb/Ec| (see Fig. 3).

We can draw useful conclusions about the thickness
dependence and dopant density dependence of the internal
electric field by examining Fig. 4, which clearly shows that
for a fixed value of the dopant density ND , the internal electric
field increases with decreasing film thickness d. Figure 4 also
shows that for a fixed thickness d, the magnitude of the internal
electric field increases with increasing dopant density ND . As
discussed in Sec. III, this behavior is indeed observed in the
3D simulations (Fig. 1); the internal electric field is the key to
explain the monodomain to multidomain transition.

V. INFLUENCE OF THE DEPLETION LAYERS
ON POLARIZATION SWITCHING

Does the depletion layer play any role during the polariza-
tion switching process? Recently, Zubko et al.16 studied the
influence of depletion layers on hysteresis loops in thin films
using a 1D Ginzburg-Landau model. In their monodomain
study, they found that the depletion layers both tilt and shrink
the hysteresis loops. This theoretical study16 did not include
effects associated with domain structure evolution during
the switching process. We simulate the evolution of domain
patterns under an applied external field by applying a time-
dependent (sawtooth with a 1.6 × 106 time step switching
period) potential to each of the domain structures shown in
Fig. 1. Before we describe our results on the polarization
switching behavior, we remark that we are using a frozen
depletion layer approximation (i.e., the depletion layer width
does not change appreciably during polarization switching).
This is a reasonable approximation for polarization switching
that occurs quickly relative to any change in charge carrier
profile. For example, domain wall velocities in BaTiO3 can
be in the 10−7–105 cm/s range, depending on the electric
field.26–29 This should be compared with the speed of oxygen
vacancies; multiplying the oxygen vacancy drift mobility of
8.4 × 10−22 m2/(V s) (Ref. 20) by the intrinsic coercive field
of BaTiO3 [126 MV/m (Ref. 30)] we find an oxygen vacancy
velocity of 1.06 × 10−13 m/s. Since the velocity of the oxygen
vacancies is much, much smaller than domain wall velocities,
it is appropriate to conclude that the depletion layer thickness
does not significantly change during polarization switching
at typical switching frequencies. Hence, the frozen depletion
layer approximation should be valid here. On the other hand,
if the mobile charges are primarily electrons and holes, or if
we consider extremely low switching frequencies (of the order
of the oxygen vacancy velocity, the results in Fig. 5 should be
viewed only as qualitative).31

Figure 5 shows the simulated hysteresis loops for films
with d = 64 and 128 nm, along with the corresponding
thermodynamic switching loop obtained from the homoge-
neous Landau theory (in the absence of the depletion layers).
Note that the coercive field is lower than the thermodynamic
coercive field, Ec, for both thicknesses. This is associated with
the internal electric field Eb which opposes the polarization
and aids the switching process. Since |Eb| increases with
decreasing thickness (Fig. 4), the coercive field decreases
with decreasing thickness. We also find that the switching
process is inhomogeneous; it occurs via domain nucleation
and growth. Figures 5(a)–5(d) depict this process for the
d = 64 nm film. Nucleation of reverse domains occurs where
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FIG. 5. (Color online) Hysteresis loops for ND = 4.11 × 1025 m−3, d = 64, 128 nm. The domain patterns corresponding to points (a)–(d)
for the d = 64-nm film are also shown. The video for nucleation and growth of domains through points (a)–(d) is provided in the Supplemental
Material (Ref. 32).

Ez is most negative, i.e., at the bottom electrode (z = 0) once
|Ez|z=0 > Ec as predicted by Ref. 2. While many small reverse
domains nucleate during the switching process, the larger
reverse domains grow and nearby smaller reverse domains
disappear. It is interesting to note that in our model the
positions of the reverse domains are random, and come from
the thermal noise that we introduce into our model—we do
not introduce any nuclei of reversed polarization or charged
defects. The nucleated reverse domains grow by lateral domain
wall migration and coalescence. At sufficiently high electric

FIG. 6. (Color online) The polarization vectors in the vicinity of a
conical reverse domain in the ferroelectric film near the lower contact.
Note the rotation of the polarization vectors near the domain wall.
Arrows are blue for Pz > 0 and yellow for Pz < 0.

field, the polarization in the entire film reverses. Thus, we
observe that the depletion layers have significant influence on
the polarization switching process.

