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Effect of disorder on the electronic properties of graphene: A theoretical approach
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In order to manipulate the properties of graphene, it is very important to understand the electronic structure
in the presence of disorder. We investigate, within a tight-binding description, the effects of disorder in the
on-site (diagonal disorder) term in the Hamiltonian as well as in the hopping integral (off-diagonal disorder) on
the electronic dispersion and density of states by the augmented space recursion method. Extrinsic off-diagonal
disorder is shown to have dramatic effects on the two-dimensional (2D) Dirac cone, including asymmetries in the
band structures as well as the presence of discontinuous bands (because of resonances) in certain limits. Disorder-
induced broadening, related to the scattering length (or lifetime) of Bloch electrons, is modified significantly
with increasing strength of disorder. We propose that our methodology is suitable for the study of the effects of
disorder in other 2D materials, such as a boron nitride monolayer.
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I. INTRODUCTION

Graphene, a two-dimensional allotrope of carbon, plays
a central role in providing a basis for understanding the
electronic properties of other carbon allotropes. Being one
of the thinnest and the strongest material ever measured,
graphene has attracted the attention of the materials research
community1 in the recent past. One of the most interesting
aspects of graphene is that its low energy dispersion closely
resembles the Dirac spectrum of massless fermions. This
particular type of dispersion provides a bridge between con-
densed matter physics and quantum electrodynamics (QED)
for massless fermions. Of course in graphene, the Dirac
fermions move with a much smaller speed.

Because of its unusual electronic and structural flexibility,
properties of graphene can be controlled chemically or
structurally in many different ways, for example, by deposition
of metal atoms2 on top of the graphene sheet, incorporating
other elements like boron and nitrogen3 randomly in the
parent structure, either interstitially or substitutionally and
using different substrates.4 Because disorder is unavoidable
in any material, there has been an increasing interest in
understanding how disorder affects the physics of electrons
in graphene.5 Disordered graphene based derivatives can
probably be referred to as functionalized graphene suitable
for specific applications. “Graphene paper”6 is a spectacular
example of how important such functionalization could be.

There can be many different sources of disorder in graphene
including both intrinsic as well as extrinsic. Intrinsic sources
may include surface ripples and topological defects. Extrinsic
disorder comes in the form of vacancies, adatoms, quenched
substitutional atoms, and extended defects, such as edges
and cracks. Another way of introducing disorder is by ion
irradiation that produces complex defect structures in the

graphene lattice.7 Graphene in an amorphous form may
increase the metallicity too.8

To have a theoretical description of graphene’s electronic
structure, one may begin with the Kohn-Sham equation and a
tight-binding representation whose basis is labeled by the sites
of the underlying Bravais lattice. Disorder may enter the matrix
representation of the Hamiltonian in two ways: vacancies,
dopants, and adatoms predominantly cause a random change
in the local single-site energy (disorder in the diagonal terms),
but through the overlap such defects modify the hopping
integrals between different sites (disorder in the off-diagonal
terms) causing an effective random change in the distance or
angle between the bonding orbitals. Thus diagonal and off-
diagonal disorders simultaneously occur and are correlated.
Model calculations which take them to be independent are
qualitatively in error. As far as diagonal disorder is concerned,
it acts as a simple chemical potential shift of the Dirac fermion,
i.e., it shifts the Dirac point locally. Theoretical study of such
disorder is rather simple and has indeed received attention
and success, reported in the literature.5−9 A proper inclusion
of off-diagonal disorder, on the other hand, is nontrivial and
requires more sophisticated approaches.

To date there have been numerous attempts at studying
the effects of disorder in graphene.5−9 Among others, the
methods used to study effects of disorder included the
averaged t-matrix approximation (ATA)9 and the coherent
potential approximation(CPA).10 Several others have used
exact diagonalization of huge clusters and the real-space
recursion of Haydock et al.9,11 Both these techniques actually
calculate the density of states (DOS) for specific configurations
of the system followed by direct averaging over a large number
of configurations. Since each of the configurations has periodic
boundary conditions, the averaged spectral function is always
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a collection of δ functions and the disorder induced lifetime
effects cannot be probed. The recursion on the lattice probes
mainly the real-space effects of disorder.

