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Nuclear tunneling and dynamical Jahn-Teller effect in graphene with vacancy
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We show that the substitutional vacancy in graphene forms a dynamical Jahn-Teller center. The adiabatic
potential surface resulting from the electron-lattice coupling was computed using density-functional methods,
and subsequently the Schrödinger equation was solved for the nuclear motion. Our calculations show a large
tunneling splitting 3� estimated to be about 65 cm−1. The effect results in a large delocalization of the carbon
nuclear wave functions around the vacancy, leading to a significant broadening of the Jahn-Teller active sp2σ

electron states. The tunneling splitting should be observable in electron paramagnetic resonance and two-photon
resonance scattering experiments.
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I. INTRODUCTION

In spite of its deceptively simple honeycomb lattice
structure, graphene has quickly become a new paradigm for
testing a variety of ideas in condensed matter physics. The
much celebrated linear band structure of graphene1 leads to a
host of unusual behaviors,2–5 such as Klein tunneling, chiral
electrons, minimum conductivity, negative refraction, the half-
integer quantum Hall effect, and new features in the Kondo
and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions.6,7

Vacancies in carbon-based systems have been of considerable
interest for quite some time now, especially in the context of
magnetism without magnetic atoms.8–14 Quite remarkably, it
has been shown that a vacancy introduces a quasilocalized
midgap state in the π bands with ∼1/r decay on account of
the particle-hole symmetry.9,15 An interesting consequence of
this is the partial occupation of the vacancy-induced σ -band
states, which leads then to a Jahn-Teller (JT) distortion. The JT
distortion could be static or dynamic. In the latter, the potential
barrier between the different equivalent minima in the nuclear
configuration space is small enough that the nuclei tunnel
between the various minima, leading to several interesting
effects, while in the static JT effect the nuclei are stuck to one
minima or the other. In this paper, we show that the vacancy
forms a dynamical JT center in graphene owing to the small
quantum mechanical barrier for nuclear tunneling.

II. JAHN-TELLER COUPLING AND THE ADIABATIC
POTENTIAL SURFACE

Density-functional calculations9 show that the vacancy
introduces four electrons into the graphene bands, as illustrated
in Fig. 1. The JT effect comes from the partial occupation of the
doubly degenerate sp2σ dangling bond states on the carbon
triangle surrounding the vacancy and their coupling to the
two vibrational modes of the triangle, given by the E ⊗ e JT
Hamiltonian16
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FIG. 1. (Color online) Vacancy-induced σ and π electron states
(Vσ and Vπ ) with the occupied states shown by dots with arrows (left).
The nominal 2μB (S = 1) magnetic moment due to the localized
states is reduced substantially due to the antiferromagnetic spin
polarization of the band states, indicated by πl ↑↓, in the local
neighborhood of the vacancy. The right part of the figure shows
the JT active electron states, |v1〉 and |v2〉, and the vibrational modes
of the carbon triangle to which they couple. σi denotes the dangling
sp2σ bond orbital on a carbon atom adjacent to the vacancy.

where the various terms are, respectively, the nuclear kinetic
energy, the elastic energy, and the linear and quadratic JT
coupling terms. Here the pseudospin �τ describes the two
JT active, doubly degenerate electronic states |v1〉 and |v2〉
originating from the three sp2σ dangling bonds on the carbon
triangle: |v0〉 = (σ1 + σ2 + σ3)/

√
3, |v1〉 = (−σ2 + σ3)/

√
2,

and |v2〉 = (2σ1 − σ2 − σ3)/
√

6, with energies E0 = −2t and
E1,2 = t and symmetries A1 and E, respectively, with the −t

being the σ -electron hopping between the neighboring sites
on the triangle, and |v1〉 transforms like x and |v2〉 like y. On
the other hand, the pz orbitals, responsible for the linear “π”
Dirac bands, introduce the quasilocalized midgap state, which
becomes singly occupied due to Hund’s coupling, leaving a
lone electron to occupy the σ -derived doubly degenerate E

state. This explains the relative positions of the vacancy states
shown in Fig. 1. Density-functional calculations yield a net
magnetic moment of about 1.7μB and may be understood as
follows. The Hund’s-rule coupling between the V σ and V π

electrons leads to an S = 1 state with a magnetic moment of
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2μB , which is reduced by about 0.3μB due to the antiferro-
magnetic spin polarization of the π band itinerant states in the
vicinity of the vacancy, as schematically illustrated in Fig. 1.