The shapes of reverse domains formed during the switching
process are similar to those observed in Fig. 1 under short-
circuit boundary conditions. To understand these domain
shapes, it is instructive to examine the distributions of po-
larization and electric field in the vicinity of a reverse domain
for a domain formed during the polarization switching process.
Figure 6 shows the polarization vectors near the domain wall

FIG. 7. Electric field vectors corresponding to the domain wall
configuration in Fig. 6. The electric field is strongest in the vicinity
of the tip of the reverse domain (where polarization vectors are tail to
tail) and weakest in the interior of the reverse domain.
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are approximately parallel to the wall. The electrostatic energy
of the domain walls is large where the polarization vectors are
head to head or tail to tail. Hence, these vectors rotate along
the entire domain wall except at the tip of the reverse domain,
where the electric field is the strongest (see Fig. 7). The
rotated polarization vectors screen the electric field, and in the
interior of the reverse domain, the electric field is effectively
zero (Fig. 7). However, the magnitude of the electric field
is approximately equal to the intrinsic coercive field, Ec, in
the original domain immediately above the tip of the reverse
domain.

VI. SUMMARY AND CONCLUSION

In summary, using 3D phase field simulations we show that
depletion layers at the ferroelectric thin film/electrode interface
can create an internal electric field in the bulk regions where
there is no free charge. This is also demonstrated explicitly
through an analytical solution of a 1D Ginzburg-Landau

model with depletion layers. We show that this internal
electric field can have very important implications for thin-film
ferroelectrics. At high values of the donor dopant density
and at thicknesses which are comparable to depletion layer
width, a single-domain remnant state can become unstable
due to the appearance of a domain pattern. A multidomain
state with conical and cylindrical 180◦ domains (Fig. 1) is
observed for such cases, resulting in a significant drop in the
value of the remnant polarization. Further, it is found that
the depletion layers also play an important role in domain
nucleation during polarization switching. The phenomena
reported in the present paper are distinct from those that are
observed due to depolarization fields from uncompensated
surface charges. While the depolarization fields due to bound
charges become important only for very small thicknesses,
the internal electric field due to depletion layers predicted by
our calculations may become important for relatively thicker
films, depending on the dopant density and the choice of the
electrode.

1C. Lichtensteiger, M. Dawber, and J.-M. Triscone, Top. Appl. Phys.
105, 305 (2007).

2A. K. Tagantsev and G. Gerra, J. Appl. Phys. 100, 051607
(2006).

3A. M. Bratkovsky and A. P. Levanyuk, Phys. Rev. Lett. 84, 3177
(2000).

4M. Marvan and J. Fousek, Phys. Status Solidi B 208, 523
(1998).

5R. R. Mehta, B. D. Silverman, and J. T. Jacobs, J. Appl. Phys. 44,
3379 (1973).

6M. Dawber, P. Chandra, P. B. Littlewood, and J. F. Scott, J. Phys.:
Condens. Matter 15, L393 (2003).

7A. M. Bratkovsky and A. P. Levanyuk, Appl. Phys. Lett. 89, 253108
(2006).

8G. Gerra, A. K. Tagantsev, and N. Setter, Phys. Rev. Lett. 98,
207601 (2007).

9J. Junquera and Ph. Ghosez, Nature 422, 506 (2003).
10G. Gerra, A. K. Tagantsev, N. Setter, and K. Parlinski, Phys. Rev.

Lett. 96, 107603 (2006).
11R. Ahluwalia and D. J. Srolovitz, Phys. Rev. B 76, 174121

(2007).
12D. Damjanovic. Rep. Prog. Phys. 61, 1267 (1998).
13Y. Xiao, V. B. Shenoy, and K. Bhattacharya, Phys. Rev. Lett. 95,

247603 (2005).
14A. M. Bratkovsky and A. P. Levanyuk. Phys. Rev. B 61, 15042

(2000).
15L. Baudry and J. Tournier, J. Appl. Phys. 97, 024104 (2005).
16P. Zubko, D. J. Jung, and J. F. Scott, J. Appl. Phys. 100, 114112

(2006).
17A. K. Tagantsev, Cz. Pawlaczyk, K. Brooks, and N. Setter, Integr.

Ferroelectr. 4, 1 (1994).
18A. N. Morozovska, E. A. Eliseev, S. V. Svechnikov, A. D. Krutov,

V. Y. Shur, A. Y. Borisevich, P. Maksymovych, and S. V. Kalinin,
Phys. Rev. B 81, 205308 (2010).

19E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, V. Gopalan,
and V. Y. Shur, Phys. Rev. B 83, 235313 (2011).

20Y. A. Genenko, Phys. Rev. B 78, 214103 (2008).
21N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev.

Lett. 80, 1988 (1998).
22Y. L. Li, L. E. Cross, and L. Q. Chen, J. Appl. Phys. 98, 064101

(2005).
23S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed.