From the theoretical perspective, dealing with disorder has
had a long history. As mentioned earlier, one of the most
successful and frequently used approaches is the single-site,
mean field CPA.10 However, as the name itself suggests, it is
a single site approximation and cannot adequately take into
account the effects of correlated configuration fluctuations.
Among the hierarchy of the generalizations of the CPA,
only few approaches proved promising and survived the
test of time. These include the nonlocal CPA,12 the special
quasirandom structures (SQSs),13 the locally self-consistent
multiple scattering approach (LSMS),14 and the three methods
based on the augmented space formalism proposed by one of
us:15 the traveling cluster approximation (TCA),16 the itinerant
coherent potential approximation (ICPA),17 and the augmented
space recursion (ASR).18 Over the years the ASR has proved to
be one of the most powerful techniques, which can accurately
take into account the effects of correlated fluctuations arising
out of the disorder in the local environment. This is reflected
in a series of studies in the past, e.g., the effects of local lattice
distortion as in CuBe,19 short-range ordering due to local
chemistry,20 the phonon problem21 with essential off-diagonal
disorder in the dynamical matrices, and electrical and thermal
transport properties22 in disordered alloys.

In this paper, we present a theoretical tight-binding model
to study the effects of disorder in graphene. Disorders studied
were mainly of two forms: substitutional disorder23–25 and
vacancies.9,26 Unlike earlier models, both the diagonal and
off-diagonal disorders are included on the same footing.
The present formalism is based on the augmented space
recursion.18 Although recursion has been used to study
graphene before, we want to emphasize that in all those appli-
cations recursion was carried out on a Hilbert spaceH spanned
by the tight-binding basis representing the Hamiltonian. In
augmented space recursion, we recurse in the space of all
possible configurations which the Hamiltonian may assume
in the disordered system. For a homogeneously disordered

binary alloy, this configuration space is isomorphic to that of
a spin-half Ising model. The augmented space theorem15 then
connects configuration averages to a specific matrix element
in that space of configurations.

The novel approach in this work is that we shall make
use of the translation symmetries in augmented space (for
homogeneous disorder) to carry out recursion in reciprocal
space. This will directly give us the spectral function from
which we extract the “fuzzy” band structure. The inclusion
of the effects of configuration fluctuations of the immediate
environment gives us self-energies which are strongly k
dependent, unlike the CPA. In order to make a systematic
study, we present results for combinations of both strong and
weak diagonal and off-diagonal disorder. The combined effects
show dramatic changes in the location and topology of the
Dirac-like dispersion and the DOS. Special emphasis has been
given to the nontrivial inclusion of off-diagonal disorder, in
which case the averaged Bloch spectral function comes out to
be significantly broadened, multiply peaked, and asymmetric
in certain limits where the presence of resonances leads to
discontinuous dispersion. The interesting interplay of the two
kinds of disorder on full widths at half maxima (FWHMs)
(related to the lifetime of Bloch electrons in a disordered
system) is also shown.

The rest of the paper is organized as follows. In Sec. II, we
introduce the basic formalism. Section III is devoted to results
and discussions. Concluding remarks are present in Sec. IV.

II. FORMALISM

The most general tight-binding Hamiltonian for electrons
in graphene can be represented as

H =
∑
Rαs

∑
R′αs′

{
ε

αs

R δRR′δss ′P
αs

R + V
αsαs′
RR′ T

αsαs′
RR′

}
, (1)

where R,R′ denotes the position of the unit cell of the lattice,
αs denotes the αth atom on the sth sublattice. The actual atomic
position is R + ζ αs , where ζ αs is the position of the αth atom
on the sth sublattice. ε

αs

R is the on-site energy describing the
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FIG. 1. (Color online) (Left) The standard honeycomb lattice with a basis of two atoms per unit cell. (Right) The underlying rhombic
Bravais lattice which becomes the honeycomb lattice when a pair of atoms decorate each site.
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FIG. 2. (Color online) Nearest neighbor overlaps on the rhombic
lattice.

scattering properties of the atomic potential at R + ζ αs , and
V

αsαs′
RR′ is the hopping integral between R + ζ α and R′ + ζ α′

. P
and T are the projection and transfer operators in the Hilbert
space spanned by the tight-binding basis |Rαs〉.