Turning now to the three vibrational modes of the triangle:
|Q0〉 = (0,2,

√
3,−1,−√

3,−1)/
√

12, |Q1〉 = (0,2,−√
3,

−1,
√

3,−1)/
√

12, |Q2〉 = (2,0,−1,
√

3,−1,−√
3)/

√
12,16

Q0 is the stretching mode, and the doubly degenerate Q1

and Q2 modes are JT active, splitting the upper two V σ

bands as shown in Fig. 1. The parameters in the Hamiltonian
are the carbon mass M , the elastic energy K , and the linear
and quadratic JT coupling parameters g and G, respectively.
Diagonalization of the potential terms in Eq. (1) leads to the
well-known adiabatic potential surface (APS) for the nuclear
motion,

E± = 1
2Kρ2 ± ρ

√
g2 + G2ρ2 + 2gGρ cos(3φ), (2)

where ρ =
√

Q2
1 + Q2

2 and φ = tan−1(Q2/Q1) are the polar
coordinates and E± denotes the two potential sheets. Without
the quadratic coupling (G = 0), one gets the Mexican hat APS,
while with it we have three minima in the (Q1,Q2) space
(Fig. 2). The electronic eigenfunction for the lower sheet is16

|ψe〉 = [sin(φ/2)|v1〉 + cos(φ/2)|v2〉]eiφ/2, (3)

where the phase factor assures single-valuedness as one moves
around the origin and leads to a Berry phase.

III. DENSITY-FUNCTIONAL COMPUTATION
OF THE ADIABATIC POTENTIAL SURFACE

To study the APS, we have computed the total energy as a
function of the vibronic coordinates using the spin-polarized
density functional all-electron linear augmented plane-wave
(LAPW) method17 and the generalized gradient approximation
(GGA) for the exchange-correlation functional.18 We used
a 32-atom supercell with a single vacancy and obtained
a fully relaxed structure, which yielded a planar structure
with an isosceles triangle for the carbon atoms surrounding
the vacancy with two long bonds (2.66 Å) and one short
bond (2.41 Å). This is equivalent to the following distortion:
Q0 = 0.08 Å, Q1 = 0.165 Å, and Q2 = 0. We then took a
series of structures with varying distortions, Q1 and Q2, and
in each case optimized the rest of the carbon atoms in the
supercell. We note that while the literature is divided regarding
whether the relaxed structure with a vacancy is planar or
nonplanar, the threefold symmetry of the adiabatic potential
surface occurs in either case, being tied to the symmetry of
the honeycomb lattice itself. Throughout the calculations, the
atomic sphere radius (RMT) was fixed at 0.63 Å, while the
LAPW basis functions were cut off at RKmax = 4.6, with
approximately 3500 basis functions at each k point, and we
retained the angular momentum expansion inside the atomic
sphere up to lmax = 6. The basis set included 2s,2p valence
functions for the C atoms.

The calculated energies are shown in Fig. 2, which yields
the JT distortion radius ρ0 = 0.165 Å, the JT stabilization
energy EJT = 110 meV, and the tunneling barrier height
β = 19 meV. Comparison of these results with Eq. (2) yields
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FIG. 2. (Color online) Total energy as a function of the vibronic
distortion Q1 computed from the DFT (red dots) and fitted to the
adiabatic energy E− in Eq. (2) (full line) (top). Shown also are the
computed JT stabilization energy EJT, the barrier height β for nuclear
tunneling, and the magnitude of the JT distortion ρ0. The triangles
indicate the configurations at the three extrema. The bottom figure
shows the corresponding energy contours in the Q1-Q2 plane (the
adiabatic potential surface), with the three equivalent minima (dots)
separated by the tunneling barriers (crosses). The contour values are
−0.11 + 0.001(2n) in units of eV, where n = 0,1, . . . ,7 labels the
contours and � denotes the nuclear hopping integral in the tight
binding description.

the stiffness constant K = 9.3 eV/Å2 and the linear and
quadratic JT parameters g = 1.46 eV/Å and G = 0.38 eV/Å2,
respectively. For the case of LaMnO3, a well-known system
with a strong JT interaction, while the K and g are about the
same, the warping parameter G = 2.0 eV/Å2 is significantly
large,19 which results in a static JT effect with the nuclei
stuck to one potential minimum. In contrast, the weaker
warping term G in graphene leads to a small barrier height
for nuclear tunneling and consequently to the dynamic JT
effect, where the nuclei tunnel between the three minima in
the APS.
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IV. TIGHT-BINDING NUCLEAR HOPPING
AND THE BERRY PHASE

The basic features of the collective nuclear-electronic
motion may be described by adopting a simple tight-binding
approach, familiar from electronic structure theory.
We write the collective wave function as the linear
combination |�〉 = c1φ1(R)ψe