(Wiley, Hoboken, NJ, 2007).
24V. B. Shenoy, Y. Xiao, and K. Bhattacharya, J. Appl. Phys. 111,

084105 (2012).
25J. Hlinka and P. Marton, Phys. Rev. B 74, 104104 (2006).
26H. L. Stadler and P. J. Zachmanidis, J. Appl. Phys. 34, 3255 (1963).
27Robert C. Miller and Gabriel Weinreich, Phys. Rev. 117, 1460

(1960).
28M. Hayashi, J. Phys. Soc. Jpn. 34, 1240 (1973).
29J. F. Scott, F. D. Morrison, M. Miyake, P. Zubko, X. Lou, V. M.

Kugler, S. Rios, M. Zhang, T. Tatsuta, O. Tsuji, and T. J. Leedham,
J. Am. Ceram. Soc. 88, 1691 (2005).

30The intrinsic coercive field based on the coefficients of Eq. (2) is
15 MV/m, but the compressive strain rescales these coefficients to
give a larger intrinsic coercive field.

31Even if the majority charge carriers are electrons/holes, the
following observations still pertain: (i) The coercive field decreases
with increasing Nd [as observed by Zubko et al. (Ref. 16)]; (ii) the
reverse domains grow from the depletion layer where the magnitude
of the polarization is lower than the bulk of the film, expand through
the film, and taper into the depletion layer at the opposite side of
the film (the shapes of the reverse domains are as shown in Figs. 1
and 5); and (iii) the electric field distributions around the growing
reverse domains are qualitatively similar to those shown in Fig. 7.

32See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.86.094104 for a movie of the switching
process.

094104-7

http://dx.doi.org/full_text
http://dx.doi.org/full_text
http://dx.doi.org/10.1063/1.2337009
http://dx.doi.org/10.1063/1.2337009
http://dx.doi.org/10.1103/PhysRevLett.84.3177
http://dx.doi.org/10.1103/PhysRevLett.84.3177
http://dx.doi.org/10.1002/(SICI)1521-3951(199808)208:2<523::AID-PSSB523>3.0.CO;2-T
http://dx.doi.org/10.1002/(SICI)1521-3951(199808)208:2<523::AID-PSSB523>3.0.CO;2-T
http://dx.doi.org/10.1063/1.1662770
http://dx.doi.org/10.1063/1.1662770
http://dx.doi.org/10.1088/0953-8984/15/24/106
http://dx.doi.org/10.1088/0953-8984/15/24/106
http://dx.doi.org/10.1063/1.2408650
http://dx.doi.org/10.1063/1.2408650
http://dx.doi.org/10.1103/PhysRevLett.98.207601
http://dx.doi.org/10.1103/PhysRevLett.98.207601
http://dx.doi.org/10.1038/nature01501
http://dx.doi.org/10.1103/PhysRevLett.96.107603
http://dx.doi.org/10.1103/PhysRevLett.96.107603
http://dx.doi.org/10.1103/PhysRevB.76.174121
http://dx.doi.org/10.1103/PhysRevB.76.174121
http://dx.doi.org/10.1088/0034-4885/61/9/002
http://dx.doi.org/10.1103/PhysRevLett.95.247603
http://dx.doi.org/10.1103/PhysRevLett.95.247603
http://dx.doi.org/10.1103/PhysRevB.61.15042
http://dx.doi.org/10.1103/PhysRevB.61.15042
http://dx.doi.org/10.1063/1.1834728
http://dx.doi.org/10.1063/1.2382459
http://dx.doi.org/10.1063/1.2382459
http://dx.doi.org/10.1080/10584589408018654
http://dx.doi.org/10.1080/10584589408018654
http://dx.doi.org/10.1103/PhysRevB.81.205308
http://dx.doi.org/10.1103/PhysRevB.83.235313
http://dx.doi.org/10.1103/PhysRevB.78.214103
http://dx.doi.org/10.1103/PhysRevLett.80.1988
http://dx.doi.org/10.1103/PhysRevLett.80.1988
http://dx.doi.org/10.1063/1.2042528
http://dx.doi.org/10.1063/1.2042528
http://dx.doi.org/10.1063/1.3702849
http://dx.doi.org/10.1063/1.3702849
http://dx.doi.org/10.1103/PhysRevB.74.104104
http://dx.doi.org/10.1063/1.1729173
http://dx.doi.org/10.1103/PhysRev.117.1460
http://dx.doi.org/10.1103/PhysRev.117.1460
http://dx.doi.org/10.1143/JPSJ.34.1240
http://dx.doi.org/10.1111/j.1551-2916.2005.00486.x
http://link.aps.org/supplemental/10.1103/PhysRevB.86.094104
http://link.aps.org/supplemental/10.1103/PhysRevB.86.094104