The above Hamiltonian H describes electrons in the
original honeycomb lattice of ion-cores, as shown in the left
panel of Fig. 1. The two inequivalent sublattices (shown by
red and blue spheres) are distinguished from each other. The
underlying Bravais lattice is the rhombic lattice shown in the
right panel of Fig. 1. Looking at Fig. 2 we can simplify Eq. (1)
further and write the Hamiltonian elements as 2 × 2 matrices:

H =
∑
R

ε
R

PR +
∑
R �=R′

V
RR′TRR′ , (2)

where εR and V
RR′ , instead of being scalar for a single-band

problem, are now 2 × 2 matrices given by

ε
R

=
(

ε1 t

t ε2

)
V

01
= V

02
=

(
t ′ 0
t t ′

)
,

(3)

V
03

= V
04

=
(

t ′ t

0 t ′

)
,

where ε1 and ε2 are the on-site energy on the two sublattices,
and t and t ′ are the nearest neighbor and the next nearest
neighbor hopping energies. V

0I
are the hopping matrices

between the central site 0 and its four neighboring sites I

(in the rhombic lattice) as shown in the right panel of Fig. 1.
Because the next nearest neighbor hopping t ′ is usually very
small compared to t , we shall treat the disorder effects only in
the nearest neighbors.

For a system with substitutional disorder, the most general
statement we can make is that the occupation of the lattice
sites in each inequivalent sublattice can be different. For binary
disorder in both the sublattices, we may introduce two random
occupation variables nI

R and nII
R associated with the sublattices

I and II such that,

nI
R =

{
1 if R ∈ A with probability xA

0 if R ∈ B with probability xB

and

nII
R =

{
1 if R ∈ C with probability xC

0 if R ∈ D with probability xD ,

where A, B are the two types of atoms randomly occupying
sublattice I and C, D are those occupying sublattice II.

The diagonal term εR for such a binary distribution can be
written as

εR =
(

εI
A tAC

tAC εII
C

)
nI

RnII
R +

(
εI
A tAD

tAD εII
D

)
nI

R

(
1 − nII

R

)

+
(

εI
B tBC

tBC εII
C

) (
1 − nI

R

)
nII

R

+
(

εI
B tBD

tBD εII
D

) (
1 − nI

R

)(
1 − nII

R

)
= E1 + E2 nI

R + E3 nII
R + E4 nI

RnII
R , (4)

where

E1 =
(

εI
B tBD

tBD εII
B

)
, E2 =

(
δε1 t (1)

t (1) 0

)
,

(5)

E3 =
(

0 t (2)

t (2) δε2

)
, E4 =

(
0 t (3)

t (3) 0

)
,

with δε1 = εI
A − εI

B ; with δε2 = εII
C − εII

D ; and with t (1) =
tAD − tBD , t (2) = tBC − tBD , and t (3) = tAC + tBD − tAD −
tBC .

Similarly the off-diagonal term V RR′ in Eq. (3) can be
expressed as (assuming t ′ = 0)

V 01 = V 02 = V1 + V2 nI
R + V3 nII

R′ + V4 nI
RnII

R′ , (6)

where

V1 =
(

0 0

tBD 0

)
, V2 =

(
0 0

t (1) 0

)
,

(7)

V3 =
(

0 0
t (2) 0

)
, V4 =

(
0 0

t (3) 0

)
.

V 03 (= V 04) are just the transpose of the above matrix V 01.
Various tαβ’s in the above sets of equations are the hopping
energies between various atom types (α = A,B and β = C,D)
at two sublattices I and II, respectively.

Next we proceed to calculate the configuration averaged
Green function ( or the Bloch spectral function) in reciprocal
space. We shall generalize the augmented space formalism
(ASF) developed earlier in reciprocal space.27 The ASF has
been described in great detail earlier.28 We shall indicate the
main operational results here and refer the reader to the above
monograph for further details. The first step is to associate with
nI

R and nII
R two operators NI

R and NII
R such that their spectral

density is the probability density of the random variables. For
binary random variables, we have

NI
R =

(
xB

√
xAxB√

xAxB xA

)
.