1 (R,r) + c2φ2(R)ψe
2 (R,r) +

c3φ3(R)ψe
3 (R,r), where R(r) is the nuclear (electronic)

coordinate, φi(R) solves the nuclear Schrödinger equation in
the vicinity of the potential minima,

[TR + Vi(R)]φi(R) = E0φi(R), (4)

and ψe
i (R,r) satisfies the electronic Schrödinger equation

for the fixed nuclear position R ≡ (Q1,Q2). The electronic
wave function is restricted to the Hilbert space (|v1〉,|v2〉)
and has the form Eq. (3) for a given nuclear coordinate R.
Thus the energy eigenstates assume the Born-Oppenheimer
form |�(R)〉 = �n(R)|ψe(R,r)〉, where �n(R) = c1φ1(R) +
c2φ2(R) + c3φ3(R) is a linear combination of the nuclear
orbitals.

The eigenstates can then be obtained from the diagonaliza-
tion of the 3 × 3 tight-binding Hamiltonian,

H =

⎛
⎜⎝

E0 �eiφ �e−iφ

�e−iφ E0 �eiφ

�eiφ �e−iφ E0

⎞
⎟⎠ , (5)

where the phase factor eiφ will be discussed momen-
tarily, E0 is the on-site energy, and � is the nuclear
hopping integral in the adiabatic approximation � =
〈φ1(R)ψe(R,r)|V (R)|φ2(R)ψe(R,r)〉 ≈ −(V )F . In ob-
taining the last result, the normalization 〈ψe(R,r)|ψe(R,r)〉 =
1 has been used,

F =
∫

φ∗
1 (R)φ2(R)d3R (6)

is the Frank-Condon factor, and the deviation of the lower APS
potential from the well potential, V (R) = V−(R) − Vi(R),
has been approximated by its value −V at the saddle point
(marked by a cross in the bottom panel in Fig. 2), since that is
where most of the contribution to the integral comes from.

The magnitude of the nuclear hopping � may be estimated
by assuming a one-dimensional motion of the nuclei in the
azimuthal direction, along the circle of radius ρ0, and by
computing the quantities V and F . The 1D motion is
reasonable since by expanding the adiabatic potential V−
around the potential minima, the spring constant for azimuthal
motion is found to be K ′ = 9G, which is less than half of
the spring constant K for radial motion. This corresponds
to a phonon frequency of h̄ω ≈ 58 meV for radial motion and
≈34 meV for azimuthal motion. The latter is of the same order
of magnitude as the tunneling barrier of 19 meV, which again
indicates strong tunneling between the three minima. Now,
taking the nuclear wave functions as the 1D simple harmonic
oscillator wave function localized at the potential minima,
φ(x) = (πl2)−1/4 exp[−x2/(2l2)], where l = h̄/

√
MK ′ and x

is the length along the azimuthal direction, the Frank-Condon
factor becomes simply the overlap integral between two
displaced harmonic oscillator wave functions, with the result
F = 2−1/2 exp[−a2/(4l2)], where a = 2πρ0/3 is the distance

between two minima along the circle. Meanwhile, the potential
difference between the minimum and the saddle point can
be found to be V = ρ2

0 (π2K ′/18 − 2G). Plugging in the
numerical values, we find F � 0.13 and V � 0.035 eV, so
that the hopping integral � ≈ (V )F = −37 cm−1.

Finally, in addition to the hopping integral, the adiabatic
motion of the electron results in a fictitious magnetic field
seen by the nuclei with the vector potential,20

�A = − h̄

q
Im〈ψe(R,r)| �∇Rψe(R,r)〉, (7)

which adds a phase factor, the Berry phase, to the hopping
amplitude in the Hamiltonian (5). The modified hopping in
the presence of the magnetic field, from point a to b, is given
by the expression21

� = � �A=0 exp

[
iq

h̄

∫ b

a

�A · d�s
]
. (8)

It immediately follows from Eqs. (3) and (7) that �A =
−2−1h̄q−1êφ , so that the phase factor in Eq. (8) is simply eiφ =
eiπ/3. This phase factor, the Berry phase, is very important
because without this, the symmetry of the ground state is
incorrectly predicted. Diagonalization of the Hamiltonian
Eq. (5) with the correct phase factor yields a doubly degenerate
nuclear ground state with energy �, with the singly degenerate
excited state at energy −2�, so that the energy separation is
3|�| = 111 cm−1.

This crude but conceptually rich tight-binding result may
be compared to the exact, brute-force diagonalization of the
full Hamiltonian Eq. (1) by expanding the combined nuclear-
electronic wave function |�〉 in a complete basis set,16,22

|�〉 =
N∑

n=0

N−n∑
m=0

[
Anm

(c†1)n√
n!