Finally, according to augmented space theorem,15 the
configuration average of any function of {nI

R ,nII
R } can be

written as the matrix element, in configuration space, of
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FIG. 3. Local density of states of pure graphene and graphene with a single or double impurity. The top panel in the middle is the DOS for
pure graphene. Left panels show the local DOS at a sublattice I (or II) in the vicinity of an impurity site (single impurity). Right panels show
the local DOS at a sublattice in the vicinity of an impurity site one of whose neighbors is also an impurity (double impurity). The panels from
top to bottom are the results with increasing strength of the impurity potential δE = εimp − εhost.

an operator which is the same functional of {NI
R ,NII

R }. The
augmented space Hamiltonian is built up from Eqs. (4)
and (6):

Ĥ =
∑
R

{
E1Î + E2Ñ

I
R + E3Ñ

II
R + E4Ñ

I
R ⊗ Ñ II

R

} ⊗ PR

+
∑
R

∑
R′

{
V1Î + V2Ñ

I
R + V3Ñ

II
R′ + V4Ñ

I
R ⊗ Ñ II

R′
}

⊗ TRR′

with

NX
R = xα p

X↑
R + xβ p

X,↓
R + √

xαxβ

(
τ

X,↑↓
R + τ

X,↓↑
R

)
, (8)

(X = I or II).
The configuration averaged Green’s function in the recip-

rocal space is thus a matrix element of an augmented resolvent
given by

〈〈G(k,z)〉〉 = 〈{∅} ⊗ k|(ẑI − Ĥ)−1| k ⊗ {∅}〉, (9)

|k ⊗ {∅}〉 is an augmented space state in the reciprocal space
given by

|k ⊗ {∅}〉 = 1√
N

∑
R

e−ik.R|R ⊗ {∅}〉, (10)

and |R ⊗ {∅}〉 is an enlarged basis which is a direct product
of the Hilbert space basis {R} and the configuration space
basis {φR}. The configuration space 
 = ∏⊗

R φR , which takes
care of the statistical average, is of rank 2M for a system of
M-lattice sites with binary distribution.

The recursion follows as a three step generation of a new
basis {|n >}:

|1〉 = |k ⊗ {∅}〉, |0〉 = 0,

|n + 1〉 = Ĥ |n〉 − αn|n〉 − β2
n−1|n − 1〉,

αn(k) = 〈n|Ĥ |n〉
〈n|n〉 and β2

n(k) = 〈n|n〉
〈n − 1|n − 1〉 .

The ASR gives the configuration averaged spectral function
as a continued fraction:

〈〈G(k,z)〉〉 = 1

z − α1(k) − β2
1 (k)

z − α2(k) − β2
1 (k)

z − α3(k) −
. . .

T (z,k)

= 1

z − E0(k) − �(z,k)
. (11)
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FIG. 4. Local DOS at a particular sublattice in the vicinity of a
single (left panels) or double (right panels) vacancy site in graphene. A
vacancy site is modeled by a site with a large repulsive local potential.
Technically we take δE = εimp − εhost for both the single and double
impurity problems. The figures show consecutive situations with
increasing δE as we go from top to bottom. The very bottom panels
indicate the ideal case of a completely inaccessible hard vacancy with
tij = 0.

T (z,k) is a continued fraction terminator as proposed by
Beer and Pettifor.29 The spectral function peaks are decided
by �e{�(E,k)}, and the imaginary part of � gives the width
related to the disorder induced lifetimes.

The configuration averaged Bloch spectral function is given
by

〈〈A(k,E)〉〉 = − 1

π
lim

δ→0+
�m{〈〈G(k,E + iδ)〉〉}. (12)

The configuration averaged DOS is

〈〈n(E)〉〉 = 1

BZ

∫
BZ

dk 〈〈A(k,E)〉〉. (13)

The electronic dispersion curves are obtained by numeri-
cally calculating the peak E position of the spectral function.
The FWHMs are also calculated from the disorder broadened
Bloch spectral function.

III. RESULTS AND DISCUSSION

In the following subsections, we shall present our results
for graphene with impurities, vacancies, diagonal disorder
alone, and with the simultaneous presence of diagonal and
off-diagonal disorder. The effects of various strengths of
impurity potentials on two inequivalent sublattices will be
shown via changes in the shape of the DOS. The changes
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FIG. 5. (Color online) Configuration averaged spectral functions
(upper set of panels) and the complex dispersion (lower set of panels)
near the Dirac point. These are all for pure diagonal disorder at three
different alloy compositions (left to right) and four disorder strengths
δE (top to bottom). The (red) error bars show how the disorder
induced lifetimes vary across the samples.

in the topology of Dirac-cone dispersion, disorder-induced
FWHMs, and the DOS will be shown for various strengths of
diagonal disorder. In the most general case of diagonal and
off-diagonal disorder, we consider three interesting limiting
cases: (i) strong diagonal and weak off-diagonal disorder, (ii)
strong off-diagonal and weak diagonal disorder, and (iii) strong
diagonal as well as off-diagonal disorder. The interesting
interplay between these different kinds of disorder in graphene
reveals a discontinuous type of band near the � point in the
third limiting case.
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FIG. 6. Total DOS for the same set of disorder strengths δE for the three alloys AxA
BxB

as in Fig. 5. Due to homogeneous diagonal disorder
on both the sublattices I and II, the individual projected DOSs on them are same in this case.

A. Impurities in Graphene

In Fig. 3, we display the local DOS with different strengths
of the single and double impurity potentials on different
inequivalent sublattices. The top figure in the middle panel
is the DOS for pure graphene. Left panels show the local DOS
at a sublattice (I or II) in the vicinity of an impurity site, while
right panels show the local DOS in the vicinity of an impurity
site one of whose neighbors is also an impurity with the same
potential (i.e., a double impurity, one at sublattice I and the
other at II). The strength of the impurity potential (relative
to the host lattice) increases from top to bottom panels (i.e.,
δE = εimp − εhost = 0.4, 0.7, and 1.0). All these calculations
are done with a fixed hopping parameter t = 1. We notice
changes in the shape of the hump and the van Hove singularities
as the strength of the impurity potential increases. Although
the effects are small, they are clearly visible for the case of
δE = 1.0, where the local environment around the impurity
site feels the strongest scattering. With the introduction of the
impurity, the symmetry of the DOS around the Dirac point is
lost. At these impurity levels, both the left and right panels
show the formation of an impurity peak near the upper band
edge. With increasing disorder this impurity peak moves into
the band and disappears. Again, at these strengths there is
no perceptible changes to the linear structure of the Dirac
point. Similar results have been obtained previously for such
models of impurities. This provides the correctness of our new
formulation.

B. Single vacancies in graphene

Let us now extend the impurity problem to the vacancies.
A vacancy can be modeled by a site with a large repulsive
local potential. Figure 4 shows the results for a single and
double vacancy. Left (right) panels show the local density of
states (LDOS) at a central site located in the vicinity of a
single (double) impurity site(s). A single vacancy corresponds
to just one nearest-neighbor (NN) impurity site while a double
vacancy to two NN sites around the central site at which the
LDOS is projected. Top to bottom panels indicate the evolution

of the structure of the DOS with increasing strength of the local
potential (δE) at the impurity site(s). The panels at the very
bottom show the results for the case of the ideal vacancy, where
tij = 0 for t connecting the vacancy site to the graphene lattice,
or in other words a completely inaccessible “hard” vacancy.
Notice that, with increasing δE, the right-most impurity peak
at around the top band edge moves into the band. Most of
the changes occur around the Dirac point at E = 0. With the
introduction of impurity, the symmetry of the DOS around the
Dirac point gets broken and an extra impurity peak starts to
appear near E = 0 (for δE � 2). The origin of such a “zero
mode” resonant peak has been discussed in detail by Pereira
et al.30 and Wehling et al.25 This peak grows in height with
increasing potential strength and decreases in width.

As observed by Wehling et al.,25 we also noticed a similar
impurity resonance peak within E = 1 eV (with varying
potential strength) around the Dirac point. Such a resonance
peak structure is located further away from E = 0 for weaker
impurity potentials, and moves towards E = 0 with increasing
scattering strength. Single and double impurity cases do reflect
different electronic effects on the projected LDOS. In the case
of double impurity, the resonance peak is broadened (due to
more scattering) and lies further away from E = 0 as compared
to the single impurity case. The evolution of the impurity peak
and the symmetry of the DOS on the two sides of Dirac point
are much more sensitive to the change of scattering strength
in the double impurity case. The structure of the DOS changes
more dramatically in the weaker potential regime. Symmetry
of the LDOS on the two sides of the Dirac point (E = 0) starts
to reform more quickly with the strength of the potential in the
case of a single impurity than the double ones. Eventually, in
the case of a hard-wall impurity (ideal vacancy), the sharp res-
onance peak appears perfectly at the Dirac point (E = 0) and
the symmetry of the DOS around E = 0 is completely restored.