(c†2)m√
m!

|0〉|v1〉

+ Bnm

(c†1)n√
n!

(c†2)m√
m!

|0〉|v2〉
]

, (9)

where c
†
1,c

†
2 create harmonic oscillator states along the Q1,Q2

axes centered at the origin and Anm and Bnm are the
expansion coefficients. This procedure requires no additional
consideration of a fictitious magnetic field and also yields the
full solutions in addition to the lowest three states obtained
from the tight-binding theory. The results are shown in Fig. 3.
The tunneling splitting obtained from the difference between
the ground and the excited state energies has the magnitude
3|�| = 86 cm−1, which compares very well with the tight-
binding result.

V. NUCLEAR WAVE FUNCTION

The nuclear probability density in the configuration space
(Q1,Q2) may be written as

|�N (Q1,Q2)|2 =
∑
nm

(|Anm|2 + |Bnm|2)|φn(Q1)|2|φm(Q2)|2,
(10)

where φn is the nth harmonic oscillator eigenfunction, and
the expansion coefficients Anm and Bnm are obtained from the
solution of Eq. (9). The results for the ground state, shown in

085458-3



Z. S. POPOVIĆ, B. R. K. NANDA, AND S. SATPATHY PHYSICAL REVIEW B 86, 085458 (2012)

-1

 0

 1

 2

 3

 0  0.25  0.5  0.75  1

E
ne

rg
y 

(h
ω

)

λ

Γ3

6

4

2

2

11

22

FIG. 3. (Color online) Eigenvalues obtained by diagonalization
of Eq. (1) using the basis set Eq. (9) as a function of the scaled
coupling strengths λg and λG. Numbers inside the figure indicate
the degeneracies. For λ = 0, eigenstates of the two-dimensional
harmonic oscillator are reproduced.

Fig. 4, indicate the confinement of the nuclear wave function
at the three minima of the APS with a significant component
in the barrier region in between the minima.

The real space wave function |�N (r)|2 can be com-
puted from the corresponding quantity |�N (Q1,Q2)|2 in the
configuration space. The result is shown in Fig. 5, which
indicates a significant spread of the nuclear wave function of
the carbon triangle, about 0.1 Å from the equilibrium positions.
We note that this is not washed out by the lattice thermal
vibrations, which causes the nuclear vibrational amplitude,
estimated from the expression 1

2KQ2 = 3
2kBT to be about

0.05 Å at room temperature.
The spread of the nuclear wave function broadens

the energy of the JT split electronic states as well,
so that they are not sharp δ-function states any longer.
In the adiabatic approximation, the electronic density
of states is given by ρ(E) = ∑

Q1Q2
|�N (Q1,Q2)|2[δ(E −

ε−(Q1,Q2)) + δ(E − ε+(Q1,Q2)), where ε± denote the ener-
gies of the two JT split states in expression (2) but without the

A
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FIG. 4. (Color online) Nuclear ground-state probability density
|�N (Q1,Q2)|2 in the configuration space, indicating the localization
of the wave function near the three minima of the adiabatic potential
surface.
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FIG. 5. (Color online) Nuclear probability density |�N (r)|2 in
the ground state showing the symmetric distortion of the carbon
atoms from the ideal position of an equilateral triangle (solid line).
The nuclei move in a correlated manner so that the most probable
configuration is one of the three isosceles triangles (one of which
is indicated by the dashed lines) corresponding to the three minima
of the APS. The nuclear motion of the nearby atoms shows a much
smaller deviation from their equilibrium positions. The inset shows a
significant broadening, computed within the adiabatic approximation,
of the JT active electron states due to the spread of the nuclear wave
function.

elastic energy term. The results are shown in the inset of Fig. 5,
which predicts a rather large width, of the order of 0.20 eV, due
to the JT effect. Thus these states should appear as rather broad
states in the density of states. In contrast to this, the broadening
of the midgap V π state is expected to be rather small. In
fact, it is exactly zero if only the nearest-neighbor hopping is
retained.15 This is borne out by the less than 5 meV width of the
midgap state, seen in the scanning tunneling experiments.23