C. Diagonal disorder

First we shall take up purely diagonal disorder problems:
those problems which can be taken up by earlier suggested
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FIG. 7. (Color online) Same as Fig. 5, but with the inclusion of
both diagonal and off-diagonal disorder. The three panels for each
alloy indicate the results with coupled diagonal and off-diagonal
disorders as described in the text.

methodologies. Of course, our augmented space recursion
in reciprocal space gives us additional information about the
disorder induced lifetimes of the Bloch states. In Fig. 5, we dis-
play the configuration averaged Bloch spectral function (upper
panels) [given by Eq. (12)] and the corresponding dispersion
energy vs k (lower panels) along the �-K-� symmetry line
for three different alloys AxA

BxB
(xB = 5%,15%, and 25%)

with various diagonal disorder strengths. For each disorder
strength δE in a particular alloy, the upper panels show the
averaged Bloch spectral function at five k points along the high
symmetry direction �-K. The corresponding Dirac dispersions

are shown in the lower set of panels along the �-K-� line.
The two sublattices I and II are homogeneously disordered,
such that xA = xC , xB = xD and εI

A = εII
C , εI

B = εII
D . For

each alloy case, the panels from top to bottom indicate the
results with increasing strength of diagonal disorder (i.e.,
δE = εA − εB = 0.1,0.4,0.7, and 1.0). The hopping integral
t is chosen to be 1 here, so there is no off-diagonal disorder.
The first thing to note is that the spectral function modifies
quickly from sharp near δ functions to Lorentzian shapes
with increasing disorder strength δE as well as increasing
alloy concentration xB . In addition, the function gets more
and more asymmetric with increasing δE. Such asymmetries
can be described as a tendency of more scattering to occur
near the resonance energies around �. In other words, line
shapes around � tend to have a weak second peak or wide tail
over the resonance region. For the present diagonal disordered
case, the Dirac point is simply shifted by an average energy
〈ε〉 = xAεI

A + xBεII
B .

The corresponding total DOS for the same set of disorder
strengths δE and the alloy concentrations x are shown in
Fig. 6. The individual projected DOS on the two sublattices
I and II in this case are same, because we have maintained
uniform diagonal disorder on both the sublattices. However,
the present theory is equally capable of treating the two
sublattices differently with a different nature of disorder on
them. In that case, the two inequivalent sublattices will have
different projected quantities. Looking at Fig. 6, one can notice
an exactly similar shift of the Dirac point (to the average 〈ε〉)
in the DOS as shown in the dispersion. The disorder effects
are pronounced around the Dirac-point energy 〈ε〉 and get
milder around the hump below δE = 0.7. Above this disorder
strength, the left band edge starts to show up extra features with
a dip at around E = −2 (as shown in the bottom panels for the
three alloy concentrations). The results are qualitatively similar
to the CPA works done earlier30 but differ in quantitative
details.

D. Off-diagonal disorder

We now turn to the cases with off-diagonal disorder.
Such problems cannot be dealt with within the CPA. Also,
direct calculation of the averaged spectral functions and
disorder induced lifetimes is also not feasible with other
techniques and the strength of the ASR comes to the fore.
In addition we should note that in our model, diagonal and
off-diagonal disorders are correlated: e.g., if the atom A
occupies the site i with probability xA and atom B occupies
the site j with probability xB , then tij has to be tAB with
probability 1. Although the present theory is equally capable
of investigating other interesting cases (e.g., inhomogeneous
disorder, pseudobinary type disorder, etc.), here we have
chosen to explore three cases which should reflect the behavior
of a variety of the realistic materials. The three cases are

(i) strong diagonal and weak off-diagonal disorder with pa-
rameters δE = εI

A − εI
B = εII

C − εII
D = 1.0, tAC = 1.0, tBD =

0.9, and tAD = tBC = 0.95;
(ii) weak diagonal and strong off-diagonal disorder with

parameters δE = 0.1, tAC = 1.0, tBD = 0.5, and tAD = tBC =
0.75; and
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FIG. 8. (Color online) Sublattice projected DOS for the same three sets of diagonal + off-diagonal disorder strengths for three alloys
AxA

BxB
as in Fig. 7. The projected DOSs on the two sublattices nI and nII , in this case, are different due to the obvious reason arising from

different random tij interactions.

(iii) strong diagonal as well as strong off-diagonal disorder
with parameters δE = 1.0, tAC = 1.0, tBD = 0.5, and tAD =
tBC = 0.75.

The results for these three cases are shown in the top,
middle, and bottom panels of Fig. 7, respectively, for the
same three alloys AxA

BxB
as before. Other details are same

as in Fig. 5. Notice that unlike the diagonal disordered
case, effects of both diagonal and off-diagonal disorder are
much more dramatic. In addition to a highly asymmetric
nature, the Bloch spectral function is found to have a double
peaked structure in the extreme case of strong diagonal and
off-diagonal disorder (shown in the bottom panels). Such a
doubly peaked line shape introduces extra discontinuous bands
in the dispersion curve. Such a structure had been seen before
in phonon problems21 which also have intrinsic off-diagonal
disorder in the dynamical matrices. There it arose because of
resonant modes. Here too we shall give a similar explanation.
These dispersions at resonance have relatively large FWHMs,
and it will be interesting to choose a realistic material of
similar disorder properties and investigate the experimental
outcome.

Figure 8 shows the sublattice projected DOS for the same
three limiting cases for the three alloys as above. The solid
blue and the dashed red lines indicate the projected DOSs
on the sublattices I and II, respectively. Because of the
random hopping (off-diagonal) interaction in this case, the
two sublattices acquire a different environment around it,
and hence possess different projected quantities on them. As
expected, the DOSs in these cases have large smearings. The
effective environment around the two sublattices is maximally
different from each other in the extreme case of both strong
diagonal + off-diagonal disorders (as shown in the bottom
panels), as evident from the large difference between their
projected DOSs. Interestingly, for this particular case, the
appearance of discontinuous bands in the -ve energy range
(see bottom panels of Fig. 7) is reflected via a dip in the DOS
along with a much larger smearing. Apart from this extreme
case, the Dirac point for all the other cases has moved in exact
accordance with that of the band shift as in Fig. 7. The topology
of the DOS on the two sides of the Dirac point are very different

from each other especially in the case of strong diagonal and
off-diagonal disorder (bottom panels). In totality, the effects of
off-diagonal disorder are very different from that of diagonal
disorder (as a comparison between Figs. 6 and 8 will show).
Treatments of off-diagonal disorder is straightforward and
accurate in the ASR formalism.

IV. CONCLUSION

We present a theoretical model to study the effects of (i)
impurities and (ii) substitutional diagonal and off-diagonal
disorder in graphene on an equal footing. Local electronic
properties of impurity (single and double) states are found to
agree fairly well with other theoretical approaches and are open
to connect with the future scanning tunneling spectroscopy
(STS) experiments which are capable of extracting a local
density of states which can be directly compared with our
results. Moreover,our calculated band dispersions can be
compared with angle-resolved photoemission experiments,
which have been done for ordered graphene by several groups.
In regards to substitutional disorder, we show how the topology
of the Dirac dispersion and the location of the Dirac point
change with the strength of disorder. We reliably take into
account the effects of off-diagonal disorder in describing
the spectral properties of graphene. The present approach
is based on a model Hamiltonian with varying diagonal and
off-diagonal disorder strengths. Our main aim was to provide
the trend for the electronic dispersion, DOS, and the disorder-
induced scattering with various combination of disorder, which
in fact should help in understanding the electronic properties
of realistic graphene materials with similar types of disorder.
One of our interesting findings is the dispersion in the case of
both strong diagonal and off-diagonal disorder which tends to
have an extra discontinuous band: a rather uncommon feature
in the graphene fermiology with simple disorder. As such we
propose to verify such effects in the electronic dispersion by
setting up an experiment on a realistic graphene system, where
both the diagonal and the off-diagonal disorder are strong
(e.g., creating a disordered graphene structure with a variety
of structural defects introduced by ion irradiation and then
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adsorbing transition metal adatoms or clusters at some defect
sites as the chemisorption energy is very high at the defect
sites31). We believe that such a study may provide a deeper
insight into the physics and materials perspective of graphene.
Finally, we want to state that our formulation is quite general
and can be applied to any realistic two dimensional (2D)
material, e.g., BN in the presence of disorder.
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