VI. DISCUSSIONS

The above analysis included just one pair of vibrational
modes Q1 and Q2 corresponding to the atoms in the first shell
around the vacancy as described in the Hamiltonian Eq. (1).
There are more such modes corresponding to the farther shells.
For instance, there is also a pair of modes in the second shell24

and so on. It is difficult to treat the JT problem when multi-
ple vibrational modes are present (the so-called multimode
problem25–27), and often the single-mode approximation is
made.28,29 In the present case, due to the localized nature of
the JT-active states (dangling sp2 bond orbitals on the first
shell atoms), the JT coupling to modes belonging to further
neighbor shells is expected to be quite weak. The coupling is
further weakened because of the small hybridization between
the σ and the π states; in fact, the coupling is strictly forbidden
by symmetry for the planar structure. As a result, the coupling
of the vibronic modes belonging to the higher neighbor shells
to the JT-active electronic states is only indirect, viz., via the
structural relaxation of the first shell atoms. To study this,
we have computed the vibronic coupling parameter g′ for
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the Q1 and Q2 modes of the second shell atoms24 from the
density-functional calculations, which confirms that even for
the second shell, the coupling is already quite small, with
g′ ≈ g/6. This being the case, the single-mode approximation
should be accurate and it captures the essential physics in the
present case.

A second point is that even in the single-mode problem,
since all atoms in the crystal are involved in the vibration, the
effective mass of the vibrational mode is not just the mass
of the carbon atom as used above, but it could be several
times larger. The effective mass is given by the expression
1/2MeffQ̇

2 = 1/2M
∑

i(ẋ
2
i + ẏ2

i ), where M is the atomic
mass, the summation goes over all atoms in the solid, and xi,yi

represent the displacements for the given vibronic amplitude
Q. If just the first shell is retained, then Meff simply equals
M , which follows from the normalization convention of the
vibronic modes with respect to the first shell of atoms. The
displacements of the atoms fall off rapidly with distance from
the vacancy, e.g., as 1/r2 for 3D and 1/r for 2D lattices
within the linear elastic continuum theory,30 so that most of
the contribution to the effective mass should come from the
first few shells.

From our density-functional calculations, we can estimate
the effective mass if we neglect the contributions of the shells
beyond the fifth shell. The effective mass is estimated from
the expression Meff = ∑

m Mm, where Mm = νm(rm/Q)2

is the contribution to the effective mass from the mth shell, νm

is the number of atoms, and rm = 〈[(x)2 + (y)2]〉1/2 is
the average deviation of the positions of the atoms belonging
to the mth shell. In deriving this expression, we have made
the linear approximation, valid for small oscillations, viz.,
that Q̇/ẋi ≈ Q/xi , etc. The results listed in Table I show
that the contribution to the effective mass rapidly converges
with the shell distance, yielding the value Meff ≈ 1.8M . The
higher mass would reduce the tunneling splitting by the factor
(Meff/M)1/2, so that 3|�| ≈ 65 cm−1 instead of the 86 cm−1

value computed earlier using the bare mass M in Eq. (1).
The large value of the tunneling splitting as compared to the

strain splitting, the typical value of which31 is δ ∼ 10 cm−1,
results in the delocalization of the nuclear wave function. If
the reverse were true, then the nuclei would be more or less
stuck in one or the other potential well due to the removal of
the degeneracy of the three APS minima by the local strain

TABLE I. Average displacement of a carbon atom rm (in Å)
in the mth shell surrounding the vacancy for the JT distortion Q1 =
0.24 Å. νm denotes the number of atoms in the shell and Mm is the
shell contribution to the effective mass in units of the bare mass M.

Shell no. (m) 1 2 3 4 5

νm 3 6 3 6 3
|rm| 0.138 0.070 0.051 0.030 0.020
Mm 1.00 0.51 0.14 0.09 0.02

caused by the invariable presence of defects. This would
therefore lead to a static distortion of the nuclear framework
resulting in the static JT effect. For the dynamical JT effect,
the tunneling splitting must be strong enough to overcome the
strain splitting, so that the nuclei can tunnel between all APS
minima, which is the case for graphene.

VII. CONCLUSION

In conclusion, we showed that the substitutional vacancy in
graphene forms a dynamical JT center due to a weak potential
barrier for tunneling between the three minima in the adiabatic
potential surface. The doubly degenerate nuclear ground state
with the tunneling splitting of about 64 cm−1 originates from
the combined nuclear-electronic motion, which may be cast in
terms of a Berry phase acquired due to a fictitious magnetic
field experienced by the nuclei caused by the adiabatic motion
of the electrons. The splitting should be observable in the
electron paramagnetic resonance and two-photon resonance
scattering experiments, which have been used to study the JT
effects in the triatomic molecules. The quantum mechanical
spread of the nuclear wave function is predicted to lead to
a significant broadening of the JT split dangling bond states.
Recently, it has been proposed32 that the entanglement between
the nuclear and electronic motion in a dynamical JT system
may be exploited in quantum computation, leading to the
possibility of yet another novel application for graphene.
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